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NUMERICAL CALCULATION OF EIGEN FUNCTIONS AND 
ENERGY LEVELS OF QUANTUM WELLS, BASED ON 

BOUNDARY ELEMENT METHOD 

Mahdi SOVIZI1, Mahdi MOHSSENI2 
In this article, a numerical method based on Boundary Element Method 

(BEM) has been applied for the calculation of the eigenvalues and eigenfunctions of 
2D and 3D quantum wells. First, the eigenvalue equation has been converted into 
boundary integral equation, using the Green’s theorem. Then, a numerical method 
to calculate the eigenvalues of the differential equations is illustrated; and the 
eigenvalues of some kind of potential well such as a circular, elliptical and a 3D 
potential well are calculated. Then, the mutual effects of the two circular well have 
been analyzed. Afterwards, to obtain the eigenfunctions, we solved such integral 
equations, using BEM; and the corresponding eigenfunctions to an energy level of 
an elliptical well are calculated. A very good agreement was observed among the 
theoretical and numerical methods. The short performing time of calculations and 
high accuracy are the dominant characteristics of BEM in comparison with the 
other methods. 
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1. Introduction 

Eigenvalue equations are among the group of equations, which have the 
variety of applications in sciences. Schrödinger equation in quantum mechanics, 
radiation in electrodynamics, propagation of light trough waveguides and 
photonic crystals, eigenfaces in image processing, vibration analysis and also 
studying stress tensor in solid mechanics are just few examples from the 
applications of these kinds of equations. Accordingly, solving this problem and 
finding its corresponding eigenvalues and eigenfunctions always are very 
important for scientists; Furthermore, they proposed lot’s of methods to solve this 
kind of equations[1-16]. In this article, first, we report a method to solve the 
eigenvalue and eigenfunction of some differential equations base on Boundary 
Element Method. Then, using this method, some 2D and 3D quantum well such as 
single and double circular, elliptical and spherical potential well are solved and its 
energy levels and eigenfunctions are obtained. 
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2. Theory 

In this section, a method to solve the eigenvalue of some differential operators 
base on Boundary Element Method is illustrated. Consider ( )Xψ  satisfy below 
differential equation: 

( )( ) ( )L̂ X f Xψ = −       (1) 
where L̂  is a differential operator in the form bellow: 

( )( ) ( )ˆ ˆ .L L p X q Xλ λ′= − = ∇ ∇ + −     (2) 

In this expression ( )p X  and ( )q X  are arbitrary functions and λ  is a constant 
parameter, which can be considered as an eigenvalue of the operator ˆ ˆL L λ′ = +  if 
( ) 0f X = . The corresponding Green equation to Eq. (1) is 

( )( ) ( )ˆ ,L G X X X Xλ δ′ ′= − −      (3) 

Statement of this point is necessary that the operator L̂  just apply on X 
components. The second form of modified Green theory expresses as[17]: 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

ˆ ˆX L X X L X d

X X
p X X X d

n n

ψ ψ

ψ
ψ

Ω

Γ

Φ − Φ Ω =

⎡ ⎤∂ ∂Φ
Φ − Γ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

∫

∫
   (4) 

Ω  is a domain which is surrounded by closed boundary, Γ , and / n∂ ∂  is a 
normal derivative perpendicular to the boundary Γ . By considering Eqs. (1) and 
(3) and also considering ( ) ( ),X G X Xλ ′Φ = , the Eq. (4) can be rewritten as 
follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

,
,

G X X f X X X X d

X G X X
p X G X X X d

n n

λ

λ
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ψ δ
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ψ
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′ ′− + − Ω =
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∫

∫
  (5) 

Where, the points X and X ′  are known as the integration and observation 
points, respectively. By using the characteristics of Delta function, the second 
term in the left hand side of Eq. (5) will simplify to: 

( ) ( ) ( ) ( )X X X d C X Xψ δ ψ
Ω

′ ′ ′− Ω =∫    (6) 
By choosing ( ) 0f X =  and putting ( ) 1Xψ = , Coefficient ( )C X ′  will obtain as 
[18]: 

( ) ( ),
( )

G X X
C X p X d

n
λ

Γ

′∂
′ = − Γ

∂∫    (7) 
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If the observation point, X ′ , lies outside the boundary Γ , the numerical 
amount of ( )C X ′  will vanish; and if it places inside, its amount will be equal to 
one; but, if it locates on the boundary, its amount should obtain by Eq. (7). 

Substituting Eq. (6) into Eq. (5) yield: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

,
,

C X X f X G X X d

X G X X
p X G X X X d

n n

λ

λ
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ψ
ψ

Ω

Γ

′ ′ ′= Ω +

′⎡ ⎤∂ ∂
′ − Γ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

∫

∫
  (8) 

Considering Eq. (8), it is obvious, providing that the amount of ( )Xψ  and 
( ) /X nψ∂ ∂  be definite on the boundary Γ  and also by choosing the appropriate 

Green function which satisfy Eq. (3), we will be able to calculate the amount of 
( )Xψ  on any arbitrary observation points. Therefore, solving Eq. (1) will shorten 

just to find the amount of ( )Xψ  and ( ) /X nψ∂ ∂  on the boundary Γ . As stated in 
introduction, in the most of the sciences such as mathematics, physics and 
engineering as well as in the most of the problems, finding the eigenvalues and 
eigenfunctions of a differential operator like ˆ ˆL L λ′ = +  are in demand. To reach 
this aim, we will investigate just equations, in which, ( ) 0f X = . These equations 
are well-known as homogeneous equations and express as follows: 

( )( ) ( )( ) ( )ˆ ˆ 0L X L X Xψ ψ λψ′= − =    (9) 

In fact, this equation is an eigenvalue equation of operator L̂ ′ , and represent in 
this way: 

( )( ) ( )L̂ X Xψ λψ′ =      (10) 

( )Xψ  and λ  are eigenfunction and eigenvalue of operator L̂ ′ , respectively. 

Choosing the appropriate ( )p X  and ( )q X  will lead to convert Eq. (10) to the 
set of well-known equation in physics, which is stated in table 1. By considering 
Eq. (8), the corresponding integral equation to Eq. (10) yields as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),
,

X G X X
C X X p X G X X X d

n n
λ

λ

ψ
ψ ψ

Γ

′⎡ ⎤∂ ∂
′ ′ ′= − Γ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∫  (11) 

Eq. (11) is an integral equation and should solve by considering the boundary 
conditions. In this equation, in addition to ( )Xψ  and ( ) /X nψ∂ ∂  on the boundary 
Γ , the amount of λ  is undetermined as well. 

Follows, we will investigate a problem that is applicable in photonic crystals, 
fiber optic photonic crystals, quantum potential wells and in micro optic elements. 
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Consider two domains, 1Ω  and 2Ω , which are separated from each other by 
the boundary Γ . The govern differential equation on ( )Xψ  in these two regions 
are: 

( ) ( )1 1 1
ˆ ,L X X Xψ λψ′ = ∈Ω     (12-a) 

( ) ( )2 2 2
ˆ ,L X X Xψ λψ′ = ∈Ω     (12-b) 

By considering the below boundary condition on the boundary Γ : 
( ) ( )2 1X Xψ αψ=      (13-a) 
( ) ( )2 1X X
n n

ψ ψ
β

∂ ∂
=

∂ ∂
     (13-b) 

and using the Eq. (11), the corresponding integral equations to the eigenvalue 
equations (Eq. (12)) will yield as follows: 
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1,G λ  and 2,G λ  are Green functions of operator L̂  in regions 1Ω  and 2Ω  
respectively. Substituting boundary conditions (13) in recent equation and using 

2/ /n n∂ ∂ = −∂ ∂  will simplify it: 
( ) ( )

( ) ( ) ( ) ( )
2

2,1
2, 1

,
,

C X X
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p X G X X X d
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∫
 (14-b) 

To solve the coupled integral Eqs. (14-a) and (14-b), first, should specify the 
amount of the eigenvalue λ ; then, calculate the numerical amount of ( )1 Xψ  and 

( )1 /X nψ∂ ∂  on the boundary Γ . To reach this goal, we will convert these 
equations to algebraic equations, using an ordinary approximation in BEM. In this 
method, the boundary Γ  will divide to some finite boundary elements and also the 
integral over the boundary Γ  will change to the integral on the each boundary 
elements by considering this equation: 

( ) ( )
1

. .
i

N

i

d d
Γ Γ

=

Γ = Γ∑∫ ∫       (15) 

N is the number of boundary elements on the boundary Γ . To use the Constant 
Element Approximation (CEA) [18], we consider one point on every boundary 
element as a node and show their positions by iX . Also, we ignore the variations 
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of ( )1 Xψ  and ( )1 /X nψ∂ ∂  on a boundary element according to CEA. These 
approximations express as follows: 

( ) ( )1 1
i

i iX X Rψ ψ
Γ
≈ =      (16-a) 

( ) ( )1 1

i

i
i

X X
S

n n
ψ ψ

Γ

∂ ∂
≈ =

∂ ∂
    (16-b) 

After meshing Γ  and choosing one node on every element and using Eqs. (15) 
and (16), the Eqs. (14-a) and (14-b) will approximated to the forms below: 
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By describing follows integral relations: 

( ) ( ) ( )1, ,
;
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G X X
I i X p X d

n
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( ) ( ) ( )1,; ,
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SI i X p X G X X dλΓ
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( ) ( ) ( )2, ,
;

i
R

G X X
J i X p X d

n
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Γ

′∂
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( ) ( ) ( )2,; ,
i

SJ i X p X G X X dλβ
Γ
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the Eq. (17) will converted to these forms: 

( ) ( ) ( ) ( )1
1

; ;
N

i R i S
i

C X X R I i X S I i Xψ
=

′ ′ ′ ′= +∑    (19-a) 

( ) ( ) ( ) ( )2
1
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N

i R i S
i

C X X R J i X S J i Xψ
=
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In Eqs. (19-a) and (19-b), the observation point X ′ is taken inside the regions 
1Ω  and 2Ω , respectively. In order to solve the Eq. (19), consider two points, one 

inside the region 1Ω  and the next one inside the region 2Ω . Then move these two 
points toward the common node jX  on the common boundary of two regions. By 
Doing this action the Eq. (19) will convert to these forms: 
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1
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N

j j i R j i S j
i
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= +∑    (20-a) 
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i

C X X R J i X S J i Xψ
=

= +∑    (20-b) 
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Using Eq. (13-a) and (16-a), the Eq. (20) will convert to the set of 
homogenous equations: 

( ) ( )( ) ( )
1

; ; 0
N

i R j ij j i S j
i

R I i X C X S I i Xδ
=

− + =∑    (21-a) 

( ) ( )( ) ( )
1

; ; 0
N

i R j ij j i S j
i

R J i X C X S J i Xδ α
=

− + =∑    (21-b) 

By Choosing ( )1,...,j N∈ , these equations will construct 2N sets of homogenous 
equations: 

( ) 0A Yλ =        (22) 
( )A λ  is the coefficient matrix of these set of equations and its elements state as: 

( ) ( ) ( ), ;j i R j ij jA I i X C Xλ δ= −     (23-a) 
( ) ( ), ;j i N S jA I i Xλ

+ =      (23-b) 
( ) ( ) ( ), ;j N i R j ij jA J i X C Xλ δ α+ = −     (23-c) 
( ) ( ), ;j N i N S jA J i Xλ
+ + =      (23-d) 

, (1,..., )i j N∈     

Upper index, λ , denote that the numerical amount of each element in this 
matrix is depend on the eigenvalue λ . Dependence of these equations to λ  is 
arising from the dependence of Green function to this value. The column matrix 
Y  is considered in the form of below: 

i i

i N i

Y R

Y S+

=

=
      (24) 

In order to have the non-zero answer for these set of equations, below 
condition should satisfy: 

( )( )det 0A λ =       (25) 

Note that Eq. (25), will not result in characteristic equation; also, the 
complicated dependence of each element of matrix ( )A λ  to the parameter λ  arise 
from dependence of Green’s function to λ . Therefore, to solve the Eq. (25) and 
determine the amount of λ  we used a method which is so similar to the bisection 
method which uses to find an algebraic equation roots. In this method, first, to 
obtain the Eq. (25) roots, we should determine the appropriate intervals that Eq. 
(25) just has a single root in each one. To specify these intervals, we give some 
values to λ  and calculate the ( )( )det A λ . Determining the sign of ( )( )det A λ , enable 

us to specify the allowable intervals. Then, we can find the roots of Eq. (25) in 
these intervals using bisection method. We show the roots of Eq. (25) by kλ . Note 
that whenever each amount of λ  determined, the corresponding elements of ( )A λ  
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should find from Eq. (23) simultaneously. After determining kλ , we are able to 
obtain the direction of its corresponding vector ( )kY  in 2N-dimension complex 
space, using Eq. (22). Afterwards, by normalizing the vector ( )kY , we can 
calculate it completely. Of course, in spite of finding ( )kY , the eigenfunctions of 
differential equations of Eq. (12) are still remained to determine. We are able to 
calculate numerically these eigenfunctions using Eq. (19). Then, numerical 
amount of ( )1 Xψ ′  or ( )2 Xψ ′  can be calculated by choosing X ′  in any arbitrary 
point inside the regions of 1Ω (Eq. (19-a)) or 2Ω  (Eq. (19-b)). One of the dominate 
characteristics of BEM is that, after determining the amount of desire functions on 
the boundaries, calculating the amount of that function in every arbitrary point 
inside the domain is possible. The other characteristic of this method is that, in 
necessary cases we are able to derivate analytically from functions ( )1 Xψ ′  and 

( )2 Xψ ′  with respect to X ′ , using Eq. (19). Since in BEM, meshing is being done 
just on the boundary of the domain, then, performing time of the calculation is too 
short and also the accuracy is too high, in comparison with the other methods. 

3. Numerical Results 

In this part, due to investigate the correctness and preciseness of the 
mentioned method we examine some numerical examples. First, we consider a 
particle with mass m  and electrical charge q  which is lain in a potential well with 
circular cross section: 

1

2

( )
V a

V
V a

ρ
ρ

ρ
≤⎧

= ⎨ >⎩
      (27) 

that 1 2V V<  and a  is the radius of the potential well. By solving the time 
independent Schrodinger equation, eigenfunctions of the particle obtained as 
follows: 

1

2

( ) exp( )
( , )

( ) exp( )
m m

m
m m

A J K im a
B K K im a

ρ ϕ ρ
ψ ρ ϕ

ρ ϕ ρ
≤⎧

= ⎨ >⎩
   (28) 

which mJ  and mK  are mth_order Bessel function of first kind and mth_order 
modified Bessel function of second kind, respectively; and 2

1 12 ( ) /K m E V= −  

and 2
2 22 ( ) /K m V E= − . Applying the continuity boundary conditions to the state 

function and its normal derivative on the boundary of the potential well, the 
amount of E  and /m mB A  ratio are calculable. As an example, this problem is 
solved by the method which is mentioned in this article and energy spectrum of 
the bounded particle is calculated. The numerical answers are compared for 
different values of 1V  and 2V  and a very good accommodation observed between 
two results. Table 2 shows theoretically and numerically calculated results. 
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In table 2, numerical results of the energy levels are calculated by 210 eV−  
accuracy; increasing the accuracy to 310 eV−  will vanish the slight difference 
between the numerical and theoretical values. In Fig. 1, the behavior of det( )A  
with respect to energy of electron in a circular potential well is shown for the 
values expressed in table 2. As is clear, the det( )A  vanishes in the position of each 
energy levels. 

To investigate the energy level degeneracy and also investigate the 
perturbation effect on energy level gaps, we change the cross section shape of 
potential well to an ellipse with radii of 2.2a A=  and 1.8b A= . Analytically 
calculating the energy levels of potential well with arbitrary cross section is too 
hard. However, using the mentioned method in this article, the time duration and 
accuracy of calculating the energy levels are independent to the shape of the cross 
section of the well. In table 3, the Energy levels of an electron in the elliptical well 
(for the given parameter stated in description of table 2) are expressed. 

The displacement and splitting of the energy levels of a particle in an elliptical 
potential well in comparison with a circular potential well are shown in Fig. 2. 
Behavior of det( )A  is shown in Fig. 1 with respect to energy of the particle as 
well. In Fig. 1, the splitting of energy levels is completely clear. 

Afterwards, the probability density of existence of an electron in the elliptical 
potential well for the forth level (13.943 eV) is calculated (Fig. 3). The 
dimensions of the elliptical potential well considered 1.5 and 2.5 A  and the 
amount of the potential inside and outside it are chosen zero and 20 eV 
respectively.  

As a next problem, the energy levels of a particle in two circular potential well 
adjacent to each other, with characteristics that expressed in the description of 
table 2, are calculated. Radius of each well and distance between their center are 
considered as 2a A=  and 4.4d A= , respectively. Energy eigenvalues of the 
particle through the double potential well are given in table 4. To investigate the 
mutual effect of two wells on each other, we increased the distance between the 
centers of two wells gradually and we calculated the energy spectrum of the 
particle in each level. We saw that by increasing the distance between the centers 
of two wells, the number of energy levels are decreased from 12 to 4 levels that 
the numerical amount of these four levels are completely match with energy levels 
of the sole circular potential well which expressed in table 2. In the last stage, the 
distance between the centers is considered as 14d A= . As we expected, by 
increasing the distance of two wells, not only the well’s wave function haven’t 
had any overlap anymore but also each well behave as an isolated one. 
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Finally, the energy levels of a particle in a 3D potential well are calculated. 
One application of this problem is to find the energy spectrum of electrons and 
holes in semiconductors with zero-dimension (quantum dots). The valance 
electrons of atoms in a nano meters semiconductor are bent to just inside the 
volume of the nano particle. This limitation causes the creation of distinct energy 
levels that they behave as energy levels of an atom. To appear these levels, these 
kinds of nano particles are named as artificial atoms. In the simplest 
approximation, the quantum dot can be considered as a spherical potential well 
that the electrons are bent through the potential well. We consider this 
approximation in spherical coordinate as follow:  

1

2

( )
V r a

V r
V r a

≤⎧
= ⎨ >⎩

     (29) 

Using the mentioned method in this article, we calculate the energy levels of 
bent electrons. The numerical results are obtained considering 1 0V eV= , 

2 50V eV=  and 2a A= . Results are shown in table 5. 

4. Conclusion 

In this article, based on BEM a numerical method has been applied to 
calculate the eigenvalues and eigenfunctions of some common differential 
equations in sciences, especially in physics. First, the energy levels of a particle in 
a circular potential well are calculated, analytically and numerically; and a very 
good agreement is observed between the two results. Then, the eigenvalues of the 
elliptical potential well are calculated. Also, the corresponding eigenfunctions to a 
specific energy level of an elliptical potential well have been obtained. Then, the 
mutual effect between two circular potential well are investigated. We show that 
by increasing the distance between the centers of two wells gradually the number 
of energy levels start to decrease to the energy levels of a sole circular well. 
Finally, the energy levels of a quantum dot are calculated. 

 
Fig. 1: behavior of det( )A  with respect to the energy of particle 
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Fig. 2: energy levels of a particle in circular (A) and elliptical (B) quantum wells. 

 
Fig. 3: The probability density of existence of the electron in the elliptical potential well. 

 
                                                                                                                                     Table 1 

Values of ( )p X , ( )q X , ( )f X  and λ  for some different partial differential equations. 

Equation ( )p X ( )q X λ ( )f X  
Laplace 1 0 0 0 
Poisson 1 0 0 0≠  

Homogeneous 
Helmholtz 1 0 2K−  0 

Inhomogeneous 
Helmholtz 1 0 2K−  0≠  

Schrödinger 1 22 ( ) /mV X− 22 /mE− 0 

Heat ( )K X 0 0 ( )Q X
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                                                                                                                                  Table 2  
Analytically and numerically calculated amount of energy levels of a particle for em m=  ( em  

is electron mass), 1 0V eV= , 2 20V eV=  and 2a A= . 

 1( )eVε 2 ( )eVε 3( )eVε 4 ( )eVε  
Analytical 

results 3.666 9.122 15.890 17.596 

Numerical 
Results 3.674 9.14 15.91 17.6 

 
                                                                                                                                Table 3 

Energy levels of a particle in an elliptical quantum well with radii 2.2a A=  and 1.8b A=  
and for the given values described in the description of table 2. 

1( )eVε  2 ( )eVε  3( )eVε 4 ( )eVε 5( )eVε 6 ( )eVε  
3.47 8.57 10.00 15.17 16.13 18.64 

 
                                                                                                                                   Table 4 

Energy levels of the electron in two circular potential well adjacent to each other with respect to 
eV  and for different distance between their centers. 

 4.4d A=
 

5.0d A=
 

6.0d A=
 

7.0d A=
 

8.0d A=
 

9.0d A=
 

14.0d A=
 

1 3.512 3.635 3.674 3.67 3.67 3.674 3.674 
2 3.798 3.71 9.138 9.138 9.14 9.14 9.14 
3 8.478 8.928 15.825 15.9 15.91 15.91 15.91 
4 9.054 9.115 15.865 15.92 17.58 17.59 17.6 
5 9.214 9.16 15.96 17.55 17.624 17.61 --- 
6 9.726 15.597 16 17.66 --- --- --- 
7 15.2 15.727 17.485 --- --- --- --- 
8 15.456 16.105 17.76 --- --- --- --- 
9 16.38 16.213 --- --- --- --- --- 
1
0 

16.508 17.36 --- --- --- --- --- 

1
1 

17.252 18.09 --- --- --- --- --- 

1
2 

18.676 --- --- --- --- --- --- 

 
                                                                                                                                             Table 5 

Energy levels of the electron in a spherical potential well. 
1( )eVε  2 ( )eVε 3( )eVε 4 ( )eVε 5( )eVε
9.5 19.4 31.8 37.6 46.6 
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