U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 4, 2024 ISSN 2286-3540

GPGPU AND SIEVE OF SUNDARAM

Mircea GHIDARCEA! and Decebal POPESCU?

In the quasi-forgotten universe of prime sieving, Sieve of Sundaram
is seen as an elegant approach to prime generation, but its performance is
significantly worse than basically every other algorithm but brute-force trial-
division. Yet, exactly this less than stellar arithmetic complexity makes it
an ideal candidate to demonstrate the power of GPU based computing in
tackling this kind of problems that evade the usual matriz oriented, sym-
metrical jobs for which the GPGPU paradigm was natively devised. This
paper intends to demonstrate how a well thought approach can benefit from
the immense throughput of modern GPUs to solve problems like sieving,
which are not perfectly symmetric.

Keywords: GPGPU; prime numbers sieving; OpenCL; algorithms; algo-
rithm optimization; parallel algorithm

1. Introduction

Along with the Sieve of Eratosthenes (SoE) and Euler’s Sieve (SoE+),
the Sieve of Sundaram (SoS) is one of the three early prime sieves devised by
mathematicians [1]. The algorithm was initially thought to be more efficient
than the Sieve of Eratosthenes because it eliminates half of the numbers at the
start and only needs to iterate through the remaining numbers for marking.

However, after being experimented with and its complexity being studied
more closely, it was proven that SoS is significantly less efficient than the Sieve
of Eratosthenes in practically every scenario.

In recent years, the use of specialized hardware devices such as GPUs has
become increasingly prevalent in performing mathematical calculations, facili-
tating sometimes dramatic performance improvements compared to traditional
calculation methods. Yet, GPUs are generally not optimal for problems that
are not symmetrical, as GPUs are designed for highly parallel computations,
which are prevalent to symmetrical problems. Non-symmetrical problems can
be less suited to the parallel architecture of GPUs, potentially leading to inef-
ficiencies.

Doctoral student, UNST POLITEHNICA of Bucharest — Computer Science, Romania;
e-mail: mircea.ghidarcea@stud.acs.upb.ro

2Professor, UNST POLITEHNICA of Bucharest — Computer Science, Romania; e-mail:
decebal . popescu@upb.ro

31

32 Mircea GHIDARCEA, Decebal POPESCU

In particular, GPUs are not very well suited for sieving due to the in-
herently irregular and data-dependent nature of the sieving process. Sieving
algorithms often involve a series of conditional checks and memory accesses
that are difficult to parallelize effectively. This irregularity leads to poor uti-
lization of the GPU’s parallel processing capabilities, as threads can become
idle waiting for data or conditional branches to resolve. Additionally, the mem-
ory access patterns in sieving are typically random and sparse, which can result
in inefficient use of the GPU’s high-bandwidth memory architecture. Conse-
quently, the advantages of GPUs in performing highly parallel computations
are not fully leveraged in sieving tasks, making them less optimal for this type
of problem.

In this paper, we will attempt to demonstrate that GPUs can nonetheless
be used to achieve significant speed improvements in sieving. To this end, we
will use SoS, a sieve known to have high complexity and, therefore, very low
practical efficiency, precisely to illustrate the performance gains that can be
obtained from using a GPU.

NOTE 1: Our experiments used C/C++ to create succinct, self-contained and high-
performance code that can be readily compiled across several different platforms. Accom-
panying code used in this article can be found on GitHub at https://github. com/
mirceag70/SoS

NOTE 2: All the timings for this paper were measured on the same desktop computer
with AMD Ryzen 9 7900X CPU (Auto OC on) and AMD 7900XTX GPU. For a better
standardisation of results, all the components of the generation process must be included in
the timings to be compared, including any data preparation that occurs before sieving (like
root primes generation) or after sieving (like really, effectively obtaining the value of all
prime numbers and getting those values in order).

2. SoS Fundamentals

Some 90 years ago, S.P.Sundaram [2], departing from the observation
that any odd composite number N can be expressed as the product of two
smaller odd numbers

N=@2i+1)2+1)=4ij+2i+2j+1=202ij+i+j)+1=2k+1

concluded that for all integers k for which exists ¢ and j greater than 0 so that
k = 2ij + 1+ j, the number
N=2k+1

will not be prime. Vice versa, the number N = 2k + 1 will be prime if k
cannot be expressed as 2ij + ¢+ j. So, if we sieve out all numbers in the form
of k = 2ij+i+j from an interval [0 .. N], the remaining numbers will generate
all prime numbers in interval [0 .. 2+ N] as 2k + 1.

1 An optimizing compiler will discard futile code, so very often it is not sufficient to simply
compute the number in code without using it — one must assure that the number is really
computed in the benchmarking process.

GPGPU and Sieve of Sundaram 33

Algorithm 2.1 presents a basic version of the sieve, in both normal
(straightforward) and additive (avoiding as possible multiplication and other
complex operation) versions.

Algorithm 2.1 Sieve of Sundaram
e 1bit implementation
e the additive version is less readable and not really that much faster when
using a modern optimizing compiler.

uint64_t Sundaram(const uint64_t Nmax, uint8_t vPrimes[]) {
const uint64_t max_k = Nmax / 2;
memset (vPrimes, 0, max_k / 8 + 1);
//sieve
#ifdef ADDITIVE
for (uint64_t k = 4, delta = 3;
k < max_k; delta += 2, k += delta + delta - 2)
for(auto k1 = k; k1 < max_k; k1 += delta)
vPrimes[kl / 8] |= BIT_MASK[k1 7, 8];
#else
const uint64_t max_k_sqrt = sqrt(max_k);
for (uint64_t i = 1; i <= max_k_sqrt; i++)
for(uint64_t j = i;;j++) {
wint64_t k = 2 % i * j + i + j;
if (k > max_k) break;
vPrimes[k / 8] |= BIT_MASK[k % 81;
}
#endif // ADDITIVE
//count
uint64_t numPrimes = 1; AddPrime(2); // to account for 2
for (uint64_t k = 1; k < max_k; k++)
if (not(vPrimes[k / 8] & BIT_MASK[k 7% 8])) {
uint64_t n = 2 * k + 1;
AddPrime(n) ; numPrimes++;
I

return numPrimes;

As explained in [3], the complexity of Sieve of Eratosthenes (SoE) is:
C(SoF) = O(N In(In(N)))
while SoS is quite worse with:
C(SoS) = O(N In(N))

The timings indicated in Table 1, comparing similar basic, single-threaded,
bit-oriented implementations of the two sieves, corroborate this significant con-
trast: the disparity is more pronounced than it initially seems. Due to this less
than stellar complexity, SoS is not really a contender when it comes to prime
sieves with practical value, as shown also in article [1].

34 Mircea GHIDARCEA, Decebal POPESCU

Table 1. SoS timings [ms] and cycles [].

Limit(10%) SO 1bit oo ——Ses bt Eaplicit
7 8 10 10

80 124 120

1520 3757 4119

10 21°063 68078 71963

Placing counters inside the inner loop of the sieve (lines 15-17 in Algo-
rithm 2.1) we can better understand the performance difference between SoE
and SoS — see Table 2.

Table 2. SoS vs. SoE counters

Limit (10Y) | 7 | 8 | 9 | 10
SoE cycles 9.246e6 99.152e6 1.05e9 11.026e9
overwrites (%) | 4.910e6 (53) | 54.913¢6 (55) | 0.60e9 (57) | 6.481e9 (59)
SoS cycles 17.074e6 199.520e6 2.283¢9 25.708¢9
overwrites (%) | 12.738¢6 (75) | 155.281e6 (78) | 1.833¢9 (80) | 21.163¢9 (82)
SoS /SoE | 18% | 201% | 217% | 233%
Net strikes | 4.335e6 | 44.238¢6 | 0.450€9 | 4.545€9

For N = 9, where SoE executes 1 billion inner cycles with 60% repeat
rate, SoS does almost 2.3 billion, with a huge 80% repeat rate — not only
more work, but also significantly more duplicated work, and things get worse
and worse with larger limits, as seen in Table 2.

2.1. Fast SoS

Although not necessarily impossible, there are slim chances to optimize
the algorithm itself, as it does not display any obvious patterns in data process-
ing and the operations are already very simple — the problem lays in the sheer
quantity of computations that must be done and which increases exponentially
at larger limits.

The other strategy to enhance the algorithm’s efficiency would be to op-
timize its implementation. Looking at the very large value for Store Latency
in Figure 1, the first line of attack here is to employ contemporary cache-
intensive methods, aiming to fully leverage the CPU’s capabilities against the
huge amount of otherwise very simple instructions: a more refined, incremen-
tal code should manage to get decent values even from Sundaram. The sieving
part of such a segmented algorithm is presented in Algorithm 2.2.

Indeed, as we can verify in Table 3, the CPI goes dramatically down from
0.88 to 0.37 and the other parameters are overall improved. Table 4 shows the

GPGPU and Sieve of Sundaram 35

new, much better timings of the improved version, compared with the basic
1bit additive version. For reference, the table contains also timings for the
established 357 sieve [4] as a baseline (as shown in [1], 357 is the most rapid
classic sieve algorithm). The complete implementation details can be checked
out in the accompanying code.

Algorithm 2.2 Sieve of Sundaram — iterative sieving
e Additive version

-~

void GeneratelChunkO(void)
const uint64_t val_min = offset;
const uint64_t val_max offset + BUFF_SPAN;
uint64_t i, delta;
//flag non-primes
for (i = (unsigned)sqrt(val_max/2), delta = 2 * i + 1;
i > val_min; i--, delta -= 2) {
uint64_t n = 2 * (i + i * i);
for (unsigned nn = unsigned(n - val_min);
nn < BUFF_SPAN; nn += delta)

mark_val(nn) ;

for (; i > 0; i-——, delta -= 2) {
uint64_t j = (uint64_t) ((val_min - i) / (1.0 + 2 * i));
uint64_t n = i + j + 2 * (uint64_t)i * j;
while (n < val_min)
n += delta;
for (unsigned nn = unsigned(n - val_min);
nn < BUFF_SPAN; nn += delta)
mark_val(nn) ;

) Elapsed Time :14.137s

Clockticks: 67,194,000,000
" " The metric value is high.
Instruct 2d; 20,869,200,000 9
Instructions Refirec . This can Indicate that the
GPl Rate @: 3.220 23.7% - Memery Bound significant fraction of
MUX Reliability &2 0.979 execution pipeline s
D Retiring ® 38% ofFipeline Siots ¢]
(3 Front-End Bound @z 3.1% of Pipeline Slots P

d Speculation ©: 0.7% of Pipeline Slots
ck-End Bound @ 90.3% ® of Pipeline Slots
2 Memory Bound 2 23.7% K of Pipeline Slots

This metric represents
how much Core non-
memory issues were of a
bottieneck. Shortage in

® L1 Bound ®: 0.0% of Clockticks
- 66.6% - Core Bound hardware compute
B L2 Bound @: 0.0% resources, or
& L3 Bound @: 3.8% dependencies software's
(3 DRAM Bound @: 9.0% instructions are both
& Store Bound @; 33.0% & of G ;aleggried undter;?ore
Store Latency @: 99.8% ® of C ound. Rence Itm:
Split Stores @: 0.0% Pi
& DTLB Store Overhead ©@: 43.1% & chticks IJ Ipe
. . X 4 etk This diagram represents inefficiencies in GPU usage. Treat it as a pipe with an output flow
Store S . 2 " a ph
:u “ ?”‘B H!l : ‘D'4': . of T‘o"klfcf" equal to the "pipe efficiency” ratio: (Actual Instructions Retired)/(Maximum Possible
Store STLB Hit ©: 42.7% k& of Clockticks Instrugtion Retired). If there are pipeline stalls decreasing the pipe efficiency, the pipe

66.6% K of Pipeline Slots shape gets more narrow.

00% of Clockticks

95.2% K of Clockticks

@ Cycles of 0 Ports Utilized @: 48.0% K i
Cycles of 1 Port Utilized @ 1.6%

“ycles of 2 Ports Utilized ©: 2.3%

es of 3+ Ports Utilized ©: 22% of Clockticks

Vector Capacity Usage (FPU) ©: 0.0%

Figure 1. Basic SoS CPU profile (Intel).

36 Mircea GHIDARCEA, Decebal POPESCU

Based on this incremental version one could implement a full parallel
version of the algorithm — nevertheless, it is clear from these values that SoS
is not only a worse performer, but is also by far less linear than SoE /357, and
for large ranges it is not at all a viable choice.

Table 3. CPU statistics for SoS variants (AMD uProf) at Limit = 10°.

Process Basic Incremental
CYCLES NOT IN HALT 10’°476°250°000 4°000°000°000
RETIRED_INST 11°887°750°000 10°953°000°000
CPI 0.88 0.37
IC MISSES (PTI) 4.70 4.24
IC MISS RATIO 0.35 0.34
L1 ITLB MISSES (PTI) 0.32 0.35
L1 ITLB MISS RATE 0.00 0.00
L1 ITLB REQUESTS (PTI) 160.03 182.44
L2 ACCESSES FROM IC MISSES 3.78 4.14
L2 MISSES FROM IC MISSES 0.79 0.77
OP CACHE FETCH MISS RATIO 0.07 0.06

Table 4. Incremental SoS vs. 357 [ms].

Limit(10™) SoS 1bit SoS inc. 357
7 10 10 9
8 124 104 83
9 3757 1’120 817
10 68’078 12120 8’304
11 - 145’180 87160

3. GPGPU Implementation

Besides being quite a simple algorithm, so it is quite suited for experi-
mentation, SoS has another special characteristic that makes it a very good
candidate for a proof-of-concept massively parallel sieve implementation: it
does not require the pre-generation and storage of a massive list of root primes
(the set of primes up to N that are used to sieve for larger primes up to N?)
like any variant of Eratosthenes and, compared with pattern based Atkin [5]
or vertical sieve [7], each chunk has quite a simple and independent positioning
procedure, as seen in Algorithm 2.2.

It is exceedingly complex to work directly with a GPU, necessitating
the use of a framework or SDK that abstracts this complexity and provides
a user-friendly, generic API. Among the available options, CUDA stands out
as perhaps the most widely used framework today, though it is restricted to
NVIDIA hardware. Metal, on the other hand, is tailored specifically for Ap-
ple’s ecosystem. Vulkan is a relatively new entrant in the GPGPU domain,
though it has not yet gained widespread adoption.

GPGPU and Sieve of Sundaram 37

OpenCL is a mature and versatile platform, currently at version 3, and
enjoys support from all the major vendors, including NVIDIA, AMD /Xilinx,
Intel, and ARM, as well as numerous smaller players. OpenCL also extends
its reach to devices like FPGAs and a variety of niche hardware from compa-
nies such as Qualcomm, Samsung, and Texas Instruments. This broad com-
patibility makes OpenCL a highly practical choice, particularly because an
OpenCL program can run on any OpenCL-compliant platform, encompassing
most CPUs as well. Consequently, we have chosen to implement our GPGPU
algorithms using the C++ wrapper for OpenCL (https://www.khronos.org/
opencl/assets/CXX_for_OpenCL.html).

For those already acquainted with CUDA, it is important to highlight
that OpenCL and CUDA share many fundamental similarities. Both are par-
allel computing platforms specifically designed to leverage the computational
prowess of GPUs for general-purpose computing tasks. These frameworks fa-
cilitate the development of programs that execute in parallel on the GPU,
capitalizing on the extensive parallelism characteristic of GPU architectures.
Both OpenCL and CUDA utilize a comparable programming model centered
around kernels, which are small functions executed in parallel across numer-
ous threads on the GPU. They also feature memory models that are specif-
ically optimized for GPU architectures, with distinct types of memory (such
as global, local, and constant memory) that have particular access patterns
optimized for parallel execution.

Algorithm 3.1 Sieve of Sundaram — basic kernel
e Basic additive version

kernel void SoS_simple(global uint8_t* outBuff,
uint32_t outBuffSize, uint64_t offset) {
uint64_t i = get_global_id(0) + 1;
uint32_t gsize = get_global_size(0);
uint32_t gsize2 = gsize + gsize;
uint64_t val_min offset;
uint64_t val_max offset + outBuffSize;
uint32_t delta = (2 * i + 1);
//flag non-primes
for (; 2 * (i + 1 * i) < val_max; i += gsize, delta += gsize2) {
//get to the current interval
uint64_t j = (val_min > i) 7
(uint64_t) ((val_min - i) / (1.0 + 2.0 * 1)) : 1i;
uint64_t nstart = 1 + j + 2 * 1 * j;
for (; nstart < offset; nstart += delta);
nstart —-= offset;
// mark interval
if (nstart < outBuffSize)
for (uint32_t n = (uint32_t)nstart; n < outBuffSize; n += delta)
outBuff[n] = false;

38 Mircea GHIDARCEA, Decebal POPESCU

Furthermore, both platforms organize computations into threads and
thread blocks (in the case of CUDA) or work-items and work-groups (in the
case of OpenCL). These units of parallelism are then scheduled and executed
on the GPU hardware, allowing developers to harness the full potential of GPU
computing power.

In Algorithm 3.1 we have a straightforward kernel for a basic implemen-
tation of SoS on a GPU.

We have in Table 5 the timings for such a basic implementation of SoS
running on an AMD 7900XTX GPU — check the accompanying code for de-
tails. Although the kernel code tries to obey the basic rules of GPU program-
ming — avoid complex operations and 64bit data whenever possible, and don’t
expect too much from the optimizer — we can see that the results are horren-
dous: although we exploit 96 CU (compute units) each having 32 “threads”,
resulting in more than 3000 native threads, the performance is worse than the
basic one-threaded incremental implementation.

Table 5. SoS GPGPU Timings [ms].

GPGPU SoS Variants
Basic Cutoff LDS LDS Prll.

Limit(10™) 357 Incremental

9 10 1’147 298 337 505
83 104 1’196 345 381 018
817 1’120 5173 848 769 580
10 8304 12’120 31’988 5’678 5’388 1’980
11 87’160 145’180 - 727380 48’877 18’790
12 - - - - 505372 419’319

There are some generic explanations involving the lower frequency of the
GPU cores, the overall cache efficiency of a CPU and generally speaking the
huge differences in performance when comparing one-to-one a CPU thread to a
GPU one, but the fundamental explanation comes from the fact that those 3072
GPU “threads” are not really independent threads — they correspond with the
work-items in OpenCL and are grouped in wavefronts (or warps for CUDA),
each consisting of (usually) 32 threads that run in sync — that means that each
thread in the workgroup will not end until the last thread in the workgroup
has finished all the work, thus keeping the whole CU occupied. Because we
are using a stripping approach for domain segmentation, the thread lengths
vary significantly within a work-group, the result being that, although the
vast majority of threads have finished, a very small number of threads keep
everything stalled, and those are the work-items that includes is with very
small values. While for i above 100 there are only several hundred iterations
in the inner loop, for values bellow 10 there are many thousands, something
qualitatively similar to f(x) = x~! function as in Figure 2.

GPGPU and Sieve of Sundaram 39

Although most of the work is done in the first hundred milliseconds, a
small number of threads will keep working to process all the js for those small
is — thus, because the GPU thread is significantly weaker than a CPU thread,
we get worse performance.

Figure 2. Normal 5 distribution.

The real art in devising a parallel algorithm is to find a segmentation
method for the problem domain that is able to evenly distribute the compu-
tation effort between segments — basically the goal is to flatten the curve, in
order to achieve the best possible occupancy of the GPU. One possible solu-
tion here is to create two different kernels: one very similar with the simple
one used above, that works quite well for big values of 4, and another one for
very small ¢s. The second kernel will transpose the problem, iterating on j in
the outer loop, thus surfacing the depth of the inner loop and flattening the
curve like in Figure 3. The new results for the cutoff-transpose algorithm are
represented also in Table 5, where we can see the dramatic improvement —
check the accompanying code for details.

Big numbers Small numbers
(the second part of the curve, as is) (the first part of the curve, transposed)

~__ : Iy

Figure 3. Transposed approach.

Another immediate solution is to use an approach similar with the one for
the incremental SoS and exploit the L0 cache (the local data of the GPU CU)
— the curve is relatively leveled naturally, and the overhead for positioning
in each chunk is mitigated by the fast access of L0 cache, resulting in better
timings as seen in Table 5: the improvement is higher as the limit grows. The
gist of the segmented kernel is presented in Algorithm 3.2 — further details
can be checked out in the accompanying code.

40 Mircea GHIDARCEA, Decebal POPESCU

Nevertheless, because in our proof-of-concept the prime counting is exe-
cuted single-threaded on the host, the overall performance remains not at all
impressive. To get a better idea we need to look closer at the sieving part of
the algorithm, which is the one performed on the GPU, with timings in Table
6.

Algorithm 3.2 Sieve of Sundaram — segmented kernel
e Barriers are used to guard local buffer initialization and upload
e The outer loop is descending for simplified break logic

kernel void SoS_simple_local(global uint8_t* outBuff,
uint32_t outBuffSize, local uint8_t* workBuff, uint32_t workBuffSize) {
const uint32_t localID = get_local_id(0), localDim = get_local_size(0);
const uint32_t thread_range = workBuffSize / localDim;
const uint32_t thread_offset = locallD * thread_range;
for (uint32_t i = 0; i < thread_range; i++)
workBuff [thread_offset + i] = 0;
barrier (CLK_LOCAL_MEM_FENCE) ;
const uint32_t groupID = get_group_id(0), groupsNo = get_num_groups(0);
const uint64_t global_offset = get_global_offset(0);
const uint32_t localDim2 = localDim + localDim;
const uint32_t group_offset = groupID * workBuffSize;
const uint32_t group_span = workBuffSize * 1;
const uint64_t val_min = global_offset + groupID * group_span;
const uint64_t val_max = val_min + group_span;
const uint32_t istart = (unsigned)sqrt(val_max / 2.0f);
uint32_t i = istart - locallD, delta = 2 * i + 1;
for (;; delta -= localDim2) {
uint64_t j = (val_min > i) 7
(uint64_t) ((val_min - i) / (1.0 + 2 * i)) : i;
uint64_t n = i + j + 2 * (uint64_t)i * j;
while (n < val_min)
n += delta;
for (unsigned nn = (unsigned) (n - val_min);
nn < group_span; nn += delta)
workBuff [nn] = 1;
if (i > localDim)
i -= localDim;
else
break;

+
barrier (CLK_LOCAL_MEM_FENCE) ;
for (uint32_t i = 0; i < thread_range; i++)
outBuff [group_offset + thread_offset + i] =
workBuff [thread_offset + i];

Although the results are embarrassing compared to primesieve (the golden
standard in sieving, see [6, 7]), the comparative performance analysis above
shows that, with a little effort, a GPU can improve dramatically the sieving
performance. Our last step in optimizing this implementation was to paral-
lelize the final step of the sieving pprocess, the actual counting/generation of

GPGPU and Sieve of Sundaram 41

primes, so that the final timings would reflect exclusively the duration of the
sieving executed on the GPU, plus the minimal unavoidable overhead — the
timings can be checked in Table 5; see also the accompanying code for all the
implementation details.

Table 6. GPU Timings (sieving on GPU + data download from device to

host)[ms].
Limit(10™) Primesieve GPGPU 508

Transposed LDS

1 29 + 12 55 + 21

2 29 + 12 56 + 22

9 10 126 + 60 104 + 48

10 72 1’421 + 547 962 + 376

11 742 56’305 + 4’675 16’639 + 3274

12 9’177 - 398’876 + 37’196

Of course, the results here are only at the level of proof-of-concept —
there is still a lot of space for optimization, for example:

e flattening the curve inside each chunk using the cutoff-transpose tech-
nique, as described above;

e avoiding unnecessary loops because, for larger is, only a small number
of js will actually impact a certain chunk and a bucket-like algorithm [§]
may benefit the implementation;

e using on the GPU buffer a 1-bit approach for the buffer, as we used on
the normal CPU — on the GPU this is particularly difficult as one has to
be sure that in the same workgroup cycle there aren’t two threads that
will try to update the same byte, as this will result in keeping only the
last data value and loosign the others.

3.1. Future work

There are two directions that can be pursued regarding Sundaram, based
on these findings: a) the implementation of a fully parallel version that opti-
mally utilizes CPU resources; b) the development of a technique that enables
1-bit compression of the sieving buffer for much more efficient exploitation of
GPU resources.

In general, the techniques described here for GPU-based massively par-
allel sieving can also be applied to other variants that allow segmentation and
incremental processing, such as Atkin or fast sieve variants of the Sieve of
Eratosthenes (SoE).

We are not aware of any GPGPU variant for the Sieve of Atkin, and for
the Sieve of Eratosthenes, we have found only one notable implementation:

42 Mircea GHIDARCEA, Decebal POPESCU

CUDASieve (https://github.com/curtisseizert/CUDASieve) from Cur-
tis Seizert, which is currently quite old and limited to CUDA/Nvidia. It is
time to address the sieving problem based on GPGPU using the latest tech-
niques and finding innovative mechanisms to efficiently solve the 1-bit GPU
buffer compression problem.

4. Conclusions

In this paper we analyzed some aspects regarding the implementation of
SoS.

In the first part we analyzed the pitfalls of Sundaram’s algorithm, second
only to brute force, and we have implemented an incremental algorithm that
could be easily generalized to a full parallel version.

In the second part we demonstrated the utility of GPGPU to increase
performance of such algorithms, showcasing two important aspects that have
to be considered when tackling a sieving algorithm on a GPU: flattening the
curve to maximize GPU utilization and using LO (Local Data) incrementally
to minimize memory latency.

Acknowledgement: We express our gratitude to professors Nirvana POPESCU,
Emil SLUSANSCHI and Vlad CIOBANU from Computer Science Department

in UNST POLITEHNICA of Bucharest, for their invaluable guidance and ad-
vice — their input was decisive for the quality of this paper.

REFERENCES

[1] Ghidarcea, M.; Popescu, D. Prime Number Sieving—A Systematic Review with Per-
formance Analysis. Algorithms 2024, 17, 157. https://doi.org/10.3390/a17040157.

[2] Aiyar, V.R. Sundaram’s Sieve for Prime Numbers. Math. Stud. 1934, 2, 73.

[3] Crandall, R.; Pomerance, C. Prime Numbers: A Computational Perspective; Springer-
Verlag: New York, NY, USA, 2005. https://doi.org/10.1007/0-387-28979-8.

[4] Singleton, R.C. Algorithm 357: An Efficient Prime Number Generator [A1l]. Commun.
ACM 1969, 12, 563-564. https://doi.org/10.1145/363235.363247.

[6] Ghidarcea, M.; Popescu, D. Sieve of Atkin Revisited. Sci. Bull. Univ. Politeh. Buchar.
2024, 86, 15-26.

[6] Walisch, K. Primesieve. 2023. Available online: https://github.com/kimwalisch/
primesieve

[7] Ghidarcea, M.; Popescu, D. Static Wheels in Fast Sieves. J. Control. Eng. Appl. Inform.
2024, 26, 36-43. https://doi.org/10.61416/ceai.v26i1.8860.

[8] Oliveira e Silva, T. Fast Implementation of the Segmented Sieve of Eratosthenes. 2015.
Available online: https://sweet.ua.pt/tos/software/prime_sieve.html

