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APPLICATIONS FOR A GENERALIZATION OF TWO 
FUNDAMENTAL VARIATIONAL PRINCIPLES 

 
Irina MEGHEA1 

In this paper, the author proposes to involve a generalization of Ekeland 
principle in the solution of some mathematical physics equations issued from 
modeling of real phenomena. One makes remarks on some variants of Ekeland and 
Borwein-Preiss variational principles. In order to sustain links and other relations 
between namely variants of these fundamental statements, a series of theoretical 
results has been developed. An application of these statements at β-subderivative is 
also discussed in comparison with other results involving the last cited notion. 

Keywords: Ekeland principle, Borwein-Preiss principle, β-derivative, β-subderi-
vative, smooth variational principle, Dirichlet problem, β-viscosity 
solution. 

1. Introduction 

Ekeland principle is a perturbed variational principle discovered in 1972 
[1] and nowadays, after more than 40 years, it was proved to be, the foundation of 
the modern Variational Calculus (see, for instance, the minimax theorems in 
Banach spaces or in the Finsler manifolds, in which the key step of demonstration 
is made by the application of the Ekeland principle). 

As referring the applications, these are numerous and various: the 
geometry of Banach spaces, nonlinear analysis, differential equations and partial 
differential equations, global analysis, probabilistic analysis, differential 
geometry, fixed point theorems, nonlinear semigroups, dynamical systems, 
optimization, mathematical programming, optimal control. 

The author worked in variational principles in [2], discussions on 
theoretical results in [3], [4], applications of variational principles in [5-12], even 
though applications in problems evolved from modelling of real phenomena and 
usage of β-differentiability in [2] and [13]. 

This paper aims to compare some variants of Ekeland principle [1], [14] 
and Borwein-Preiss principle [15], involving the way from [16]. We improve 
some results from [16], establish also links, connections and applications via some 
statement of β-differentiability highlited in [2] and also open the way to apply ge-
neralizations of these principles in solving some mathematical physics problems. 
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In [5], [6] and [7] the author involved Ekeland variational principle in 
solving problems issued from models of real phenomena. 

2. Preliminaries 

We start by introducing the original variant of Ekeland principle and some 
other variants necessary for our goal. Give also some variants of Borwein-Preiss 
variational principle to have a support for generalization and unification of them. 

2.1 Ekeland principle ([1], [14]). Let (X, d) be a complete metric space 
and ϕ: X → (− ∞, + ∞] bounded  from below, lower semicontinuous and proper. 
For any ε > 0 and u of  X with 

ϕ(u) ≤  inf ϕ(X) + ε 
and for any λ > 0, there exists vε  in X such that 

                   ϕ(vε) < ϕ(w) + ε
λ

d(vε , w) ∀w ∈ X \ {vε}       (1) 

and 
(2)  ϕ(vε) ≤ ϕ(u),         (3)  d(vε, u) ≤ λ.  

An improved formulation of the Ekeland principle (Jean-Paul Penot, [17]) follows. 
 2.2 Under the conditions of the theorem 2.1, there exists vε in X verifying 

(1) and (3), while (2) is replaced by  

ϕ(vε) ≤ ϕ(u) − ε
λ

d(vε , u).         (20) 

A generalization of Ekeland principle, when the perturbing function is 
smooth in the case of a Banach space (in the following, all the Banach spaces are 
real) is given in [15]. 

 Begin the preliminaries in order to introduce Borwein-Preiss principle. Let 
X be a real normed space. For any p in [1, +∞) consider the set Σp of the functions 
∆p: X → R, 

 p
p n n n n nnn 0 n 0
( ) ,  0,  1,  lim ,x x v v v

∞ ∞

→∞= =
∆ = µ − µ ≥ µ = =∑ ∑   (∗) 

convergent series since we have, ∀n ≥ 0, |µn ||x − vn||p| ≤ M 
p µn , M > 0. Moreover, 

if β is a bornology2 on X, p > 1, and ν: ν(x) = ||x|| is β-differentiable3 on X \ {0}, 
then ∆p is β - differentiable on X. 

 
2 Let X be a real normed space. A nonempty set β of bounded parts of X, with the properties: 
 1o 

β∈A
A = X, 2o A ∈ β ⇒ − A ∈ β and λ A ∈ β (λ > 0), 3o for every A, B in β there exists C in β 

such that A ⊂ C and B ⊂ C, is called bornology on X. 
3 Let β be a bornology on X and  f : X → R  locally finite in the point a (there is a neighborhood of 
a on which f  is finite). By definition, f is β-differentiable in a, if there exists ϕ in the dual X * such 
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2.3 Borwein - Preiss principle (smooth variational principle). Let X be 
real Banach space, ϕ: X → (– ∞, + ∞] bounded from below, lower semicontinuous 
and proper. For any ε > 0, λ > 0, p ≥ 1 and x0 of  X with 
(I)       ϕ(x0) < inf ϕ (X) + ε, 
there exists ∆p in Σp and vε in X so that 

(II)                             ε p ε pp p
ε ε(v ) Δ (v ) (x) Δ (x)  x X

λ λ
ϕ + ≤ ϕ + ∀ ∈ , 

(III)         ϕ(vε) < inf ϕ(X) + ε,               (IV)        ||vε − x0 || < λ. 
 Moreover, if the norm of  X is β - differentiable on X \ {0}and p > 1, then 

(V)                              *
β ε

ε0 (v ) p( S )
λ

∈∂ ϕ + , S* : = {ξ ∈ X* : ||ξ|| ≤ 1}. 

∆p is called perturbing function. 
2.4 Borwein-Preiss principle (complete metric space). Let (X, d) be 

complete metric space, ϕ: X → (− ∞, + ∞] bounded from below l. s. c. proper. For 
any ε > 0, λ > 0, p ≥ 1 and x0 of  X  with  
(I)                                                   ϕ (x0) < inf ϕ (X) + ε, 
there exists ∆p  in Σp and vε in X so that  

(II)                                ϕ (vε) + p
ε
λ

∆p (vε) ≤ ϕ (x) + p
ε
λ

∆p (x) ∀x ∈ X, 

(III)              ϕ (vε) < inf ϕ (x) + ε,              (IV)           d (vε , x0) < λ. 
 Explanation. 

Σp : = {∆p : X → R : ∆p (x) = n
n 0

∞

=
µ∑ d p (x, vn), µn ≥ 0, n

n 0

∞

=
µ∑ = 1, (vn)n ≥ 0  convergent 

sequence}. 
Ekeland principle cannot be recovered in all its force from the Borwein-

Preiss principle. The following theorem, due to Li Yongxin and Shi Shuzhong 
[16]), generalizes and unifies these two principles. 

3. Generalization and unification of the two principles 

Definition. Let (X, d) be a metric space. ρ: X × X → [0, +∞] is called gauge 
function on X if  

(1) for any x from X, ρ(x, x) = 0; 
(2) for any sequence (xn , yn)n≥1 from X × X, ρ(xn , yn) → 0 ⇒ d(xn , yn) → 0; 
(3) for any y from  X, x → ρ(x, y) is lower semicontinuous. 

 

that for every S in β we have 
Sh
0t

limu
∈
→ t

afthaf )()( −+ = ϕ (h) (uniform limit on S for t → 0). ϕ is the 

β-derivative of  f in a, and it is denoted ∇β  f (a). 
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For instance, f o d with f : R+ → R+ continuous strictly increasing and  f (0) = 0 is 
a gauge function on X (attention to the inverse function of  f ). 

3.1 Li Yongxin - Shi Shuzhong theorem. Let (X, d) be a complete metric 
space and ϕ: X → (− ∞, + ∞] bounded from below, lower semicontinuous and 
proper. For any ε > 0 and x0  from X with 
                                     ϕ(x0) ≤ inf ϕ(X) + ε,          (4) 
for any gauge function ρ: X × X → [0, +∞] and for any sequence (δn)n≥0 , δ0 > 0 
and δn ≥ 0 ∀n ≥ 1, there exists a convergent sequence (xn)n≥1  from  X,

n
lim
→∞

xn = vε,  

such that 

                                            ρ(vε , xn) ≤ n
02

ε
δ

 ∀n ≥ 0;           (5) 

If δn > 0 for an infinity of indices, then  

                                 ϕ(vε) ≤ ϕ(x0) − n
n 0

∞

=
δ∑ ρ(vε , xn)           (6) 

and 

    ϕ(vε) + n
n 0

∞

=
δ∑ ρ(vε , xn) < ϕ(x) + n

n 0

∞

=
δ∑ ρ(x, xn) ∀x ∈ X \ {vε};        (7) 

 If δN > 0, where N ≥ 0, and δk = 0 for k > N, there exists m > N so that (6) 
is preserved and (7) is replaced by 

   ϕ(vε) +
N-1

k
k 0=

δ∑ ρ(vε , vk) + δN ρ(vε , xm) < ϕ(x) +
N-1

k
k 0=

ρ∑ ρ(x, xk) + δN ρ(x, xm),     (8) 

∀x ∈ X \ {vε}. 

 Specification. If N = 0 the terms with 
N 1

k 0

−

=
∑ disappear. 

The proof of this result, which is simple, ingenious and elementary can be 
found in [2], page 446. Some embarrassments from [16], which are in the 
demonstration of the case I, have been eliminated by the author. 

Ekeland principle under the form 2.2 is a particular case of the Li-Shi 
theorem. 
 Indeed, place us in the conditions and notations from 2.1 and apply 3.1 

with x0 = u, ( , ) d( , )x y x yε
ρ =

λ
 and (δn)n≥0 with δ0 = 1, δn = 0 for n ≥ 1, hence N = 

0. (5) from 3.1 gives, for n = 0, d( , )v uε
ε

≤ ε
λ

, that is (3) from 2.1. (6) from 3.1 

gives (20) from 2.2 and (8) from 3.1 becomes 

m m\{ } ( ) d( , ) ( ) d( , )x X v v v x x x xε ε ε
ε ε

∈ ⇒ ϕ + < ϕ +
λ λ

 , 
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hence m m( ) ( ) [d( , ) d( , )]v x x x v xε ε
ε

ϕ < ϕ + −
λ

 and consequently (1) from 2.1. 

 Borwein-Preiss principle 2.4 is a particular case of the Li-Shi theorem. 
 Place us in the conditions and the notations from 2.4 and apply 3.1 with 

ϕ(x0) = inf ϕ (X) + ε′, p
p( , ) d ( , )x y x yε

ρ =
λ

 and (δn)n≥0 = (µn)n≥0 , where µn > 0 ∀n, 

n
n 0

1
∞

=
µ =∑ . There is (vn)n≥0 a convergent sequence, n 'n

lim v vε→∞
= (= : vε), so that 

(5)
p

0p d ( , )v xε
ε

≤
λ

ε′ < ε, hence d(vε , x0) < λ, i.e. (IV) of 2.4 , 

(6)
p

n n 0p
n 0

( ) d ( , ) ( ) inf ( )v v v x X
∞

ε ε
=

ε
ϕ + µ ≤ ϕ < ϕ + ε

λ
∑  

and hence (III) from 2.4  (improved!). 
p

n n n np p
n 0 n 0

\{ } ( ) d ( , ) ( ) d( , )x X v v v v x x v
∞ ∞

ε ε ε
= =

ε ε
∈ ⇒ ϕ + µ < ϕ + µ

λ λ
∑ ∑ , 

that is (II) from 2.4  (improved!). The last inequality is justified by 

n 1

n 1 n 1

n i n i i i n nx T(x )i 0 i 0 0
( ) ( , ) inf ( ) ( , )

2
x x x x x x

−

− −

∈= =

  ε
ϕ + δ ρ < ϕ + δ ρ + δ  δ 

∑ ∑  

for which one can regrde, for instance in [2], page 447, (17). 
 Remark. As it was observed above, Li-Shi theorem gives an improved 
statement of Borwein-Preiss principle. 
 Pass to a variant of the theorem 3.1 for Banach spaces. 
 3.2 Let X be Banach space and ϕ: X → (−∞, +∞] lower bounded l.s.c.  
proper. For any ε > 0 and x0  from X so that  
                                              ϕ(x0) ≤ inf ϕ(X) + ε,           (9) 
for any sequence (δn)n≥0 with δ0 > 0, δn ≥ 0 ∀n ≥ 1 and for any r : X → [0, +∞] 
l.s.c. with the properties r(0) = 0, r(xn) → 0 ⇒ ||xn|| → 0, there exists (xn)n≥0 
convergent sequence in X, nn

lim x vε→∞
= , so that  

                                        ε n n
0

r(v x ) n 0
2
ε

− ≤ ∀ ≥
δ

;        (10) 

When δn > 0 for an infinity of indices, we have  

                                     ε 0 n ε n
0

(v ) (x ) δ r (v x )
n

∞

=
ϕ ≤ ϕ − −∑         (11) 

and 

         ε n ε n n n ε
n 0 n 0

(v ) δ r (v x ) (x) δ r (x x ) x X\{v }
∞ ∞

= =
ϕ + − < ϕ + − ∀ ∈∑ ∑ ;      (12) 
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When δN > 0, where N ≥ 0, and δk = 0 for k > N, there exists m > N so that (11) is 
preserved and (12) is replaced by 

N 1 N 1

ε k ε k N ε m k k N m
k 0 k 0

(v ) δ r (v x ) δ r (v x ) (x) δ r (x x ) δ r (x x )
− −

= =
ϕ + − + − < ϕ + − + −∑ ∑  (13) 

∀ x ∈ X \ {vε} ([16]). 

 Specification. If N = 0, the terms 
N 1

k 0

−

=
∑  disappear. 

 And now pass to a generalization, via 3.2, of the Borwein-Preiss principle 
for Banach spaces 2.3 in the following variant. But firstly, as in 2.3 (β is a 
bornology on X), 
 3.3 Let X be real normed space, r a real Lipschitz function β-differentiable 
on Sα : = {x ∈ X: ||x|| < α}, vε  from X, (xn)n≥0 a sequence of points from  X with 

                                            ε n|| v x ||
2
α

− <  ∀n ≥ 0,         (14) 

(δn)n≥0 with δn > 0 ∀n and n
n 0

δ
∞

=
∑  convergent and 

                                             n n
n 0

Φ:Φ(x) δ r(x x )
∞

=
= −∑ .        (15) 

 Then Φ is β - differentiable in vε and  

                                         β ε n β ε n
n 0

Φ(v ) δ r(v x )
∞

=
∇ = ∇ −∑ .        (16) 

 ■ Use the rule on β - differentiability of function series (see, for instance [2], 

page 110, [13]) with U = vε +
2

Sα .
(14)

nx U∈ ∀n ≥ 0, hence x ∈ U ⇒ ||x − xn|| < α ∀n 

≥ 0, which imposes, r being Lipschitz on Sα , that the functions x → r(x − xn), ∀n 
≥ 0 are uniformly bounded on U and consequently the series from (15) is 
convergent on U. 

 Show that the series n n
n 0

( )x
∞

=
δ ξ∑ , ξn (x) : = ∇β r (x − xn) converges uniformly 

on U. Let S be any from β. 
n n

n t 0
h S

( ) ( )( )( ) limu r x x th r x xx h
t→

∈

− + − −
ξ =  . 

But for t sufficiently small and x ∈ U we have x − xn + th ∈ Sα ∀n ≥ 0 (S is 
bounded), hence 

n n( ) ( ) || || 0r x x th r x x L h n
t

− + − −
≤ ∀ ≥  , 
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L the Lipschitz constant, consequently 
n| ( )( ) | || || , , 0x h L h x U h S nξ ≤ ∀ ∈ ∀ ∈ ∀ ≥  . 

As 
S

X S
∈β

=  , it results 

n| ( )( ) | || || , , 0x h L h h X x U nξ ≤ ∀ ∈ ∀ ∈ ∀ ≥  , 
that imposes 
                                   n|| ( ) || , 0r x x L x U nβ∇ − ≤ ∀ ∈ ∀ ≥ .        (17) 
Applying the Weierstrass rule we find that the demand (2) from [2], I, 3.124 is 
also verified for the series of (15), it can β -differentiate on U term by term.   ■ 
 REMARK. In [16] the demonstration for the proposition 1, 3.3 here, must 
be repelled as totally false. This is the reason why we given here the above proof, 
since it is original. 
 And now  
 3.4 Let X be Banach space, ϕ : X → (− ∞, + ∞] lower bounded l.s.c. proper, 
α, λ, k > 0 and r : X → [0, + ∞] l. s. c. with the properties 
                                                      r (0) = 0,           (18) 
                                        r (xn) → 0 ⇒  ||xn|| → 0,          (19) 
              r is Lipschitz with the constant L and β - differentiable on 

  Sr, λ : = {x ∈ X : r (x) < λ},         (20) 

                              r,λ
λ α||x|| α x S , r(x) ||x||
k 2

< ⇒ ∈ ≤ ⇒ < .         (21) 

 Then, for any ε > 0 and x0  from X with  
                                                ϕ(x0) ≤ inf ϕ(X) + ε,         (22) 
there exists vε in X so that  

(23)  ε 0
α||v x ||
2

− ≤ ,  (24)  ϕ(vε) ≤ ϕ(x0),  (25) *
β ε

2 kL0 (v ) S
λ
ε

∈∂ ϕ + , 

S*
 : = {ξ ∈ X* : ||ξ|| ≤ 1} ([16]). 

 

4 β-differentiability of function series. Let be ∑
∞

=1n
nf , fn : U → R, U an open convex bounded set in 

a real normed space. If 1° fn is, ∀n ∈ N, β-differentiable on U; 2° ∑
∞

=
β∇

1n
nf is uniformly 

convergent on U;  3° there is x0 in U such that ∑
∞

=1n
nf (x0) is convergent, then the given series is 

uniformly convergent on U, its sum is β-differentiable on U and 

β∇ (∑
∞

=1n
nf )(x) = ∑

∞

=
β∇

1n
nf (x) ∀x ∈ U (we can see lso in [13]). 
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 We discuss now about the connexion between the conditions  
(P) : = (18) + (19) + (20) + (||x|| < α ⇒ x ∈ Sr,λ ) 

(see 3.4) and 
(H) There exists Φ : X → [0, 1] Lipschitz β-differentiable having the properties 

(26)        Φ(0) = 1,           (27)        ||x|| > 1 ⇒ Φ(x) = 0. 
 ■ (H) ⇒ (18) + (19) + (20). Take r : X → [0, +∞), 

n
2n

1

1( ) 1 (2 )
2n

r x x
∞

=

 = −Φ ∑  . 

The definition is correct, each term is majorized in absolute value by 2n
1

2
. r is 

Lipschitz on X with the constant L the same as for Φ:  
n

2n n
n 1 n 1

1 1| ( ) ( ) | | (2 ) (2 ) | || ||
2 2

nr x r y x y L x y
∞ ∞

= =
− ≤ Φ −Φ ≤ −∑ ∑ etc. 

r is β-differentiable on X: apply I, 3.12 from [2] (see this one in the above note 

reference 4), the series of β-derivatives is n
n 1

1
2

∞

=
− ∑ n(2 )xβ∇ Φ (see in the following 

the calculus of the β-derivatives) and the calculus continues as for (16), Φ being 
Lipschitz and β - differentiable on X. So (20) is con brio ensured. Obviously 

r(x) ≥ 0 and 
(26)

(0) 0r = . Moreover, 
(27)

n
n 2n 2n

1 1 1|| || ( ) [1 (2 )]
2 2 2

x r x x> ⇒ ≥ −Φ =  

and this implication justifies (ad absurdum!) (19). 
 Complete the demonstration. For the function Ψ: Ψ(x) = Φ(2nx) we have 

n n( ) 2 (2 )x xβ β∇ Ψ = ∇ Φ  . 
Indeed, setting ξ : = ∇β Φ(2nx) we have 

n n n
n n

n
( ) ( ) (2 2 ) (2 )2 ( ) 2 ( )

2
x th x x th xh h

t t
 Ψ + −Ψ Φ + −Φ

− ξ = −ξ 
 

 

and the uniform limit on S of the bracket for τ : = 2nt → 0 is equal to 0. 
 (P) ⇒  (H). Let α′ be from (0, α). ∃ δ > 0 so that  

||x|| > α′ ⇒ r(x) > δ 
(ad absurdum, use (19)). Take f : R+ → [0,1] of the C1 class, t > δ ⇒ f (t) = 0, 
f (0) = 1. The function Φ: X → [0,1], Φ(x) =  f (r(α′x)) verifies (H). Indeed, the 
conditions (26) and (27) are obviously verified. Φ is Lipschitz on X : consider the 
cases ||x|| ≤ 1 and ||y|| ≤ 1, ||x|| > 1 and ||y|| > 1, ||x|| ≤ 1 and ||y|| > 1 which 
respectively give the cases ||α′x|| ≤ α′ and ||α′y|| ≤ α′, ||α′x|| > α′ and ||α′y|| > α′, 
||α′x|| ≤ α′ and ||α′y|| > α′; apply the elementary finite increment formula, f ′ is 
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bounded. Φ is β-differentiable on X: use the rule for the β-derivative of the 
composed function ([2], I, §3, 3.115). ■ 
 

4. Applications 
4.1 Applications to the β-subderivative, β-derivative and discussions 

 
4.1 Let X be Banach space, β bornology on X and ϕ: X → (−∞, +∞] lower 

bounded l.s.c. proper. If X has the property (H), then ϕ is β-subdifferentiable on a 
set A so that 

{(x, f (x)): x ∈ A} 
is dense in the graph of  ϕ  in X × R ([16]). 
 Compare this result with the following one. But firstly introduce the next: 

Definition. Let X be a real normed space, ϕ: X → (−∞, +∞] proper, ε > 0 
and v from X. ϕ is ε - supported in v if there exists ξ in X 

* and δ > 0 so that 
                           w v− ≤ δ ⇒ ϕ(v) ≤ ϕ(w) + ε||v − w|| + ξ(v − w).          (1) 
We see that, for ξ = 0 and δ whatever positive, (1) becomes the fundamental 
inequality (1) of the Ekeland principle 2.1. 

 And now, other variant of 2.1 − 
 4.2 Let X be a real Banach space and ϕ: X → (−∞, +∞] lower semicon-

tinuous and proper. Assume there is F: X → R with Fréchet derivative, F(0) > 0 
and F(x) ≤ 0 on {x ∈ X: x ≥1}. Then, whatever ε > 0, the set of points where ϕ is 
ε-supported is dense in dom ϕ (I. Ekeland - G. Lebourg). 

 ■ Let be u ∈ dom ϕ and r > 0. It follows to find in S : = S(u, r) (open ball) 
a point v ∈ dom ϕ in which ϕ is ε - supported. ϕ being l.s.c. in u, r can be chosen 
small enough so that ϕ is bounded from below on S. Consider the function Φ: X 
→ (0, +∞], 
                                           Φ(x) =

1

max 0, x uF
r

 − 
    

.          (2) 

Φ is l.s.c.: let x0 be of X and a <
0

1

max 0, x uF
r

 − 
  
  

; when a ≤ 0, the inequality 

is valid on X; when a > 0, then 01 max 0, x uF
a r

 − >   
  

 and the inequality 

 
5 β-derivative of the composed function. Let be f : X → R β-differentiable in x0 and F : R → R of 

C1 class on J open interval with f(x0) ∈ J. Then g : = F o f is β-differentiable in x0 and 

)(x f ))(x (fF)(x g 000 ββ ∇′=∇  (see also in [13]). 
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remains valid on a neighborhood of x0, as F is continuous. We have (3) dom Φ ⊂ 
S, since Φ(x) = +∞ on X \ S. Obviously (4) u ∈ dom Φ. Moreover, dom Φ is open, 
as x ∈ dom Φ ⇒ x uF

r
− 

 
 

> 0 and F is continuous, Φ is Fréchet differentiable on 

dom Φ. 
 Therefore, the function Φ + ϕ: X → (−∞, +∞] is bounded from below 

(Φ(x) + ϕ(x) = +∞ on X \ S, Φ + ϕ is lower bounded on S), l.s.c. (Φ is l.s.c.) and 

proper (u
(4)
∈ dom Φ ∩ dom ϕ). 

 According to 2.1, ∃ v ∈ X  so that  

                              Φ(v) + ϕ(v) ≤ Φ(w) + ϕ(w) +
2

v wε
− ∀w ∈ X.          (5) 

Taking w = u in (5) we find v ∈ dom Φ ∩ dom ϕ (ad absurdum, use (4)). So, Φ 
being Fréchet differentiable in v, for ξ: = −Φ′(v) and for δ > 0 we have 

                             w v− ≤ δ ⇒ Φ(w) − ξ(v − w) −
2

v wε
− ≤ Φ(v).         (6) 

By adding (5) to (6) it results (1). ■ 
Remark 1. The demand “ϕ bounded from below” does not exist in the statement 4.2. 
Remark 2. The Hilbert spaces have got the functions F like in 4.2 (F (x) = 1 − x ⋅ x), 
also the spaces Lp, p ∈ (1, +∞) (F (x) = 1 − px ). L1 and L∞ have not this 
property ([18]). 
 4.3 Corollary. Let X be Banach space, β bornology on X and ϕ: X → R 
continuous convex upper bounded. 
 If X has the property (H), then ϕ is β-differentiable on a subset every-
where dense. 
 ■ As dom (− ϕ) = X, − ϕ is β-subdifferentiable on a set A dense in X (4.1), 
i.e. ϕ is β-superdifferentiable on A. But ϕ is β-subdifferentiable in X (apply [2], I, 
5.9) and by applying: “Let f:X → R  be locally finite at x0. f is β-differentiable at 
x0 ⇔ f is β-superdifferentiable and β-subdifferentiable at x0 . In this case 
{∇β f (x0)} = ∂ β f (x0) = ∂ 

β f (x0)”, we find ϕ  β-differentiable on A. ■ 
 To clarify, by definition, f is β-superdifferentiable at x0 if ∂ β f (x0) ≠ ∅. f 

is β-superdifferentiable on A iff it is β-superdifferentiable at any point in A. 
 By usage of this generalization of Borwein-Preiss variational principle, we 

can give generalization for some results regarding viscosity β-solutions of the 
differential equation of Hamilton - Jacobi type: u + F(u′) = f as in [19] and [20]. 
We can weaken the conditions from the statements concerning the existence and 
characterization of the viscosity β-subsolution, viscosity β-supersolution and 
viscosity β-solution with their proofs based on Borwein-Preiss variational 
principle for: H(x, u(x), ∇β u(x)) = 0 ∀x ∈ Ω. 
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To follow these proofs (for which here is proposed the generalization), we can 
search in [2], pages 422-426. 
 

4.2 Applications in solution of mathematical physics problems evolved 
from modeling of real phenomena 
 
 We can generalize the results from [5] and [7] concerning the sequence of 

statements in obtaining weak solutions, weak subsolutions and weak supersolu-
tions for some elliptic type problems. As applications in real phenomena, we can 
cite generalization of problems from [5]: applications in glaciology, nonlinear 
elastic membrane, using the p-Laplacian and pseudo torsion problem, nonlinear 
elastic membrane with p-pseudo-Laplacian. We can propose, using the discussed 
variational principles, generalizations for results for critical points for nondiffe-
rentiable functionals ([5], [7]) in order to give characterizations of the solutions 
for the Dirichlet problems from issued by the movement of the glacier, nonlinear 
elastic membrane, pseudo torsion problem or nonlinear elastic membrane with 
p-pseudo-Laplacian. As in [5] and [6], we can give a generalization of the series 
of propositions from there via 3.1 instead of Ekeland principle in order to arrive to 
a solution for the mixed problem involving the p-Laplacian which models the 
injection mould filling. 

5. Conclusions 
In this paper, some weakening of conditions for existence and characte-

rization results for the viscosity β-solution, viscosity β-subsolution, viscosity β-
supersolution and for some Dirichlet problems involving the p-Laplacian and the 
p-pseudo-Laplacian have been proposed. 

For this reason, two variants each for the Ekeland and Borwein-Preiss 
variational principles have been presented together with a generalization of them 
given in [16]. The author recovered a proposition from [16] which is important to 
generalize and unify the two variational principles. 

Via the generalizations of these two fundamental variational principles, we 
propose to replace Ekeland principle in corresponding three series of results due 
to the author from [5], [6] and [7] aiming to solve and / or chareaterize weak 
solutions for some mathematical physics problems involving the p-Laplacian and 
the p-pseudo-Laplacian issued from modelling of real phenomena. We highlight 
solution and characterizations of solutions for the movement of the glacier, 
nonlinear elastic membrane, pseudo torsion problem or nonlinear elastic 
membrane with p-pseudo-Laplacian or injection mould filling. 
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