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APPLICATIONS FOR A GENERALIZATION OF TWO
FUNDAMENTAL VARIATIONAL PRINCIPLES

Irina MEGHEA!

In this paper, the author proposes to involve a generalization of Ekeland
principle in the solution of some mathematical physics equations issued from
modeling of real phenomena. One makes remarks on some variants of Ekeland and
Borwein-Preiss variational principles. In order to sustain links and other relations
between namely variants of these fundamental statements, a series of theoretical
results has been developed. An application of these statements at B-subderivative is
also discussed in comparison with other results involving the last cited notion.

Keywords: Ekeland principle, Borwein-Preiss principle, B-derivative, 3-subderi-
vative, smooth variational principle, Dirichlet problem, B-viscosity
solution.

1. Introduction

Ekeland principle is a perturbed variational principle discovered in 1972
[1] and nowadays, after more than 40 years, it was proved to be, the foundation of
the modern Variational Calculus (see, for instance, the minimax theorems in
Banach spaces or in the Finsler manifolds, in which the key step of demonstration
is made by the application of the Ekeland principle).

As referring the applications, these are numerous and various: the
geometry of Banach spaces, nonlinear analysis, differential equations and partial
differential equations, global analysis, probabilistic analysis, differential
geometry, fixed point theorems, nonlinear semigroups, dynamical systems,
optimization, mathematical programming, optimal control.

The author worked in variational principles in [2], discussions on
theoretical results in [3], [4], applications of variational principles in [5-12], even
though applications in problems evolved from modelling of real phenomena and
usage of B-differentiability in [2] and [13].

This paper aims to compare some variants of Ekeland principle [1], [14]
and Borwein-Preiss principle [15], involving the way from [16]. We improve
some results from [16], establish also links, connections and applications via some
statement of B-differentiability highlited in [2] and also open the way to apply ge-
neralizations of these principles in solving some mathematical physics problems.
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In [5], [6] and [7] the author involved Ekeland variational principle in
solving problems issued from models of real phenomena.

2. Preliminaries

We start by introducing the original variant of Ekeland principle and some
other variants necessary for our goal. Give also some variants of Borwein-Preiss
variational principle to have a support for generalization and unification of them.

2.1 Ekeland principle ([1], [14]). Let (X, d) be a complete metric space
and ¢: X — (=, + o] bounded from below, lower semicontinuous and proper.
For any € >0 and u of X with

o(u) < info(X) +¢
and for any A > 0, there exists ve in X such that

o(Ve) < (W) +§d(vg, w) Yw e X\ {v:} (1)

and
(2) o(ve) < ¢(u), (3) d(ve, u) <A
An improved formulation of the Ekeland principle (Jean-Paul Penot, [17]) follows.
2.2 Under the conditions of the theorem 2.1, there exists v¢ in X verifying
(1) and (3), while (2) is replaced by

©(Vs) < o(u) —%d(vg, u). (20)

A generalization of Ekeland principle, when the perturbing function is
smooth in the case of a Banach space (in the following, all the Banach spaces are
real) is given in [15].

Begin the preliminaries in order to introduce Borwein-Preiss principle. Let
X be a real normed space. For any p in [1, +o0) consider the set X, of the functions
Ap: X—-R,

Ap(X)ZZMn ”X_Vn”p’ My 20, ZMn =1 limv, =v, (*)
n=0 n=0 n—c0

convergent series since we have, ¥n > 0, |un [[X — Va|’] £ MP un, M > 0. Moreover,
if B is a bornology? on X, p > 1, and v: v(x) =||x|| is B-differentiable® on X \ {0},
then Ap is 3 - differentiable on X.

2 Let X be a real normed space. A nonempty set B of bounded parts of X, with the properties:
1° UA= X,2°AePB=>-AcBandrA e B (L>0),3°for every A, B in B there exists C in 8
Acp
such that A = C and B — C, is called bornology on X.

3 Let B be a bornology on X and f: X — R locally finite in the point a (there is a neighborhood of
a on which f is finite). By definition, f is B-differentiable in a, if there exists ¢ in the dual X ™ such
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2.3 Borwein - Preiss principle (smooth variational principle). Let X be
real Banach space, ¢: X — (-0, + o] bounded from below, lower semicontinuous
and proper. For any € >0, A >0, p > 1 and xp of X with

0] o(Xo) < inf @ (X) + &,
there exists Ap in X and ve in X so that
€ €
()] (p(va)+FAp(vs)S(p(X)JrFAp(X) vxeX,
(D) o(ve) <info(X) + ¢, (v) [[Ve—Xo || < A.
Moreover, if the norm of X is - differentiable on X\ {O}and p > 1, then
€ * *
V) 0653@(V8)+D(XS ), S i={fe X 1§l <1}

Ap is called perturbing function.

2.4 Borwein-Preiss principle (complete metric space). Let (X, d) be
complete metric space, ¢: X — (— o, + o] bounded from below I. s. c. proper. For
anye>0,L>0,p>1and xo of X with

(N ¢ (xo) <info (X) +,
there exists Ap in Xp and ve: in X so that
€ €
(”) ([)(Va)"‘FAp(Vs)S([)(X)+FAp(X) VX e X,
D) ¢ (Ve) <info(X) + &, (V) d (Ve, Xo) < A.
Explanation.

Yp:={Ap: X > R:A(X) =D p, dP (X, Vn), ln =0, >, =1, (Va)n=0 convergent
n=0 n=0
sequence}.
Ekeland principle cannot be recovered in all its force from the Borwein-
Preiss principle. The following theorem, due to Li Yongxin and Shi Shuzhong
[16]), generalizes and unifies these two principles.

3. Generalization and unification of the two principles

Definition. Let (X, d) be a metric space. p: X x X — [0, +o0] is called gauge
function on X if

(1) for any x from X, p(x, x) = 0;

(2) for any sequence (Xn, Yn)n=1 from X x X, p(xn, yn) = 0 = d(Xn, yn) = 0;

(3) for any y from X, x — p(X, y) is lower semicontinuous.

wz ¢ (h) (uniform limit on S for t — 0). @ is the

that for every S in B we have Itim(%J
5
heS

B-derivative of fin a, and it is denoted V; f (a).
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For instance, f o d with f : R+ — R+ continuous strictly increasing and f (0) =0 is
a gauge function on X (attention to the inverse function of f).

3.1 Li Yongxin - Shi Shuzhong theorem. Let (X, d) be a complete metric
space and ¢: X — (= o, + o] bounded from below, lower semicontinuous and
proper. For any € > 0 and xo from X with

o(Xo) < inf @(X) + ¢, 4)
for any gauge function p: X x X — [0, +] and for any sequence (3n)n=0, 60 > 0
and 8, > 0 Vn > 1, there exists a convergent sequence (Xn)n=1 from X, lim xn = vg,

n—o0

such that

8 .
p(Ve, Xn) < s vn=>0; (5)

0
If on > 0 for an infinity of indices, then

0(ve) < 9(x0) — 3" 8, p(Ve , Xr) (6)
n=0

and

OWe) + 35, pVe, Xn) < 9(X) + 38, p(x, xn) X € X\ {ve}: )

n=0 n=0
If 5n > 0, where N > 0, and ok = 0 for k > N, there exists m > N so that (6)
is preserved and (7) is replaced by

N-1 N-1
@(ve) + 8y p(Ve, Vi) + 8N p(Ve, Xm) < 9(X) + D_ py p(X, Xk) + SN p(X, Xm),  (8)
k=0 k=0

VX e X\ {Vs}.

N-1
Specification. If N = 0 the terms with >_  disappear.
k=0
The proof of this result, which is simple, ingenious and elementary can be
found in [2], page 446. Some embarrassments from [16], which are in the
demonstration of the case I, have been eliminated by the author.
Ekeland principle under the form 2.2 is a particular case of the Li-Shi
theorem.
Indeed, place us in the conditions and notations from 2.1 and apply 3.1

with xo = u, p(X,y) :§d(x, y) and (8n)n=0 With &0 =1, 6, =0 forn>1, hence N =

0. (5) from 3.1 gives, for n = 0, %d(vg,u) <g, that is (3) from 2.1. (6) from 3.1
gives (2o0) from 2.2 and (8) from 3.1 becomes

xe X \{v.}= (p(vg)+§d(vg, X,) < (p(X)+%d(X, Xm)
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hence o¢(v,) < (p(X)+%[d(X, Xy,) —d(v,, X, )] and consequently (1) from 2.1.

Borwein-Preiss principle 2.4 is a particular case of the Li-Shi theorem.
Place us in the conditions and the notations from 2.4 and apply 3.1 with

o(Xo) = info (X) + €', p(x,y) :%dp(x, y) and (dn)n=0 = (n)n=0 , Where pn >0 Vn,
D m, =1. There is (vn)n>o @ convergent sequence, limv, =v,.(= : ve), so that
n=0 n—oo

£ ® _

—pd (v, X) < €' <¢g, hence d(vz:, Xo) <A, i.e. (IV) of 2.4,

e & (6) .
(P(Vs)"i_ﬁng;,)”ndp(vg'vn) < (X)) <info(X) +e
and hence (I11) from 2.4 (improved!).
xe X\{V.3= o) +— 3 1, dP (v, V) < o) +— >, d(X,V,),
}\’p n=0 }\fp n=0

that is (I1) from 2.4 (improved!). The last inequality is justified by
n-1 n-1
(%) + ; 8ip(Xy: %) < XE;&E_O{(P(X) + ;&P(X' Xi):| +9, ﬁ
for which one can regrde, for instance in [2], page 447, (17).
Remark. As it was observed above, Li-Shi theorem gives an improved
statement of Borwein-Preiss principle.
Pass to a variant of the theorem 3.1 for Banach spaces.
3.2 Let X be Banach space and ¢: X — (o0, +oo] lower bounded I.s.c.
proper. For any € >0 and Xo from X so that
¢o(Xo) < inf o(X) + &, 9)
for any sequence (dn)n=0 With 80 > 0, & >0 ¥Yn > 1 and for any r : X — [0, +oo]
l.s.c. with the properties r(0) = 0, r(xn) > 0 = ||Xn]| — O, there exists (Xn)n=0
convergent sequence in X, lim x, =v,, so that

nN—oo

riv, —x,) < vn>0; (10)

n
0

When &, > 0 for an infinity of indices, we have

0(v,) < 0(Xy) — 3 8,1 (v, —x,) (11)

n=0
and

o(v,)+ i 3, r(v, —Xx,) <o(x)+ i d,r(x—x,) VxeX\{v.}; (12)
n=0

n=0
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When 6n > 0, where N > 0, and ok = 0 for k > N, there exists m > N so that (11) is

preserved and (12) is replaced by
N-1

o(v,)+ Nz_:lskr(Vg =X} ) +ONT(V, —Xp,) <O(X) + Z O, r(x —x; ) +0yr(x—x,,) (13)
k=0 k=0

Vv x € X\ {ve} ([16]).
N-1
Specification. If N =0, the terms > disappear.
k=0
And now pass to a generalization, via 3.2, of the Borwein-Preiss principle
for Banach spaces 2.3 in the following variant. But firstly, as in 2.3 (B is a
bornology on X),
3.3 Let X be real normed space, r a real Lipschitz function B-differentiable

on So : ={x € X: ||X|| < a}, ve from X, (Xn)n=0 a sequence of points from X with

v, —x, ||<% vn >0, (14)
(8n)n=0 With 8 >0 Vnand »_ 3, convergent and
n=0
Q:O(x) = Y §,r(x —Xx,). (15)
n=0
Then @ is (3 - differentiable in ve and
ViO(v,) = > 8, Vpr(v, —x,) . (16)
n=0

m Use the rule on B - differentiability of function series (See, for instance [2],
(14)
page 110, [13]) withU =ve +S_.x, € U ¥Vn>0, hence X € U = ||x — Xn|| <o V¥n
2
> 0, which imposes, r being Lipschitz on S« , that the functions x — r(X — Xa), ¥n
> 0 are uniformly bounded on U and consequently the series from (15) is
convergent on U.

Show that the series > 8,&,(X), & (X) : = VB (X — Xn) converges uniformly
n=0
on U. Let S be any from f3.
&, (x)(h) =limu
hes

But for t sufficiently small and x € U we have x — Xn + th € So. Vn > 0 (S is
bounded), hence

r(x—x, +th)—r(x—x,)
" :

|r(x—Xn+th)—r(X—Xn)|§ L|lh|] ¥n>0
t 1
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L the Lipschitz constant, consequently
€, (X)(h)|<L]|h]] VxeU,vheS,vn>0.
As X =[S, itresults
Sep
€, (X)(h)|<L]|h|] VheX,¥xeU,¥vn>0,
that imposes
[Ver(x=x,)I<L VxeU,vn=0. @an
Applying the Weierstrass rule we find that the demand (2) from [2], I, 3.12* is
also verified for the series of (15), it can p -differentiate on U term by term. =
REMARK. In [16] the demonstration for the proposition 1, 3.3 here, must
be repelled as totally false. This is the reason why we given here the above proof,
since it is original.
And now
3.4 Let X be Banach space, ¢ : X — (— o0, + o] lower bounded l.s.c. proper,
o, A, k>0andr: X — [0, + o] l.s. c. with the properties

r0)=0, (18)
r(xn) > 0= ||Xn|| = 0, (19)
r is Lipschitz with the constant L and (3 - differentiable on
Sra:={xe X:r(x) <A}, (20)
||X||<0L:>xeSr’k,r(x)S%:||x||<%. (21)
Then, for any € > 0 and xo from X with
¢o(Xo0) < inf o(X) + &, (22)
there exists ve in X so that
o 2ekL _«
(23) v, —XOIISE, (24) @(ve) < 9(Xo), (25) 0 po(v,)+ S,

$":={& e X1 |Ig] < 1} ([16]).

o0

4 B-differentiability of function series. Let be an , fa: U = R, U an open convex bounded set in
n=1

a real normed space. If 1° f, is, ¥vn e N, B-differentiable on U; 2° Zvﬁfn is uniformly
n=1
convergent on U; 3° there is Xo in U such that an (Xo) is convergent, then the given series is
n=1
uniformly convergent on U, its sum is B-differentiable on U and

VB(an )(X) = ZVBfn (X) VX e U (we can see Iso in [13]).
n=1 n=1
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We discuss now about the connexion between the conditions
(P):=(18) + (19) + (20) + (||X|]| <o = x € Srp)
(see 3.4) and
(H) There exists ®@ : X — [0, 1] Lipschitz B-differentiable having the properties

(26)  ®(0) =1, @7)  |X]|>1= ®(x)=0.
m (H) = (18) + (19) + (20). Take r: X — [0, +o0),
N | N
r(x) = nzl = [1—@(2 x)] .

The definition is correct, each term is majorized in absolute value by PR ris

Lipschitz on X with the constant L the same as for ®:

> 1 <1
[r()—-r(y) 1< 52 | D(2"x) - D(2"y) | < ZZ—nL | x—y|letc.
n=1 n=1

r is B-differentiable on X: apply I, 3.12 from [2] (see this one in the above note

reference 4), the series of B-derivatives is — Zzin VBQJ(Z” X) (see in the following
n=1
the calculus of the B-derivatives) and the calculus continues as for (16), @ being
Lipschitz and 3 - differentiable on X. So (20) is con brio ensured. Obviously
(26)
r(x)>0and r(0) = 0. Moreover,
27) 1

= 22n

1 1 (
| x| > o =r(x) = 27[1—(1)(2n X)]

and this implication justifies (ad absurdum!) (19).

Complete the demonstration. For the function ¥: W(x) = ®(2"x) we have

VP (x) =2"V,®(2"x) .
Indeed, setting & : = Vp ®(2"x) we have
n n n
\P(x+th)—‘{’(x)_2né(h):2n D(2" X +2 tnh)—<I>(2 x)_&(h)}
t 2't

and the uniform limit on S of the bracket for t : = 2"t — 0 is equal to 0.

(P) = (H). Let o’ be from (0, o). 3 6 > 0 so that

IIX|| > o' = r(x) >3

(ad absurdum, use (19)). Take f : R+ — [0,1] of the C! class, t > § = f (t) = 0,
f (0) = 1. The function ®: X — [0,1], ®(x) = f (r(a'x)) verifies (H). Indeed, the
conditions (26) and (27) are obviously verified. @ is Lipschitz on X : consider the
cases |X| < 1l and |y <1, |x|>1and Jly] > 1, |x]] <1 and |ly]] > 1 which
respectively give the cases |jo/'X|| < o and |ja'y|| < o, [|a'X|| > o’ and [|a'y|| > o/,
lo'x]| < o' and |ja'y|| > o'; apply the elementary finite increment formula, ' is
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bounded. @ is B-differentiable on X: use the rule for the B-derivative of the
composed function ([2], I, §3, 3.11°%). m

4. Applications
4.1 Applications to the B-subderivative, B-derivative and discussions

4.1 Let X be Banach space, 3 bornology on X and ¢: X — (-, +oo] lower
bounded I.s.c. proper. If X has the property (H), then o is B-subdifferentiable on a
set A so that

{(x, T (X)): x € A}
is dense in the graph of ¢ in X x R ([16]).

Compare this result with the following one. But firstly introduce the next:

Definition. Let X be a real normed space, ¢: X — (-, +x] proper, € > 0
and v from X. o is € - supported in v if there exists & in X " and & > 0 so that

[w—v[< 8= (V) < p(w) + &llv— w|| + E(V — ). (1)
We see that, for £ = 0 and & whatever positive, (1) becomes the fundamental
inequality (1) of the Ekeland principle 2.1.

And now, other variant of 2.1 —

4.2 Let X be a real Banach space and ¢: X — (—o0, +oo] lower semicon-
tinuous and proper. Assume there is F: X — R with Fréchet derivative, F(0) > 0
and F(x) < 0 on {x e X:||x|>1}. Then, whatever & > 0, the set of points where ¢ is

e-supported is dense in dom ¢ (I. Ekeland - G. Lebourg).

m Let be u € dom ¢ and r > 0. It follows to find in S : = S(u, r) (open ball)
a point v e dom ¢ in which ¢ is € - supported. ¢ being l.s.c. in u, r can be chosen
small enough so that ¢ is bounded from below on S. Consider the function ®: X
— (0, +oo],

1
B(x) = — )
max (O, F( D
r
@ is l.s.c.: let xo be of X and a < 1 ; when a < 0, the inequality

o)

is valid on X; when a > 0, then £>maX[O,F(XO_uJJ and the inequality

a r

5 B-derivative of the composed function. Let be f : X — R B-differentiable in xo and F : R — R of
C! class on J open interval with f(xo) € J. Then g : = F o f is B-differentiable in xo and

Vg g (Xo) = F'(f (X)) Vit (Xo) (seealso in [13]).
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remains valid on a neighborhood of xo, as F is continuous. We have (3) dom ® c
S, since ®(x) = +oo on X \ S. Obviously (4) u € dom ®. Moreover, dom @ is open,

asx e domd® = g ( X—u j > 0 and F is continuous, @ is Fréchet differentiable on
r

dom .
Therefore, the function ® + ¢: X — (-, +oo] is bounded from below

(D(x) + @(x) = +oon X \'S, ® + ¢ is lower bounded on S), l.s.c. (® is l.s.c.) and
(4)
proper (u € dom ® ~ dom o).
According to 2.1, 3 v € X so that

D) + (V) < DW) + p(W) +%||v—w|| YW e X. (5)

Taking w = u in (5) we find v e dom ® n dom ¢ (ad absurdum, use (4)). So, ®
being Fréchet differentiable in v, for &: = —®’(v) and for 6 > 0 we have

w—v|< 8 = oW) - &(v-w) —§||v—w||£ D(V). (6)

By adding (5) to (6) it results (1). m
Remark 1. The demand “¢ bounded from below” does not exist in the statement 4.2.
Remark 2. The Hilbert spaces have got the functions F like in 4.2 (F(X)=1—X-X),

also the spaces LP, p e (1, +0) (F (x) = 1 — [x|°). L* and L* have not this

property ([18]).

4.3 Corollary. Let X be Banach space,  bornology on X and ¢: X > R
continuous convex upper bounded.

If X has the property (H), then ¢ is B-differentiable on a subset every-
where dense.

m As dom (— ¢) = X, — ¢ is B-subdifferentiable on a set A dense in X (4.1),
I.e. @ is B-superdifferentiable on A. But ¢ is B-subdifferentiable in X (apply [2], I,

5.9) and by applying: “Let f:X — R be locally finite at xo. f is B-differentiable at
Xo < f is B-superdifferentiable and B-subdifferentiable at xo . In this case
{Vpf(x0)} =0Pf(xo) =0pf(x0)”, we find ¢ B-differentiable on A. m

To clarify, by definition, f is B-superdifferentiable at xo if 6P f (xo) = O. f
is B-superdifferentiable on A iff it is B-superdifferentiable at any point in A.

By usage of this generalization of Borwein-Preiss variational principle, we
can give generalization for some results regarding viscosity B-solutions of the
differential equation of Hamilton - Jacobi type: u + F(u’) = f as in [19] and [20].
We can weaken the conditions from the statements concerning the existence and
characterization of the viscosity B-subsolution, viscosity p-supersolution and
viscosity p-solution with their proofs based on Borwein-Preiss variational
principle for: H(x, u(x), Vgu(x)) =0 ¥x € Q.
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To follow these proofs (for which here is proposed the generalization), we can
search in [2], pages 422-426.

4.2 Applications in solution of mathematical physics problems evolved
from modeling of real phenomena

We can generalize the results from [5] and [7] concerning the sequence of
statements in obtaining weak solutions, weak subsolutions and weak supersolu-
tions for some elliptic type problems. As applications in real phenomena, we can
cite generalization of problems from [5]: applications in glaciology, nonlinear
elastic membrane, using the p-Laplacian and pseudo torsion problem, nonlinear
elastic membrane with p-pseudo-Laplacian. We can propose, using the discussed
variational principles, generalizations for results for critical points for nondiffe-
rentiable functionals ([5], [7]) in order to give characterizations of the solutions
for the Dirichlet problems from issued by the movement of the glacier, nonlinear
elastic membrane, pseudo torsion problem or nonlinear elastic membrane with
p-pseudo-Laplacian. As in [5] and [6], we can give a generalization of the series
of propositions from there via 3.1 instead of Ekeland principle in order to arrive to
a solution for the mixed problem involving the p-Laplacian which models the
injection mould filling.

5. Conclusions

In this paper, some weakening of conditions for existence and characte-
rization results for the viscosity B-solution, viscosity B-subsolution, viscosity [3-
supersolution and for some Dirichlet problems involving the p-Laplacian and the
p-pseudo-Laplacian have been proposed.

For this reason, two variants each for the Ekeland and Borwein-Preiss
variational principles have been presented together with a generalization of them
given in [16]. The author recovered a proposition from [16] which is important to
generalize and unify the two variational principles.

Via the generalizations of these two fundamental variational principles, we
propose to replace Ekeland principle in corresponding three series of results due
to the author from [5], [6] and [7] aiming to solve and / or chareaterize weak
solutions for some mathematical physics problems involving the p-Laplacian and
the p-pseudo-Laplacian issued from modelling of real phenomena. We highlight
solution and characterizations of solutions for the movement of the glacier,
nonlinear elastic membrane, pseudo torsion problem or nonlinear elastic
membrane with p-pseudo-Laplacian or injection mould filling.
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