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1. Introduction

The generalized symmetric functions H
(s)
k and E

(s)
k were introduced in the first part

of our study [1] as follows:
∞∑
k=0

H
(s)
k (x1, x2, . . . , xn) tk =

n∏
i=1

(
1− xit+ · · ·+ (−xit)s

)−1
(1)

and
∞∑
k=0

E
(s)
k (x1, x2, . . . , xn) tk =

n∏
i=1

(
1 + xit+ · · ·+ (xit)

s
)
, (2)

where s is a positive integer. For the sake of brevity, we do not mention once again the
notions and notations used in the first part of our study. So these remain valid and we will
use them without further explanation.

In this paper, we investigate new properties of the generalized symmetric functions

H
(s)
k and E

(s)
k . In Section 2, we show that the generalized symmetric functions H

(s)
k and E

(s)
k

can be expressed in terms of the complete and elementary symmetric functions. In Section
3, we consider some combinatorial interpretations for the generalized symmetric functions

H
(s)
k and E

(s)
k .

2. Generalized symmetric functions in terms of the complete and elemen-
tary symmetric functions

It is well known that every symmetric function can be expressed as a sum of ho-
mogeneous symmetric functions. The homogeneous symmetric functions of degree k in n
variables form a vector space, denoted Λkn. There are several important bases for Λkn, which
are indexed by integer partitions of k. Proofs and details about these facts can be found
in Macdonald’s book [4]. In this section, we express the generalized symmetric functions

H
(s)
k and E

(s)
k in terms of the complete and elementary symmetric functions. To do this, we
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consider the monomial symmetric function mλ(x1, x2, . . . , xn) and for each partition λ we
note

fλ(x1, x2, . . . , xn) =

`(λ)∏
i=1

fλi(x1, x2, . . . , xn),

where f is any of these complete or elementary symmetric functions.

Theorem 2.1. Let k and s be two positive integers. Then

H
(s)
k = (−1)k

∑
λ`k
l(λ)≤s

mλ(ω1,s+1, ω2,s+1, . . . , ωs,s+1)hλ,

E
(s)
k = (−1)k

∑
λ`k
l(λ)≤s

mλ(ω1,s+1, ω2,s+1, . . . , ωs,s+1)eλ,

where ωj,s+1 = e2jπi/(s+1) with j = 1, 2, . . . , s.

Proof. Taking into account the generating functions [1, eq. (1)] and (1), we can write

∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk =

n∏
i=1

s∏
j=1

(1 + ωj,s+1xit)
−1 =

s∏
j=1

n∏
i=1

(1 + ωj,s+1xit)
−1

=

s∏
j=1

∞∑
k=0

(−ωj,s+1)khk(x1, x2, . . . , xn)tk

=

∞∑
k=0

 ∑
j1+j2+···+js=k

ji≥0

(−1)j1+j2+···+jsωj11,s+1ω
j2
2,s+1 · · ·ω

js
s,s+1hj1hj2 . . . hjs

 tk

=

∞∑
k=0

∑
λ`k
`(λ)≤s

(−1)kmλ (ω1,s+1, ω2,s+1, . . . , ωs,s+1)hλ(x1, x2, . . . , xn)tk.

The second identity follows in a similar way, considering the generating functions [1, eq. (2)]
and (2). �

The Ferrers diagram of a partition [λ1, λ2, . . . , λk] is the k-row left-justified array of
dots with λi dots in the i-th row. The conjugate of a partition into s parts, obtained by
transposing the Ferrers diagram, is a partition with largest part s and vice versa. The
action of conjugation establishes a 1–1 correspondence between partitions into s parts and
partitions with largest part s. Considering [1, eq. (5)] and Theorem 2.1, we obtain a
surprising identity involving this 1–1 correspondence between partitions into s parts and
partitions with largest part s.

Corollary 2.1. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then∑

λ`k
λ1≤s

mλ(x1, x2, . . . , xn) = (−1)k
∑
λ`k
l(λ)≤s

mλ(ω1,s+1, ω2,s+1, . . . , ωs,s+1)eλ(x1, x2, . . . , xn).

where ωj,s+1 = e2jπi/(s+1) with j = 1, 2, . . . , s.

The following result allows us to express the symmetric function H
(s)
k and E

(s)
k as

convolutions of the complete and elementary symmetric functions.
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Theorem 2.2. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

H
(s−1)
k (x1, x2, . . . , xn) =

bk/sc∑
j=0

(−1)sjhj(x
s
1, x

s
2, . . . , x

s
n)ek−sj(x1, x2, . . . , xn),

E
(s−1)
k (x1, x2, . . . , xn) =

bk/sc∑
j=0

(−1)jej(x
s
1, x

s
2, . . . , x

s
n)hk−sj(x1, x2, . . . , xn).

Proof. According to (1), we have

∞∑
k=0

H
(s−1)
k (x1, x2, . . . , xn)tk =

(
n∏
i=1

1

1− (−xit)s

)(
n∏
i=1

(1 + xit)

)

=

 ∞∑
j=0

hj(x
s
1, x

s
2, . . . , x

s
n)(−t)sj

 ∞∑
j=0

ej(x1, x2, . . . , xn)tj


=

∞∑
k=0

bk/sc∑
j=0

(−1)sjhj(x
s
1, x

s
2, . . . , x

s
n)ek−sj(x1, x2, . . . , xn)

 tk.

In a similar way, considering (2), we obtain the second identity. �

Corollary 2.2. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

bk/sc∑
j=0

(−1)sjhj(x
s
1, x

s
2, . . . , x

s
n)ek−sj(x1, x2, . . . , xn)

= (−1)k
∑
λ`k
l(λ)<s

mλ(ω1,s, ω2,s, . . . , ωs−1,s)hλ(x1, x2, . . . , xn),

bk/sc∑
j=0

(−1)jej(x
s
1, x

s
2, . . . , x

s
n)hk−sj(x1, x2, . . . , xn)

= (−1)k
∑
λ`k
l(λ)<s

mλ(ω1,s, ω2,s, . . . , ωs−1,s)eλ(x1, x2, . . . , xn).

We remark that the second identity of this corollary is known and can be seen in a
recent paper of Merca [6, Theorem 1.1].

Now, we are able to prove some formulas for the monomial symmetric function
mλ(e2πi/(s+1), e4πi/(s+1), . . . , e2sπi/(s+1)), when λ is a partition of k, s ≥ k− 2 and `(λ) ≤ s.

Corollary 2.3. Let k be a positive integer and let λ = [1t12t2 . . . ktk ] be a partition of k.
Then

mλ(ω1,k+1, ω2,k+1, . . . , ωk,k+1) = (−1)t1+t2+···+tk
(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
,

where ωj,k+1 = e2jπi/(k+1) with j = 1, 2, . . . , k.

Proof. The case s = k + 1 of Theorem 2.2 reads as H
(k)
k = ek. By Theorem 2.1, we deduce

that

ek =
∑
λ`k

(−1)kmλ(ω1,k+1, ω2,k+1, . . . , ωk,k+1)hλ.
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On the other hand, the relation

ek =
∑
λ`k

(−1)k+`(λ)
(

`(λ)

t1, t2, . . . , tk

)
hλ

can be found in [5, pp. 3-4]. It is clear that∑
λ`k

mλ(ω1,k+1, ω2,k+1, . . . , ωk,k+1)hλ =
∑
λ`k

(−1)`(λ)
(

`(λ)

t1, t2, . . . , tk

)
hλ.

The assertion of the corollary now follows by comparing coefficients of hλ on both sides of
this equation. �

Corollary 2.4. Let k > 1 be a positive integer and let λ = [1t12t2 . . . ktk ] be a partition of
k with `(λ) < k. Then

mλ(ω1,k, ω2,k, . . . , ωk−1,k) = (−1)`(λ)
(

1− k

`(λ)

)(
`(λ)

t1, t2, . . . , tk

)
,

where ωj,k = e2jπi/k with j = 1, 2, . . . , k − 1.

Proof. The case s = k of Theorem 2.2 reads as H
(k−1)
k = ek + (−1)kpk. By Theorem 2.1, we

deduce that

ek =
∑
λ`k

`(λ)<k

(−1)kmλ(ω1,k, ω2,k, . . . , ωk−1,k)hλ − (−1)kpk.

On the other hand, we have

ek =
∑
λ`k

(−1)k+`(λ)
(

`(λ)

t1, t2, . . . , tk

)
hλ,

pk =
∑
λ`k

(−1)1+`(λ) · k
`(λ)

(
`(λ)

t1, t2, . . . , tk

)
hλ.

We can write∑
λ`k

`(λ)<k

(−1)kmλ(ω1,k, ω2,k, . . . , ωk−1,k)hλ

=
∑
λ`k

(−1)k+`(λ)
(

`(λ)

t1, t2, . . . , tk

)
hλ −

∑
λ`k

(−1)k+`(λ) · k
`(λ)

(
`(λ)

t1, t2, . . . , tk

)
hλ

=
∑
λ`k

(−1)k+`(λ)
(

1− k

`(λ)

)(
`(λ)

t1, t2, . . . , tk

)
hλ

and the proof is finished. �

Corollary 2.5. Let k > 2 be a positive integer and let λ = [1t12t2 . . . ktk ] be a partition of
k with `(λ) ≤ k − 2. Then

mλ(ω1,k−1, ω2,k−1, . . . , ωk−2,k−1) = (−1)`(λ)
(

1− t1 · (k − 1)

`(λ)2 − `(λ)

)(
`(λ)

t1, t2, . . . , tk

)
,

where ωj,k−1 = e2jπi/(k−1) with j = 1, 2, . . . , k − 2.

Proof. By Theorem 2.1, we deduce that

H
(k−2)
k =

∑
λ`k

`(λ)≤k−2

(−1)kmλ(ω1,k−1, ω2,k−1, . . . , ωk−2,k−1)hλ.
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On the other hand, taking into account the case s = k − 1 of Theorem 2.2, we can write

H
(k−2)
k = ek + (−1)k−1pk−1h1

=
∑

t1+2t2+···+ktk=k

(−1)k+t1+t2+···+tk
(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
ht11 h

t2
2 · · ·h

tk
k

+
∑

t1+2t2+···+(k−1)tk−1=k−1

(−1)k+t1+···+tk−1(k − 1)

t1 + · · ·+ tk−1

(
t1 + · · ·+ tk−1
t1, . . . , tk−1

)
h1+t11 ht22 · · ·h

tk−1

k−1

=
∑

t1+2t2+···+ktk=k

(−1)k+t1+t2+···+tk
(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
ht11 h

t2
2 · · ·h

tk
k

−
∑

t1+2t2+···+ktk=k
t1>0

(−1)k+t1+t2+···+tk(k − 1)

t1 + t2 + · · ·+ tk − 1

(
t1 + t2 + · · ·+ tk − 1

t1 − 1, t2, . . . , tk

)
ht11 h

t2
2 · · ·h

tk
k

=
∑

t1+2t2+···+ktk=k

(−1)k+t1+t2+···+tk
(
t1 + t2 + · · ·+ tk
t1, t2, . . . , tk

)
ht11 h

t2
2 · · ·h

tk
k

−
∑

t1+2t2+···+ktk=k
t1>0

(−1)k+t1+t2+···+tk · t1 · (k − 1)

(t1 + · · ·+ tk − 1)(t1 + · · ·+ tk)

(
t1 + · · ·+ tk
t1, . . . , tk

)
ht11 h

t2
2 · · ·h

tk
k

= (−1)k
∑
λ`k

(−1)`(λ)

(
1− t1 · (k − 1)(

`(λ)− 1
)
`(λ)

)(
`(λ)

t1, t2, . . . , tk

)
hλ.

This concludes the proof. �

Inspired by Theorem 2.2, we provide the following result.

Theorem 2.3. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

hk(xs1, x
s
2, . . . , x

s
n) = (−1)k(s+1)

ks∑
j=0

(−1)jhj(x1, x2, . . . , xn)H
(s−1)
ks−j (x1, x2, . . . , xn),

ek(xs1, x
s
2, . . . , x

s
n) = (−1)k

ks∑
j=0

(−1)jej(x1, x2, . . . , xn)E
(s−1)
ks−j (x1, x2, . . . , xn).

If k is not congruent to 0 modulo s then

k∑
j=0

(−1)jhj(x1, x2, . . . , xn)H
(s−1)
k−j (x1, x2, . . . , xn) = 0,

k∑
j=0

(−1)jej(x1, x2, . . . , xn)E
(s−1)
k−j (x1, x2, . . . , xn) = 0.

Proof. Considering that

n∏
i=1

1

1 + xit

∞∑
k=0

H
(s−1)
k (x1, x2, . . . , xn)tk =

n∏
i=1

1

1 + (−xit)s
,

n∏
i=1

(1− xit)
∞∑
k=0

E
(s−1)
k (x1, x2, . . . , xn)tk =

n∏
i=1

(
1− (xit)

s
)
,

the proof follows easily. �
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3. Combinatorial interpretations

Bazeniar et al. [2] showed that the generalized symmetric function E
(s)
k is interpreted

as weight-generating function of the lattice paths between the points u = (0, 0) and v =
(k, n−1) with at most s vertices in the eastern direction. For example, the paths from (0, 0)
to (3, 2) associated to

E
(2)
3 (x1, x2, x3) = x21x2 + x1x

2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 + x1x2x3

can be seen in Figure 1.

x1 x1

x2

v

u

x1

x2 x2

v

u

x1 x1

x3 v

u

x1

x3 x3 v

u

x2 x2

x3 v

u

x2

x3 x3 v

u

x1

x2

x3 v

u

Figure 1. The seven paths from u to v associated to E
(2)
3 (x1, x2, x3).

According to [2, Theorem 3.2], the number of lattice paths from (0, 0) to (k, n − 1)
taking at most s vertices in the eastern direction is exactly the bisnomial coefficient, i.e.,(

n

k

)
s

= E
(s)
k (1, 1, . . . , 1︸ ︷︷ ︸

n

).

By Theorem 2.2, we deduce that the bisnomial coefficient can be expressed in terms of the
classical binomial coefficients, i.e.,(

n

k

)
s−1

=

bk/sc∑
j=0

(−1)j
(
n

j

)(
n+ k − sj − 1

k − sj

)
.

We remark that this identity is given by Theorem 2.1 in [3]. In addition, by Theorem 2.2
we obtain the following analogs of this identity.

Corollary 3.1. Let k, n and s be positive integers. Then[
n

k

](s−1)
q

=

bk/sc∑
j=0

(−1)jqs(
j
2)
[
n

j

]
qs

[
n+ k − sj − 1

k − sj

]
q

,

where
[
n
k

](s)
q

= E
(s)
k (1, q, . . . , qn−1) is the q-bisnomial coefficient.

Corollary 3.2. Let k, n and s be positive integers. Then[
n

k

](s−1)
p,q

=

bk/sc∑
j=0

(−1)jps(
n−j
2 )qs(

j
2)
[
n

j

]
ps,qs

[
n+ k − sj − 1

k − sj

]
p,q

,

where
[
n
k

](s)
p,q

= E
(s)
k (pn−1, pn−2q, . . . , qn−1) is the p, q-bisnomial coefficient.
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These expressions of the q-bisnomial (rep. p, q-bisnomial) coefficient in terms of q-
binomial coefficients

[
n
k

]
q

(resp. p, q-binomial coefficients
[
n
k

]
p,q

) seem to be new.

And Theorem 2.3 allow us to express the binomial coefficient and its qs-analogue in
term of the bisniomial coefficient and its q-analogue, respectively.

Corollary 3.3. Let k, n and s be positive integers. Then(
n

k

)
=

ks∑
j=0

(−1)k+j
(
n

j

)(
n

ks− j

)
s−1

,

[
n

k

]
qs

=

ks∑
j=0

(−1)k+jq(
j
2)−s(

k
2)
[
n

j

]
q

[
n

ks− j

](s−1)
q

.

Inspired by this interpretation of the generalized symmetric function E
(s)
k , we provide

in this section a combinatorial interpretation for the generalized symmetric functionH
(s)
k . To

do this we consider the following result which allows us to express the generalized symmetric

function H
(s)
k in terms of the monomial symmetric functions mλ considering all the partitions

of k into parts congruent to 0 or 1 modulo s+ 1.

Theorem 3.1. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

H
(s)
k (x1, x2, . . . , xn) =

∑
λ`k

λi≡{0,1} mod (s+1)

(−1)
k+

`(λ)∑
i=1

λi mod (s+1)
mλ(x1, x2, . . . , xn).

Proof. According to (1), we can write

∞∑
k=0

H
(s)
k (x1, x2, . . . , xn)tk =

n∏
i=1

1 + xit

1− (−xit)s+1
=

n∏
i=1

(1 + xit)

∞∑
j=0

(−xit)j(s+1)

=

n∏
i=1

 ∞∑
j=0

(−xit)j(s+1) −
∞∑
j=0

(−xit)j(s+1)+1



=

∞∑
k=0

 ∑
λ`k

λi≡{0,1} mod (s+1)

(−1)
∑`(λ)
i=1 λi mod (s+1)mλ(x1, x2, . . . , xn)

 (−t)k

and the proof follows easily. �

Remark 3.1. When s is odd, we have

H
(s)
k (x1, x2, . . . , xn) =

∑
λ`k

λi≡{0,1} mod (s+1)

mλ(x1, x2, . . . , xn).

The following consequence of Theorem 3.1 is an analogy of Corollary 2.1 establishing
a connection between all the partitions of k into parts congruent to 0 or 1 modulo s+ 1 and
the partitions of k into at most s parts.
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Corollary 3.4. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then ∑

λ`k
λi≡{0,1} mod (s+1)

(−1)

`(λ)∑
i=1

λi mod (s+1)
mλ(x1, x2, . . . , xn)

=
∑
λ`k
l(λ)≤s

mλ(ω1,s+1, ω2,s+1, . . . , ωs,s+1)hλ(x1, x2, . . . , xn).

Let Psn,k be the set of the lattice paths between the points u = (0, 0) and v = (k, n−1)
where the number of the vertices in the eastern direction is congruent to 0 or 1 modulo s+1.
For P = (p1, p2, . . . , pn+k−1) ∈ Psn,k, we consider

ni(P ) := the number of the eastern step modulo (s+ 1) in level i.

and the H(s)-labeling which assigns the label for each eastern step as follows

L (pi) := (the number of northern pj preceding pi) + 1.

Figure 2 shows the H(s)-labeling.

v

u

p1

p2 p3 p4
p5

H(2)-labeling

v

u

2 2 2
xP

v

u

x2 x2 x2

Figure 2. Illustration of x32 by H(2)-labeling.

Theorem 3.2. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then

H
(s)
k (x1, x2, . . . , xn) =

{∑
P∈Psn,k

XP , if s odd,

(−1)k
∑
P∈Psn,k

(−1)P
′
XP , otherwise

with XP =
∏
i xL(pi) and P ′ =

∑
i ni(P ).

Proof. From Theorem 3.1, is easy to see that the generalized symmetric functionH
(s)
k (x1, x2, . . . , xn)

is a weight-generating function of lattice paths between two points. For each unit variable xi
in this symmetric function we associate one unit horizontal (east) vertex, and if we suppose
that each lattice path starting in u = (0, 0) then it ends in v = (k, n− 1) where the number
of the vertices in the eastern direction equal to 0 or 1 modulo (s+ 1). �

Figure 3 shows the lattice path interpretation for

H
(2)
3 (x1, x2, x3) = −x31 − x32 − x33 + x1x2x3.

By setting s = k in Theorem 3.2, we will have the following result.

Corollary 3.5. Let k, n be two positive integers and let x1, x2, . . . , xn be independent vari-
ables. Then, the elementary symmetric function ek(x1, x2, . . . , xn) is a weight-generating
function of the paths between the points u = (0, 0) and v = (k, n−1) with at most one vertex
in the eastern direction.



A generalization of complete and elementary symmetric functions - part II 123
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x1 x1 x1

v

u

x2 x2 x2

v

u

x3 x3 x3 v

u

x1

x2

x3

Figure 3. The four paths from u to v associated to H
(2)
3 (x1, x2, x3).

As we can see in [2], the generalized symmetric functions E
(s)
k can be interpreted

considering the set of all tilings of an (n + k − 1)-board using exactly k black squares
and n − 1 gray squares with at most s black squares successively. There is an obvious
bijection between this tiling interpretation and the lattice path interpretation. This tiling

interpretation for the generalized symmetric functions E
(s)
k can be adapted to the generalized

symmetric functions H
(s)
k in the following way.

Let Tsn,k be the set of all tilings of an (n+ k− 1)-board using exactly k black squares
and n−1 gray squares such that the number of successive black squares is congruent to 0 or
1 modulo s+1. Also let XwT = xw1

1 xw2
2 · · ·xwnn be the weight of tiling T . For each T ∈ Tsn,k,

we calculate wT = (w1, w2 . . . , wn) as follows:

(1) Assign a weight to each individual square in the tiling. A gray square always receives
a weight of 1. A black square has weight xm+1 where m is equal to the number of
gray squares to the left of that black square in the tiling.

(2) Calculate wT = (w1, w2 . . . , wn) by multiplying the weight xm+1 of all the black
squares.

We also consider

nm (T ) :=the number of successive black squares modulo (s+ 1) after the m-th gray
square to the left of these black squares in the tiling.

For example, the weight of the tiling bbgbg is x1+1
1 x12 = x21x2. Figure 4 shows this

tiling and its lattice path.

x1 x1

x2

Figure 4. A tiling of the weight x21x2 and its associated lattice path.

Theorem 3.3. Let k, n and s be positive integers and let x1, x2, . . . , xn be independent

variables. Then H
(s)
k (x1, x2, . . . , xn) is created by summing the weights of all tilings of Tsn,k.

That is,

H
(s)
k (x1, x2, . . . , xn) =

{∑
T∈Tsn,k

XwT , if s odd,

(−1)k
∑
T∈Tsn,k

(−1)GXwT , otherwise

with G =
∑
T∈Tsn,k

nm(T ).

Proof. Since the bijection between lattice paths and tiling is weight-preserving. Then, from
Theorem 3.2 it is suffice to associate a lattice path to each (n+ k − 1)-tiling using k black
squares and n− 1 gray squares with the number of successive black squares congruent to 0
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or 1 modulo (s + 1). This lattice path starts from in u = (0, 0) and ends in v = (k, n − 1)
where the number of the vertices in the eastern direction is congruent to 0 or 1 modulo
(s+ 1) whose each gray tile represents a move one unit up and each black square represents
a move one unit right. �

Figure 5 shows the tiling interpretation for H
(2)
3 (x1, x2, x3) = −x31−x32−x33 +x1x2x3.

Figure 5. The four tilings associated to H
(2)
3 (x1, x2, x3).

By Theorem 3.3, we can also interpret the elementary symmetric function as follows.

Corollary 3.6. Let k, n be two positive integers and let x1, x2, . . . , xn be independent vari-
ables. Then, the elementary symmetric function ek(x1, x2, . . . , xn) is a weight-generating
function of all tilings of an (n + k − 1)-board using exactly k black squares and n − 1 gray
squares with at most one black square successively.

4. Concluding remarks

New properties of a pair of two symmetric functions which generalize the complete
and elementary symmetric functions were investigated in this paper. These generalized
symmetric functions satisfy many of the classical relations between complete and elementary
symmetric functions. Most of these relationships have the same shape.

The Schur symmetric functions sλ(x1, x2, . . . , xn) for a partition λ can be extended
in the same way. For example, we can define the generalized Schur symmetric func-

tion s
(s)
λ = s

(s)
λ (x1, x2, . . . , xn) in terms of the generalized symmetric functions H

(s)
k =

H
(s)
k (x1, x2, . . . , xn) or E

(s)
k = E

(s)
k (x1, x2, . . . , xn) as follows:

s
(s)
λ := det(H

(s)
λi−i+j)1≤i,j≤n or s

(s)
λ := det(E

(s)
λ′i−i+j

)1≤i,j≤n,

where λ′ is the conjugate of λ.
It would be very appealing to investigate the properties of the generalized Schur

symmetric functions s
(s)
λ .
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