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REAL IMAGE DEHAZING BASED ON MODEL 

OPTIMIZATION AND LUMINANCE ENHANCEMENT 

Lingyu LI1, Zhiyong TAO1, *, Sen LIN2 

Addressing the issues of blurred details, color distortion, and reduced 

brightness in hazy images, we propose a dehazing method grounded in model 

optimization and brightness enhancement. Firstly, the traditional atmospheric 

scattering model is optimized based on the dark channel prior theory. Second, a 

luminance augmentation branch is proposed to improve the image brightness. 

Finally, the images processed by both the model optimization and luminance 

enhancement branches are fused and subsequently color-corrected to enhance the 

visual quality of the images. Experimental results on the RESIDE dataset and real-

world images show that our method outperforms classical and the latest dehazing 

methods.  

Keywords: Dehazing method, Atmospheric scattering model, Model 

optimization, Luminance enhancement 

1. Introduction 

Images captured in hazy weather suffer from detail loss and contrast 

reduction, limiting their application in advanced vision areas like target 

recognition[1], tracking, satellite remote sensing monitoring[2], and automatic 

driving[3]. Image dehazing techniques mitigate the haze effect, enhancing image 

clarity and naturalness, and facilitating observation and analysis. Consequently, 

designing an effective image dehaze method is of great research significance. 

Currently, methods for image dehazing are divided into three main 

categories: image enhancement methods, image restoration methods, and deep 

learning methods. Dehaze methods based on image enhancement mainly focus on 

enhancing the contrast and color saturation of the image without considering the 

principle of haze formation and the essential cause of image degradation. 

Histogram Equalisation is a crucial technique used for image enhancement to 

improve the contrast of an image. However, the method may enhance noise and 

introduce unnatural effects. Therefore, Liu et al. [4] provided a simple but 

effective method for contrast enhancement-Colour-Preserving AHE(CP-AHE). 
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This novel approach can effectively maintain the color of the dehazed image. The 

image restoration-based dehazing method mainly starts from the cause of image 

degradation itself, constructs a physical model for fog image imaging, estimates 

the parameters in the model, and obtains a clear haze-free image by inversely 

solving the formula. He et al. [5] proposed the Dark Channel Prior (DCP) theory. 

Subsequently, He et al. [6] proposed a method to optimize the transmittance using 

guided filtering. In addition, Ju et al. [7] designed an Enhanced ASM (EASM), 

which effectively solves the problem of the dark image after dehazing processing. 

Ling et al. [8] proposed Saturation Line Prior (SLP) by observing many haze-

free images and a new SLP-based dehazing framework is proposed. In recent 

years, deep learning-based dehazing methods have made significant progress. Cai 

et al. [9] proposed an end-to-end dehazing system, Dehaze-Net, the most 

representative deep learning dehazing network in the early days. Dong et al. [10] 

proposed a multi-scale enhancement dehazing network (MSBDN) with dense 

feature fusion based on U-Net architecture, which gradually recovers haze-

free images by developing a simple and effective enhancement decoder [11]. 

Inspired by meta-learning, Jia et al. [12] proposed a novel meta-attention dehazing 

network (MADN) to recover clear images directly from haze images without 

using a physical scattering model.   

Considering that the performance of deep learning-based dehazing 

methods is limited by the diversity of training datasets, the design of network 

structures lacks theoretical support, and the issues of poor dehazing effects, detail 

loss, and image distortion in image enhancement and restoration-based dehazing 

methods remain to be addressed, we propose an image dehazing method based on 

model optimization and luminance enhancement.  

Our contributions are:  

(1) Optimizing the atmospheric scattering model and combining the 

quadtree search and gradient-domain guided filtering algorithms to mitigate image 

distortion from inaccurate parameter estimation. 

(2) Aiming at the overall darkness of the image processed by the dehazing 

method based on the atmospheric scattering model, an adaptive luminance 

enhancement algorithm is proposed to make the image brighter and more 

prominent in detail after dehazing. 

2. Dark channel priori theory 

In the field of image dehazing, the atmospheric scattering model [13] plays 

a key role by modelling the process of haze image formation, i.e: 

 ( ) ( ) ( ) (1 ( ))I x J x t x A t x= + −   (1) 

where ( )I x  is the hazy image, ( )J x  is the haze-free image, x denotes the pixel 

position in the image. A is the atmospheric light value and ( )t x  is the 
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transmission map. ( ) ( )J x t x  is the direct attenuation term and (1 ( ))A t x−  is the 

atmospheric light imaging term. 

For any image, the dark channel is defined: 

 ( )
Ω( ) {R,G,B}

( ) min min (y)dark c

y x c
J x J

 
=  (2) 

where (y)cJ is the color channel of any image,Ω( )x is a square local region centred 

at pixel point x. ( )darkJ x denotes the dark channel of this image, except for the sky 

region, ( ) 0darkJ x → . 

 Assume that the atmospheric light value A is known and denoted by
cA , 

assume that the transmission map ( )t x is a constant and denoted by ( )t x . 

Therefore, the transmission map equation is: 

 
Ω( )

( )
( ) 1 min min

c

cy x c

I y
t x

A




 
= −  

 
 (3) 

It has been shown that retaining some haze in the telephoto image can make the 

viewing effect better and more realistic. Therefore, an adjustment parameter 

(0 1)   is introduced which can make the telephoto image retain some haze 

and is usually set to=0.95[14]. 

Furthermore, the final dehazing formula is obtained: 

 
( )

( )
( ( ), )

c c
c c

d

I x A
J x A

max t x t

−
= +  (4) 

Since when ( )t x  the value is taken close to zero, it results in an unnatural 

dehazed image, the minimum value of transmittance is dt  to be set as the 

threshold, so it is set to 0.1[15]. 

3. Our algorithm 

The flow of our proposed image dehazing method is shown in Fig. 1. 

Firstly, the luminance augmentation branch is executed, which performs 

CP-CLAHE processing and adaptive luminance augmentation processing on the 

input images respectively and fuses the two pre-processed images obtained with 

multiple weights. At the same time, the model optimization branch is executed, 

which uses the quadtree search algorithm and the gradient-domain guided filtering 

algorithm to optimize the atmospheric light value and transmittance in the 

atmospheric scattering model, respectively, and solves the dehazing image 

inversely. Finally, the images obtained from the two branches are fused and color-

corrected to get a clear image. 
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Fig. 1 Flowchart of the proposed method 

3.1 Model optimization branch 

 The dark channel, a priori dehazing model is a classical method within the 

realm of image dehazing. However, the model is easily affected by image noise, 

which leads to errors in the estimated atmospheric light value and transmittance, 

which in turn affects the dehazing effect. Therefore, we propose an optimized 

version of the model to solve the above problems. 

 The dark channel a priori dehaze model usually picks the pixel points in 

the first 0.1% brightness and selects the point with the highest pixel value as the 

atmospheric light value. However, suppose bright lights appear in the haze image. 

In that case, the method will mistake the lights for haze regions, leading to the 

wrong selection of atmospheric light values and distorting the recovered image. 

Therefore, a hierarchical search strategy based on quadtree subdivision optimizes 

the selection of atmospheric light values. 

 First, the input image is divided equally into four subregions. Then, a 

resultant value is obtained by subtracting the standard deviation of the pixel 

values within the region from the average pixel value of each subregion. The 

subregion yielding the largest resultant value is chosen and further divided into 

four smaller subregions. After continuous iteration, when the size of the selected 

region is smaller than a pre-set threshold, the iteration is stopped, and the region is 

regarded as the selected range for the atmospheric light estimate. Finally, within 

this range, the color vector closest to the pure white light vector (255,255,255) is 

selected as the atmospheric light value A. 

 The dark channel dehazing model uses guided filtering to optimize the 

transmittance, but this method leads to halo artifacts in the processed image. 

Therefore, we first down sample the image in chunks using bilinear interpolation 

and then optimize the transmittance by introducing a gradient-domain guided 

filter [16]. Finally, we use up sampling to restore the image's original size. Unlike 
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the traditional guided filtering method, this can better preserve the edge structure 

and eliminate the edge-induced halo phenomenon. 

 The optimized atmospheric light values and transmittances were 

substituted within the final recovery equation: 

 
0

( )
( )

max( ( ), )

I x A
J x A

t x t

−
= +  (5) 

3.2 Luminance augmentation branch 

 Although the model optimization branch can effectively remove the haze 

in the image, the image after dehazing will have problems with color distortion, 

dark brightness, and unclear details. To address the above problems, we adopt the 

method of image enhancement. 

 Inspired by the literature [4], we consider the cascading of RGB channels 

when performing CLAHE processing, and this operation allows the processed 

image to retain its original colors and enhance the image detail information. 

 Firstly, the color channels of the haze image I are reconstructed according 

to the method of literature [4], i.e: 

 RT( )RTI I=  (6) 

where RT( ) denotes the transformation. 

 Since the classical AHE algorithm leads to noise in the image while 

enhancing the details, in order to overcome this problem, we replace the AHE 

process with CLAHE, which avoids the introduction of excessive noise as 

compared to AHE. As a result, the CLAHE algorithm is applied to the image
RTI : 

 , CLAHE( )C RT RTI I=  (7) 

where CLAHE( ) parameters take the default settings. 

Finally, the enhanced result
,C RTI is inversely reconstructed, i.e., converted 

back to RGB color space to obtain the processed image: 

 
1

,RT ( )C C RTI I−=  (8) 

To demonstrate that CP-CLAHE outperforms CP-AHE and is better suited 

for our method framework, we conducted focused ablation experiments on the 

benchmark dataset SOTS (Outdoor). For a comprehensive understanding of these 

experiments, please refer to Part IV of this paper. 

While the CP-CLAHE algorithm enhances image contrast and refines 

details, it falls short in effectively addressing the issue of dark brightness. To 

tackle this challenge, we propose an adaptive luminance augmentation algorithm. 

Direct processing of RGB images usually requires separate operations on 

R, G, and B channels, possibly leading to image color distortion. In contrast, the 

image brightness can be adjusted independently in HSV color space without 

affecting the colors, and the processed result is more in line with the human eye's 
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visual effect. Firstly, the image is converted from the original color space to the 

HSV color space. Secondly, it is assumed that the highest grey value of HSV in 

the image corresponds to the brightest point in the image, and the lowest grey 

value of HSV corresponds to the least bright point in the image. Following this 

assumption, the HSV image can be normalized and stretched using the following 

equation: 

 
max min

HSV min low

high low

( ) ( )
x x

I x x x x
x x

−
= + − 

−
 (9) 

where
HSVI is the processed HSV image, highx and lowx are the value of the brightest 

pixel and the value of the darkest pixel in the current image, maxx and minx are the 

maximum and minimum values of the image channel, max minx x−  =255. 

 Instead of simply using the brightest and darkest individual pixels, we set 

a set of thresholds as the lightest or darkest pixel values in the image. Next, this 

threshold is employed to limit the stretching of the HSV image, and the threshold 

can be expressed as: 

 
high

low

{ | ( ) }

{ | ( ) (1 )}

v v v

v v v

x min x I x w n

x max x I x w n





 = 


=  −
 (10) 

where
highx and lowx  are the new brightest pixel value and darkest pixel value. vI is 

the V channel of image I, vw is the maximum pixel value of the current channel, 

and vn is the quantization value of the set V channel. 

Given that the original H channel values lie within the range of [0, 360], 

we employ a straightforward linear transformation to map these values onto the 

range of [0, 1], thereby ensuring consistency in the processing of the H (Hue) with 

that of the S(Saturation) and V(Value): 

 
360

H
H  =  (11) 

For the calculation of the quantization factor n, the following formula can 

be used: 

 
( ) ( ) ( )

( )

H S V

V

I x I x I x
n

I x

 + +
=  (12) 

where ( )HI x , ( )SI x , ( )VI x is the average value of each channel of HSV. 

 Finally, to facilitate the display and saving of the image, then the HSV 

color space is converted back to the original color space. 

Inspired by the literature [17] and considering that multi-weight fusion in 

the field of underwater image processing can effectively fuse two preprocessed 

images, we adopt Laplacian contrast weight, local contrast weight, saliency 

weight, saturation weight, and exposure weight to perform multi-weight fusion. 
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3.3 Image fusion 

 The images obtained from the above two branches can be fused to improve 

the accuracy and robustness of the dehazing and the structure and details of the 

fused images can be effectively preserved. Inspired by the literature [18], we first 

decompose each image into global and local components and then calculate the 

features of each component by constructing a pixel-level weight map.  

In Fig. 2, (a) is the image after the model optimization branch processing, 

(b) is the image after the luminance augmentation branch processing, and (c) is 

the fused image, from which it can be seen that the fused image retains the clear 

and bright details of the input image 2 and also retains the dehazing effect of the 

input image 1. The dehazing effect of the fused image is improved while avoiding 

the loss of detailed information. 

   
(a)                        (b)                       (c)            

Fig. 2 Analysis of results 

3.4 Color correction 

 After the above processing series, the fused image may have a problem 

with color deviation. To further improve the image quality, we introduce a color 

correction method based on SLVC [19] to solve the above problem. The method 

can also enhance the saturation of the dehazed image so that the colors of the 

processed image are brighter. The method involves directly processing pixels, 

removing biased colors by linearly stretching and transforming the pixels, and 

adjusting the contrast and saturation of the image by constructing competing 

relationships between data terms and regular terms. The literature [19] provides 

more details. SLVC as the last part of our algorithmic model has more robustness. 

Fig. 3 shows the final results of processing our algorithm. (a) is the input hazy 

image and (b) is the dehazed image. The processed image has higher contrast, 

saturation, and sharpness, presenting a more natural visual effect. 

   
(a)      (b) 

Fig. 3 Results of our dehazing method 
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4. Experimental results and analysis 

To validate the performance of our method, we selected both classical and 

novel dehazing methods for subjective and objective comparisons. Including one 

image enhancement-based method CEEF (Contrast enhancement and exposure 

fusion)(2022)[4], two image restoration-based methods IDE(Image dehazing and 

exposure)(2021)[7] and SLP(Saturation line prior)(2023)[8] and three deep 

learning based methods Dehaze-Net(An end-to-end system for single image haze 

removal)(2016)[9], MSBDN(Multi-scale boosted dehazing network)(2020)[10] 

and MADN(Meta-attention dehazing networks) (2022)[12]. We conducted 

comparisons using both subjective effects and objective evaluations to 

demonstrate the superiority of our method. Furthermore, ablation experiments 

were utilized to verify the effectiveness of each component within our method. 

4.1 Datasets 

Four datasets were used for the experimental data: 32 real scenes provided 

in the literature [4], 500 images of SOTS (outdoor) and 500 images of SOTS 

(indoor) provided in the public dataset RESIDE, and 1000 images randomly 

selected from the RTTS in RESIDE dataset, totalling 2032 images. The image 

format is PNG and the image sizes were experimented according to the sizes 

provided in the dataset without any changes. 

4.2 Evaluation metrics 

 To objectively analyze the method performance, we choose the 

information entropy(IE) [20], the average gradient(AG) [21], the haze 

concentration index FADE [22], the peak signal-to-noise ratio(PSNR) [23] and 

the structural similarity index measurement system(SSIM) [24] for evaluating 

different dehazing methods. 

4.3 Subjective evaluation 

 Figures 4 to 7 show the test results of different dehazing methods on the 

literature [4] test set, RTTS, SOTS (Indoor), and SOTS (Outdoor), respectively. 

 
Fig. 4 Subjective comparison chart of literature [4] test set 
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Fig. 5 Subjective comparison chart of RTTS 

 
Fig. 6 Subjective comparison chart of SOTS(Indoor) 

 
Fig. 7 Subjective comparison chart of SOTS(Outdoor) 

 From Fig. 4, it can be seen that our method can well restore the clarity of 

objects such as distant bushes and shelves without color distortion. As seen in Fig. 

5, our method handles the detailed parts of the edges of the tree branches and 

street lamps very clearly, and the image's overall color is bright. As seen from Fig. 

6, our method handles the bouquets with bright colors and the objects on the table 

with precise details. From Fig. 7, our method can recover the details of the door 

and window parts of the image well, and the colors of the sky region are natural 

and bright after processing. In summary, the visual effect of the processed image 

of our proposed method is significantly better than other methods. 

4.4 Subjective evaluation 

 The data in Table 1 are the average of all image test results for each test 

set. The data in Table 2 are the average of all image test results within the SOTS 

(Outdoor) and SOTS (Indoor) datasets. Arrows pointing up signify higher and 
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better indicators, with optimal indicators denoted by bold fonts; in Table 1, sub-

optimal indicators are underlined. 

In Table 1, our proposed method achieves optimal average gradient scores 

across all test sets. Optimal values of information entropy were achieved on the 

RTTS, SOTS (Outdoor) and SOTS (Indoor) test sets and optimal FADE scores on 

SOTS (Outdoor) and SOTS (Indoor), with suboptimal FADE scores on RTTS and 

literature [4].  
 Table 1 

Comparison of different methods 

Datasets Metrics IDE CEEF SLP DehazeNet MSBDN MADN Ours 

Literature 

[4] 

IE↑ 7.675 6.950 7.311 7.311 7.444 7.191 7.611 

AG↑ 13.868 14.053 11.812 7.328 9.541 6.941 19.237 

FADE↓ 0.409 0.208 0.296 0.487 0.534 0.545 0.215 

RTTS 

IE↑ 7.637 7.054 7.491 7.188 7.419 7.223 7.703 

AG↑ 11.313 11.742 8.829 6.849 6.757 5.854 17.209 

FADE↓ 0.631 0.277 0.520 0.604 0.826 0.906 0.300 

SOTS 

(Outdoor) 

IE↑ 7.632 7.319 7.506 7.401 7.520 7.282 7.784 

AG↑ 11.985 12.562 9.123 7.304 8.464 6.987 18.992 

FADE↓ 0.570 0.282 0.508 0.622 0.726 0.685 0.220 

SOTS 

(Indoor) 

IE↑ 7.553 7.141 7.483 7.426 7.484 7.439 7.699 

AG↑ 5.962 7.205 5.875 4.533 5.304 4.512 10.228 

FADE↓ 0.646 0.313 0.479 0.677 0.499 0.659 0.283 

Table 2 

Comparison of PSNR and SSIM 

Methods 
SOTS(Outdoor) SOTS(Indoor) 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ 

IDE 15.4847 0.8073 11.7191 0.4744 

CEEF 16.3699 0.7997 12.5925 0.4718 

SLP 19.5250 0.8856 13.0163 0.5440 

DehazeNet 17.1243 0.5660 12.8600 0.5195 

MSBDN 18.4670 0.6071 13.2052 0.5555 

MADN 15.7855 0.5668 13.3376 0.5300 

Ours 15.5015 0.7187 11.5005 0.3921 

Table 2 shows that our method is not dominant in terms of PSNR and 

SSIM metrics. The reason for this is that our method tends to generate brighter 

and clearer dehazed images and to solve the problem of darker images after 

dehazing processing and the problem of incomplete dehazing, which is very 

different from the ground truth image. Moreover, the PSNR and SSIM metrics 

reflect part of the image reconstruction quality but may not fully represent the 

subjective perception of the human eye or the performance in real application 
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scenarios. In summary, our method performs better in terms of brightness, clarity 

and dehazing effect. 

4.5 Ablation study 

 Eight ablation experiments were conducted on the SOTS (Outdoor) test set 

to validate each combination's effectiveness in our algorithmic framework.  

1) BEOM represents the framework of our method. 

2) w/o IM represents interchanging the positions of multi-weight fusion 

and image fusion in BEOM. 

3) w/o II represents replacing multi-weight fusion with image fusion in 

BEOM. 

4) w/o MM represents replacing image fusion with multi-weight fusion in 

BEOM. 

5) w/o AHE represents replacing CP-CLAHE in BEOM with CP-AHE. 

6) w/o DS represents removing SLVC in BEOM. 

7) w/o DOM represents removing the model optimization branch in 

BEOM. 

8) w/o DB represents removing adaptive brightness enhancement in 

BEOM. 

9) w/o DC represents removing CP-CLAHE in BEOM. 

Table 3 gives the objective evaluation results of the test set, with the 

optimal metrics in bold font. From this, it can be seen that our algorithmic 

framework achieved the highest IE, AG and FADE scores. 
Table 3 

Results of ablation experiments 

Methods IE↑ AG↑ FADE↓ 

w/o IM 7.687 15.603 0.287 

w/o II 7.648 18.147 0.244 

w/o MM 7.710 15.334 0.294 

w/o AHE 7.693 17.513 0.276 
w/o DS 7.696 18.618 0.270 

w/o DOM 7.773 18.777 0.283 

w/o DB 7.617 18.562 0.245 
w/o DC 7.686 16.463 0.314 

BEOM 7.784 18.992 0.220 

4.6 Runtime analysis 

 To analyze the running time of different methods, we test three different 

sizes of haze images, running MATLAB R2020a on Intel i5-8265U CPU and 

PyTorch based on NVIDIA RTX3090 on Ubuntu 20.04 system. The results of the 

experiments are shown in Table 4, and the results show that our proposed 

approach has poor real-time performance. However, there is little difference in 
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time between our method and the other compared methods when dealing with 

small-sized images. Also, based on the above subjective and objective 

performance, our method performs better regarding image quality improvement. 
Table 4 

Running time of different methods (unit: s) 

Methods 
Image size 

Platform 
256256 640480 1024768 

IDE 0.674 2.198 6.056 Matlab(CPU) 

CEEF 0.667 1.131 2.551 Matlab(CPU) 

SLP 0.831 3.161 7.594 Matlab(CPU) 

DehazeNet 0.489 2.005 4.863 Matlab(CPU)&mex 

MSBDN 0.127 0.421 1.413 PyTorch(GPU) 

MADN 1.314 3.624 8.672 PyTorch(GPU) 

Ours 1.614 4.473 10.578 Matlab(CPU) 

4.7 Applications 

To further evaluate the performance of our method on other low-visibility 

tasks, we randomly selected four images from the LOL low-light dataset [25] and 

the RSID remote sensing dataset [26] for processing. The results are shown in Fig. 

8 and 9. 

 
Fig. 8 Low-Light images enhancement 

 
Fig. 9 Remote sensing images dehazing 
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As can be seen from the Fig. 8 and 9, without any parameter fine-tuning, 

our method achieves good processing effects on both low-light and remote 

sensing images, demonstrating broad application value in real-life scenarios. 

5. Conclusions 

Aiming at the existing dehazing model, which has the problems of poor 

dehazing effect, dark brightness, and color distortion after processing, a dehazing 

method based on model optimization and luminance augmentation is proposed. 

By comparing with the mainstream and the latest methods, the experimental 

results show that our method is effective in dehazing. Although our method is 

inferior to other comparative methods in terms of runtime and also suffers from 

the issue of unnatural appearance in the processed images, it demonstrates 

significant advantages in dehazing performance. The enhanced image clarity and 

color richness provide a advantage in practical applications, such as low-light 

enhancement and remote sensing. In these scenarios, the quality of the dehazed 

images is crucial for accurate object detection, scene understanding, and decision-

making. 

In future work, we plan to further optimize our method to enhance its 

operational efficiency and improve the naturalness of the processed images 

without compromising the dehazing performance. 
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