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ON THE INTRINSIC TIME SCALE IN THE BOUC-WEN
MODEL

Marius Florinel IONESCU?, Tudor SIRETEANU?, Veturia CHIROIU®

The intrinsic time, other than the clock time which governs the behavior of
the materials, was introduced by Valanis [13] in order to develop the endochronic,
which is a theory of viscoplasticity without a yield surface. Erlicher and Point [12]
have proved the thermodynamic admissibility of the Bouc—Wen model, by adopting
the endochronic theory. This paper discusses the behavior of a SDOF oscillator for
different measures for the intrinsic time.
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1. Introduction

The inelastic deformation processes under non-proportional cyclic loading
of materials is described by the endochronic theory of plasticity, which belongs to
the class of theories of functional materials with internal variables [1-5]. Based on
the endochronic theory, it is possible to describe a number of peculiar features of
the elastoplastic deformation of materials under loading and unloading, such as
linear and nonlinear hardening, retardation of the vector and scalar properties of
materials when a break in the strain path takes place, hysteresis, and stabilization
of hysteresis under cyclic loading, effects of cyclic creep, etc. [6].

Also, a wide variety of hysteretic features including inelastic load-
displacement law without distinct yield point, progressive loss of lateral stiffness
in each loading cycle (stiffness degradation), degradation of strength when
cyclically load is done to the same displacement level (strength degradation) and
pinching due to slipping during force reversal, are possible to be describe with the
endochronic theory [7, 8]. The constitutive equations of the endochronic theory
permit to describe the non-proportional repeated variable deformation of initially
isotropic materials [9-11]. Section 3 describes the behavior of a SDOF oscillator
for different measures of the intrinsic time. The role of these in the behavior of the
SDOF oscillator is discussed. The last Section is devoted to Conclusions

Starting from the relationship between the Bouc model and the
endochronic theory, Erlicher and Point [12] have proved the thermodynamic
admissibility of the Bouc—Wen model, by adopting an intrinsic time measure.
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In this paper, we discuss the role of the intrinsic time scale in the dynamic
response of a SDOF oscillator. Two different measures for the intrinsic times are
chosen.

The paper is organized as follows: Section 2 is devoted to the relationship
between the endochronic theory and the Bouc-Wen hysteresis model, established
in the spirit of Erlicher and Point [12]. By adopting the intrinsic time measures,
the thermodynamic admissibility of the Bouc—Wen model is proved

2. The intrinsic time scale

The chapter titles will be numbered, if necessary, and will be written in
small characters (12 pts), bold.

The presentation will be clear and concise and the symbols used therein
will be specified in a symbol list (if necessary). In the paper it will be used the
measurement units International System. In the paper, there will be no apparatus
or installation descriptions. The intrinsic time was introduced by Valanis [13] as a
non-decreasing function which depends on the strain tensor ¢ or the stress tensor
o . Erlicher and Point [12] defined it as

d9 = (de:de)"? (@)
where the double dot product of two tensors is noted by “.” , i.e. A:B=35,5, A;B,,
with 8, =1 for i=j and §;=0 for i=j.For p=1I, the relation (1) is reduced to
d9 = de]|.

The second principle for small isothermal transformations states that the
intrinsic mechanical dissipation @, has to be non-negative

O, =c:£-¥ >0, (2)
where ¥ is the Helmoltz free energy density. If ¥ depends on a single internal
variable tensor y , the state equation is given by

oY

°" o @)

The thermodynamic force t associated to the internal variable y is
expressed as

ov
=—. 4
=3 4)
In virtue of (3) and (4), ®, becomes
oY dy .
O, =——L=-1:%920, 5
1 oy, dt T.X ®)

Now, we consider the Helmholtz free energy density written as
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W =C,l2tr(e)* +C,/2¢, &, + Bytr(e)tr(y) + B,g, 1%y + (6)
+D, /2 tr(x)* + D, /2 34 g
where g, =¢-1/3tr(¢)l and y, =y -1/3tr(yx)! are the deviatoric part of the strain
tensor and of the internal variable tensor y, 1 is the unit tensor, and the constants
verify the conditions C,,C,>0, D,,D,>0and B?<C,D, from thermodynamic
considerations [1]. Using (6), the state equation (3) can be written as

o =1/3tr(o)l + o, = (C,tr(e) + B,tr(x))l +C,e, + B,y - (7
The thermodynamic force (4) becomes
t=1/3tr(t)l + 14 = (B,tr(e) + D,tr(x))! + B,e, + Dy, - (8)

In (8), tr(r)=3B,tr(¢)is the elastic hydrostatic response. The second
principle inequality (5) is rewritten

>0, 9)

and it is satisfied if there exist a positive convex dissipation potential @[Z—?J S0

that
dd ds
— >0, ¢(0)=0 and —>0. 10
o )0, 00 dt (10)
In addition, it is easy to show that
dg
t —||=0, 11
r(q’( dt D )
and
dd Ty
Z|=—=%  b,>0. 12
oG] 0> 12)
From (8) we have
T, =Byey + Dyxy - (13)
The solution of (10) for 7,(0)=0, is
t D ) oe, (9) .,
T, = leexp[—b—;(S—S ]ﬁdS . (14)

From (6) we obtain

(15)

2 2 29 r
o, =|C, =B g, + Ber [, - B g, +§jexp(—&(9—9')agd—(?’)d9'
D, D, D, D, b, 09
2 2
with C2—§20and §>O.
DZ DZ
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2 2
Denoting Aozcz—ﬁ, A:E, B:& and p(9) = Aexp(-p9), Eq.(15)

D2 D2 b2

becomes
6 9
= Ay + oty = Ay + ju(s 9) %Dy (16)

If we are denoting

j (9-9) % &ygr (17)

09’
(16) and (17) become
o, =Ag, +2, dz=Adg, —Bzd3 . (18)
We recognize in (18) the hysteresis model proposed by Bouc [14] in the
differential form
w(t) = Au(t) +z(t), dz=Adu-pzd3, (19)
with u(t) and w(t) are the input and output time-dependent functions, and A, >0.
The function z(t) represents the hysteretic auxiliary variable which describes the
time history of the input variable u.
The function p(9-9')>0is continuous, bounded and positive and non-

decreasing on its interval. This function is known in the literature as the hereditary
kernel. In particular, the hereditary kernel has an exponential form
u(9) = Aexp(-p3), AB>0. (20)
The time function 9 is positive and non-decreasing, and according to
Bouc, may represent the total variation of u

9(t) = j dr , (21)

or
d9 =du|, with 9(0)=0. (22)
More general formulation for (19), was proposed in the literature. For
example, Bouc suggested the form

dz=Adu-Bz|du|-y|z|du, y<B. (23)
Wen [16] has proposed another model, with n>0
dz = Adu — (Bsign(zdu) +y) | z|" du . (24)

Baber and Wen [17] have advanced the stiffness and strength degradation
model
dz = Adu — v(Bsign(zdu) +v)| z|" du,, (25)
where v is a positive and increasing function of the energy dissipated by the
structure.
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All parameters that appear in (23)-(25) for the hysteretic restoring force
are controlling the scale and general shape of the hysteretic loop, while n controls
the smoothness of the loop. The B and y are describing the softening or
hardening, i.e. if B+v is positive the system exhibits softening, while if B+y is
negative, the system exhibits hardening, respectively. If B decreases, the width of
the loop becomes large because the dissipation energy due to the hysteresis
becomes larger.

These models were proposed without a thermodynamical analysis. By
adopting the intrinsic time measures from the endochronic theory of plasticity, the
thermodynamic admissibility of the Bouc—Wen model is proved. The conditions
A>0 and -B<y<p are necessary and sufficient for the thermodynamic
admissibility of the Bouc—Wen model [18]- [21].

In the next Section we try to understand the role of different measures for
the intrinsic time in a SDOF oscillator.

3. A SDOF oscillator

Let us consider a SDOF oscillator described by a set of differential
equations with hysteresis
X+ okx+(1-oa)kz = F(t), (26)
z2=Ax—(Bsign(zx)+7y)|z|" 9, (27)
where x is displacement, k is the linear stiffness coefficient and F(t)is the
external force. The hysteretic restoring force z is of the form of (24). The non-
damping restoring force is composed by the linear restoring force akz, and the
hysteretic restoring force (1-a)kz, where O<a<1 is the rigidity ratio
representing the relative participations of the linear and nonlinear terms. The
quantity z is known as the hysteretic restoring force.
For the time function 9, two positive and non-decreasing functions are
chosen:
1. total variation of x
d9 =|dx |, with 9(0)=0. (28)
2. total variation of a variable y introduced to describe an uncertain
system characterized by the parameter ¢
d9=|dy|, with 8(0)=0, y=cx, ce[a, b], y(0)=0, a,beR. (29)
The hysteretic operator (27) possesses the symmetrical characteristics. For
non-symmetrical characteristics, the Bouc-Wen model can be modified by
introducing an additional term &xsgn 8 in (27) [22]
7= Ax—(Bsign(zx)+y)|z|" 9+6xsgn 9, (30)
where & is a non-symmetrical factor.
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Example 1.

The model (26)-(28) can be generalized for a continuum system such a
cable, in the problem of vibrating cable in the Stockbridge damper [23, 24]. The
deformation of the cable is due to the bending moment, and the shape of the cable
during deformation depends on the frequency and amplitude of the clamp motion
which is not known a priori.

For this problem, a local model with the position dependent properties can
be developed starting to (26) and (27). The position dependent property is
supposed to be only the hysteretic restoring momentH (s,t).

The flexural rigidity EI and the linear spring k are considered to be
constant. The variable x from (26) is replaced by the local curvature w’(s,t) , with
w(s,t) the displacement. The intrinsic time function isd3=dw"|. The prime
denotes the derivative with respect tos, and the dot denotes the time derivative.

So, the model (26)-(28) is rewritten under the form

EN"(s,t) + H(s,t) + sF(t) =0, (31)
H (s,t) = k( AW’ = (Bsign(HW") +y) | H " w"). (32)

Given F(t) = f,0’cos(wt), with f, and o the amplitude and frequency of
the external force, and initial conditions for H(s,t) and w’(s,t), W'(s,t),
w(s,t) can be numerically determined.

The hysteretic loops force-displacement for 12Hz and 13 Hz respectively,
are plotted in Fig. 1 and Fig. 2, respectively, for k =30N/m and EI =2.5Nm?. The
natural frequency is 15Hz. These loops are similar to the experimental results
reported in [23].

For the non-symmetrical model (31) we have

H (s,t) =k( AW’ — (Bsign(HW") +y) | H ' w")+ 8W"sgnw".  (33)
The non-symmetrical version of the hysteretic loop for 12Hz is presented in
Fig. 3 for §=10".
The plane phase orbits (w,w) for softening hysteresis and hardening hysteresis
respectively, are shown in Fig. 4.



On the intrinsic time scale in the Bouc-Wen model

Z 8t
w
o
=
fp= 0.19 mm
fD=0.10mm
1 1 1 1 1 1 1
2175 125 ST 75 125 175
displacement [lU-ffn]
-2
4l
ran
gt

Fig. 1. Hysteresis loop for 12 Hz (A=0.75, B = —0.25, y=1).
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Fig.2. Hysteresis loop for 13Hz (A=0.9, $=0.1, y=1).
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Fig. 3. Hysteresis loop for 12 Hz (A=0.75, p= -0.25, y=1, §=107").
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Fig. 4. The phase orbits for softening (A=0.75, B= -0.25, y=1, @ =75.4), and hardening
(A=0.75 p=-025 y=1, ©=754) (A=09, B=-01, y=1, ©=816).

Example 2.

The model (26), (27) and (29) can be applied to systems with unknown
time-varying behavior. Such systems have nonlinear uncertainties with no prior
knowledge of their values or bounds, and therefore the rapidly varying
disturbances have to be analyzed in order to obtain the stabilization controller of
the chaotic behavior via different logic systems. Usually, stable adaptive
controllers are obtained by combining the back stepping and small-gain
approaches. This method was used in [25] to control the chaotic motion of the
double pendulum without knowledge of the parameters. Once the desired unstable
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trajectories to be stabilized are chosen, the control will be initialized to require the
pendulum to move towards the equilibrium position.

Let us consider the equations (26) and (27) with F(t) = f,»’ cos(wt), and
the equation (29) which describes the behavior of the variable y which describes
an uncertain system

d9 =|dy|, with 8(0)=0, y=cx, y(0)=0. (34)
with a real-valued parameter ¢e[l, 3]. The time variation of the parameter ¢is

plotted in Fig. 5.
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Fig. 5. The time Vvariation of the parameter ¢ .

The system “does not agrees” the abrupt change of cat t=20s and

t € (30s,40s) , respectively, and reacts as seen in Fig. 6.
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Fig. 6. The time variation of the variable x(t).
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Fig. 7. Hysteretic loop for 12 Hz (A=0.75, p= —-0.25,y=1) and¢ €[4, 3].
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Fig. 8. Hysteresis loop for 12 Hz (A=0.75, = -0.25, y=1) (up f, =0.19 mm and down
f, =0.28 mm).
The hysteretic loops force-displacement for 12Hz and A=0.75, B=-0.25,
y=1, are plotted in Fig. 7 for f,=0.10, 0.15 and 0.28 mm, respectively, and
ce[1,3]. The allure of these curves is practically chaotic, the restoring force
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having an irregular evolution. For fixed values for ¢, i.e. ¢c=1 and f,= 0.28 mm,
and ¢=2, respectively, the hysteretic loops force-displacement are plotted in Fig.
8, for f,=0.19, 12Hz and A=0.75, p=-0.25, y=1.

Finally, other different time functions 3 may be chosen. An interesting case
may be a system with delay, where the total variation of a variable y is expressed

as
d9 = dy|, with 8(0)=3,, y=k(r—x(t-h)), y(0)=Yy,. (35)

4, Conclusions

Due to nature of the hysteretic phenomenon, the dynamical systems may
display complex behavior and energy dissipation properties with effect to their
reliability and safety. The intrinsic time, other than the clock time, was introduced
by Valanis in the frame of the theory of viscoplasticity without a yield surface in
order, and used next by Erlicher and Point to prove the thermodynamic
admissibility of the Bouc—Wen model.

This paper discusses the behavior of a SDOF oscillator for two measures
for the intrinsic time. In the first example, a generalization for continuum cable in
the Stockbridge damper is developed. The results are referred to the behavior of
the non-symmetrical hysteretic loops, the softening and hardening aspects,
respectively. The second example analyses the time-varying behavior with
uncertainties. Here, the time varying disturbances tends to unstable motion and
chaotic behavior. The intrinsic time method can be applied to a wide variety of
the hysteretic systems in order to extend the understanding of the complex
behavior of dynamical systems beyond the classical approaches. New aspects of
the inelastic load-displacement law without distinct yield point, stiffness
degradation, strength degradation and pinching are developed.
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