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NEHARI TYPE GROUND STATE SOLUTION FOR
SCHRODINGER-BOPP-PODOLSKY SYSTEM

Lin Li! and Xianhua Tang?

This paper is dedicated to study the following Schridinger-Bopp-
Podolsky system

Au+{+¢u—f(x,u), in R3,

—A¢+ A?¢p = du?, in R3.
We use the non-Nehari manifold approach to establish the existence of the
Nehari type ground state solutions by introducing the conditions
Lm0 (fot f(x,s)ds) /|t]? = oo uniformly in x € R® and

2
[f(f::) — fgf;)t;)} sign(1 —t) + 90’1(];_;2’ >0, VzeR3t>0,7#0

with constant 6y € (0,1).
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1. Introduction

In [1], d’Avenia and Siciliano have attracted the attention on a new
kind of elliptic system which, to the best of our knowledge, was never been
considered before in the mathematical literature, although the problem was
known among the physicists. It is named Schrodinger-Bopp-Podolsky system.
Such system appears when we couple a Schrodinger field ¢ = (¢, ) with
its electromagnetic field in the Bopp-Podolsky electromagnetic theory, and, in
particular, in the electrostatic case for standing waves (¢, x) = e“*u(z). The
Bopp-Podolsky theory, developed by Bopp [2], and independently by Podol-
sky [3], is a second order gauge theory for the electromagnetic field. As the
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Mie theory [4] and its generalizations given by Born and Infeld [5, 6], it was
introduced to solve the so called infinity problem that appears in the classical
Maxwell theory.

Let us consider the nonlinear Schrédinger Lagrangian density

. R, 2
Lse = iM0W = 5 VOP + Wl

where ¢ : Rx R3 — C, h,m,p > 0 and let (¢, A) be the gauge potential of the
electromagnetic field (E, H), namely ¢ : R® — R and A : R® — R? satisfy

E:—Vqﬁ—l&tA, H=VxA.
c

The coupling of the field ¢ with the electromagnetic field (E, H) through the
minimal coupling rule. If we consider standing waves (¢, z) = " u(z) in
the purely electrostatic case (¢ = ¢(z) and A = 0) and normalize the constant
h and m, we will face the following problem (see [1])
—Au + wu + ¢?¢u = |u|P"?u, in R3, .
—A¢ + a®?A%p = 47u?, in R3. (1)

We point out that few papers are known to treat this type of system.

In the recent paper [1], d’Avenia and Siciliano deal with problem (1) and
studied the existence, nonexistence and the behavior of the solution as a — 0.
Actually, they proved the following results. If a,w > 0 and p € (2,6), then,
there exists ¢, > 0 such that, for all ¢ € (—q.,q.) \{0}, problem (1) admits
a nontrivial solution. If a,w > 0 and p € (3,6), then, for all ¢ # 0 problem
(1) admits a nontrivial solution. Siciliano and Silva in [7] considered system
(1) where p € (2,3],w > 0,a > 0 are fixed. They proved, by means of the
fibering approach, that the system has no solutions at all for large values of ¢,
and has two radial solutions for small g. They give also qualitative properties
about the energy level of the solutions and a variational characterization of
these extremal values of q.

As we see, from a variational point of view, system (1) can be obtained by
means of a suitable “interaction” between the Schrodinger Lagrangian density
and the Lagrangian density of the electromagnetic field according to the Bopp-
Podolsky theory, and not the Maxwell theory. In the paper [8] of d’Avenia and
Pisani, the Born-Infeld Lagrangian density interacting with the Klein-Gordon
equation is considered. They found infinitely many radial solutions in the
subcritical case via the symmetric mountain pass theorem. We cite this paper
because the use of the Born-Infeld Lagrangian density for the electromagnetic
field (in place of the classical Maxwell Lagrangian density) gives rise to the
equation for the electrostatic field. And this type of system is studied for a
couple of years, see [9, 10, 11, 12, 13, 14, 15]. This can be sees also as a
consequence of the fact that a different (actually a better) Lagrangian of the
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electromagnetic field is considered in such a way that the classical Maxwell
Lagrangian is a first approximation of this new one.

Coming back to the present paper, our aim is to study the Nehari type
ground state solution for the Schrodinger-Bopp-Podolsky system with the non-
linear term has asymptotically cubic or super-cubic growth. For simplicity, we
consider the parameters w, ¢ and a all equals 1. More specifically, we concern
the following system

_ : 3
{ Au+u+ ¢ou = f(x,u), ?n R, (557)
—A¢ + A% = 4mu?, in R3.
As described in Section 2, to solve problem (8§B?P) is equivalent to solve

1— e_‘xl/a

—Au+u+ < *uz) u= f(z,u) in R (2)

whose solutions correspond to critical points of the energy functional defined
in H'(R?) by

1

1 1 — e lzl/a
o) =5 [ (VaP sty [ (P et wtdo - [ P,
2 Jgs 4 Jgs |ZE| R3
(3)

]

where F(z,u) = [} f(x,t)dt. Define
Ni={ue H(R®) : (®'(u),u) =0,u #0},

which is the Nehari manifold of ®. A solution is called a Nehari type ground
state solution if its energy is minimal among all nontrivial solutions in N, that
is, a solution uy € H'(R3) such that ® (ug) = infx ® > 0.
Now, the nonlinearity f : R?* x R — R satisfy the following basic assump-
tions:
(fo) f € C(R® x R,R), f(x,t) = o(|t|]) as t — 0, uniformly in x € R3, and
there exist constants Cy > 0 and k € (2,6) such that,

|flz, )| < Co (L4 [t"7"), V(x,t) e R® xR,

(f1) there exists 6y € (0,1) such that

f(i:;T) - fEfT;T) sign(1—1) +90|1(t;)t22| >0, VreRt>0,7#0, (4)

(f2) impyoo F(x,t)/|t|* = co uniformly in z € R®.

Since system (8B?P) is set on R?, it is well-known that the Sobolev em-
bedding H'(R3) — L*(R3) (2 < s < 6) is not compact, and then it is usu-
ally difficult to prove that a minimizing sequence or a Palais-Smale sequence
is strongly convergent if we seek solutions of problem (8BP) by variational
methods. To overcome this difficulty we restrict ourselves to radial functions
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u = u(r), r = |x|. More precisely, we shall consider the problem on the space
of the radial functions

HYR?) :={u e H'(R®) : u=u(r), r = |z|}.
We recall (see [16]) that, for 2 < s < 6, H}(R?) is compactly embedded into
L3 (R3).
The main result of this paper is the following.

Theorem 1.1. Assume that conditions (fy)-(f2) hold. Then problem (8BP)
has a radial Nehari type ground solution.

Remark 1.1. Our paper is motivated by the work [17). We will use the non-
Nehari manifold approach developed by Tang [18, 19]. Unlike the Nehari man-
ifold method, our approach lies on finding a minimizing Cerami sequence for
® outside N by using the diagonal method, see Lemma 3.4.

Example 1.1. Now, we give functions which satisfies all the conditions (fo)—
(f2). Let f(x,7) = |77 + |7|7/2 for all (x,7) € R® X R. It is easy to see that
f satisfies (fo) and (f2). Next, we show that f satisfies (f1). By elementary
computations, one has

f(va) f(l’,tT) . |1_t2|
— 1—1¢t)+6
57 K st -0 0l
11—t 11— %
= |1 —t]|r| - 5
| ||T| 2t|T| 0 (t’T)Q ( )
1=t ] 30 1
= t*— =|7lt +605(1 +¢
<t7)2 |T’ 2’7—‘ + 0( + ) )
forallz € R3, t >0, 7 # 0. Note that
T2 t2 = S|T|t + 6o (1 + 1) > (6o — 3) ¢, 7| < 1,Vt >0,
P2 = Lrft 4+ 0p(1+ 1) > (t7] = D)+ 60— &, |7 > 1,9t >0,

then (5) implies that f satisfies (4) with 6y = 1/2. The another function is
flx,7) = 73— |7]327 + |7|7 for all (v,7) € R® x R. Clearly, f satisfies (fo)
and (fy). Next, we show that f satisfies (f1). It is easy to check that

f(.T,T) f(l',tT) . |1_t2|
_ 1 —
[ = E sign( t)+ 6o ok
I N e N
= - —+ 90
|t7|1/2 |t7| (t1)2
|1 — tl/Q‘ 3/2 1/2 1/2
= e [[e7]%2 — (L4 ¢"72) [tr| 4+ 60 (1 + /%) (1 +1)]

-7

i) h(t,|7]), Vx e R*t>0,7#0.
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By elementary computations, for any t > 0, we have

4(1+1%)
h(t > min h(t = h(t ith 79 = ——— 24—
(t17]) = min h(t, 7)) = (t,70)  with 7 = ——
and so

() 2 — oo (14 242)° 16, (L+22) (1 +1)

4 8 4
~re (-5 ) 1=t (- 7))

2760, — 4 4 2 16
— (1) T2 1—— .
(L7 =% 270, —4) (2765 — 4)*

Now, f satisfies (4) with 6y = 1/3.

2. The variational framework

Now, we establish few basic standard notations. For p € [1,+o00], LP(R?)
is the usual Lebesgue space with norm ||u||,. We denote with H'(R?) the usual
Sobolev space endowed with scalar product and norm given by

(u,v) == [ Vu-Vudr +/ uvdz, lw|| := (u,w)2.

R3 R3
For p > 2, DYP(R3) is the Banach space defined as the completion of the test

functions C°(R?) with respect to the LP—norm of the gradient. We define X
the completion of C°(R3) with respect to the norm

9llx == [IVell2 + [Ag]l2.

As a final convention, dz denotes the Lebesgue measure in integrals, it
always omitted in the following paper, otherwise we will write explicitly the
measure.

The natural functional spaces in which find the solutions of (8BP) are:

u€ H'(R?), ¢cX.
By a (weak) solution of (§B®P), we mean a pair (u, ¢) € H*(R?) x X such that

Vv e HY(R?) : /R?)VU-VU—F/RSUU—F/RP)QSUUZ Rgf(.r,u)v, (6)

VEE X /R3V¢-V£—|—/R3A¢A§:47T/R3¢u2. (7)

As we say before, we will consider this problem on the space of the radial
functions H!(R?), and by Palais principle of symmetric criticality (see [20, p.
18]), if u is a critical point of ® restricted to H}(R?) then u is a critical point
of ®. So, we will use the space H;(R?) in the following manuscript. We have
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now a first variational principle; indeed, it is easy to see that the critical points
of the functional

1 1 1 1
du.0) = sl +5 [ o= [ Plaw-go [ Vol - [ 1adP @)

on H!(R3) x X are exactly the weak solutions of (§BP), according to (6) and
(7). However, since this functional g is strongly indefinite, we adopt a reduction
procedure which is successfully used with the “classical” Schrodinger-Maxwell
system.

Let u € H!(R?) be fixed, there exists a unique element in X, that we
denote with ¢,, such that

~A¢, + A*¢, = 4mu®  in R®. 9)
Furthermore, the unique solution in X of the second equation in (8BP) is

1 — el
by =

*u”.
]

Actually, when we consider the operator —A + A% we have that X (z — xy),

with K(z) := l_fz_"x‘, is the fundamental solution of the equation

—A¢ + A% = 4dr6,,,

where d,, is the delta function (see [1, Lemma 3.3]). For every fixed u €
H' (R3), the solutions of second equation of (§BP) are critical points of the

functional ) )
Bo) = [ 1VeF+5 [ 1807~ [ (10)

defined on X. This functional is coercive; indeed, by the continuous embedding
of X in L> (R3) (see [1, Lemma 3.1]),

1 1
E(9) = SIIVelz + S 14615 — c[[u?[|, IVell2-

Furthermore, E is weakly lower semicontinuous since each term in (10) is
continuous and convex. Therefore, £ admits a global minimum. The solution
is unique because the operator A = —A + A? 4 47u? is strictly monotone.
Now, for ¢, the following useful properties hold.

Lemma 2.1 ([1]). For every u € H}(R?) we have:
(1) fOT‘ every y € RS: ¢u(~+y) - ¢u( + y);
(i) ¢u > 0;
(iii) for every s € (3,+o0], ¢, € L* (R?) N C° (R3);
(iv) Y16l < Clul?
(v) if up — win HY (R?), then ¢, — ¢, in X;
(Vi) ¢y is the unique minimizer of the functional

B(0) = 5|Vl + 5180l - [out, o X,
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We introduce the map
[:ue H (R — ¢, € X.

The next result is a consequence of the fact that J is C! and the implicit
function theorem. The arguments used to prove Lemma 2.2 and Lemma 2.3
are exactly the same as in [21] for the Schrédinger-Maxwell system, or [22] for
the Klein-Gordon-Maxwell system.

Lemma 2.2. Let Gr be the graph of the map T' : v € H}(R?) — ¢, € X.
Then

Gr = {(u,¢) € H'(R®) x X : 053 (u, ¢) = 0}.
Moreover
I € C*'(H!R?); X).

In view of this, the functional

Bu) = J(u,du) (11)
%”“”ui/ﬂ@ ¢>uu2—/R3F(w,U) (12)

is of class C' and in particular we have

(' (u),v) = 0ud(u, du)[v] + 0sd(u, du) 0 D' (u)[v]
= 0.d(u, d,)[v].

Then by (8) we have

(@' (u),v) = /}R3 Vu- Vo + /R3 w+ [ pyuv— [ f(z,u)v. (13)

R3 R3

Furthermore, we have the following result.

Lemma 2.3. The following statements are equivalent:

(i) the pair (u,¢) € HYR3) x X is a critical point of § (i.e. (u,®) is a
solution of (8BP)),

(i) w is a critical point of ® and ¢ = ¢,.
The functional ® of the unique variable u obtained by J is usually called
the reduced functional.
In view of Lemma 2.3, the critical points of ® satisfy the equation
—Au+u+ pu=f(r,u) in R (14)

which is the equation we are going to consider in the following.
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3. Proof of the main result

Lemma 3.1. Under assumptions (fo) and (f1), there results

. (@' (u),u) + (1= Qo)il =t

D(u) > B(tu) + - lul?, (1)

for allu € H}(R3), t > 0.

Proof. For any x € R3, t >0, 7 # 0, (f1) yields

1—t* 0
Tf(z,7) + F(z,t1) — F(x,7) + —

) , (1—-12)" 72
:/1 {f(fC;T)_fEx,;sgr) (1—s?)

(s7)?

(16)

+ 6o } s31r4ds
> 0.
Note that ! )
o) = gl + 5 [ owt = [ Flaw (17)
2 14 Jos s
and
@ (.0 =l + [ oad = [ s (15)
Thus, by (16)—(18), one has
1 —
2

125@%ﬁ+éw@MPF@w

1t (1—12)°
4 4

+ /RS {1 ;t4f(x,u)u+F(x,tu) — F(x,U)}
(1—6) (1 — ¢2)°
4

B(u) — D(tu) = [lul]? +

(P (u), u) + ]

> @) +

This shows that (15) holds. O
Corollary 3.1. Define
Ni={ue H (R : (®'(u),u) =0,u+#0},

which is the Nehari manifold of . Now, under assumptions (fo) and (f1), for
u €N,

|ull?, > 0.

O(u) = max O (tu). (19)

Unlike the super-cubic case, to show N = } in our situation, we have to
overcome the competing effect of the nonlocal term. To this end, we define a
set A as follows:

A= {u c H'(R%): /RS (W + dpuu® — f(z,uu] < o} :



Nehari type ground state solution for Schrodinger-Bopp-Podolsky system 147

Lemma 3.2. Under assumptions (fo)—(f2), A # 0 and N C A. Then, for any
u € A, there exists a unique t, > 0 such that t,u € N.

Proof. First, we show that A # (). By using the Hardy-Littlewood-Sobolev
inequality (see [23, p. 98]), we have the following inequality:

/RS o ‘u‘; )_—< ‘)‘d dy < 8\\;_%||U||6/5HU||6/5, wove L5 (R, (20)

From (20) and Sobolev embedding theorem, there exists C; > 0 such that

2 2
Sude g/ / CDUW) 44y < Gy lull
R3 R3 JR3 |x—y|

for all uw € H}(R?). For any fixed u € H!(R3) with u # 0, set u,(z) = u(tx)
for t > 0. One has

/ [(tut) + Ptur) (tuy)® — f (x, tuy) tug] da

1— e (t~ t
_tl/ 2dx+t1// C  2(2)u(y)dedy — /f o, tu)
R3 R3 JR3 |x—y|

2 t tu) tu
St_l/ uzdx+t_1/ / —(y)dxdy— FU ) dz
R3 R3 JR3 |x—y| R3 t3

t tu)tu
<t Y|ul)2 + Oyt ul* — /udx.

(21)
Note that for u(z) # 0, F (t7'z,tu) /|tul®> = 400 as t — +oo uniformly in
x € R3 by (f2), and (16) with ¢ = 0 yields

1 0
Zf(.%’,T)T—F(I’,T)—FZOTZEO, Ve e R3 7 eR, (22)

then we have
ta, tu)t
f(’tx—,Pu)u — 400 ast — +oo uniformly in x € R®. (23)
u
Thus, it follows from (21) and (23) that

/ [(tut)z + D(tuy) (tug)” — f (, tuy) tuy] — —oo  ast — +oo.
R3

Thus, taking v = Tur for T large, we have v € A. Hence A # (). From (13),
it is easy to see that N C A.

Next, we prove the last part of lemma. Let u € A be fixed and define a
function g(t) := (®'(tu),tu) on [0,00). By (f1), one has

fl@tr)tr > f(z,7)mt* — 6y (2 —1) (t7)?, VzeR*t>1,7€R, (24)
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which yields
/ [90(t7)2 + Gyr (t7)? — [l tr)tr] < t4/ [9072 + ¢, — flz,7)7], (25)
RS

R3
for all t > 1, 7 € R. From (13) and (25) it follows that

ot) §t2||u||2+t4/ [u2+¢uu2—f(x,u)u]—90t2/ 2 V=1 (26)
R3

R3
Using (fo), (13) and (26), it is easy to verify that g(0) =0, g(¢t) > 0 for t > 0
small and ¢(¢) < 0 for ¢ large due to u € A. Therefore, there exist a t,, > 0 so
that g(t,) = 0 and t,u € N. We claim that ¢, is unique for any v € A. In fact,
for any given u € A, let ¢, to > 0 such that g(¢;) = g(t2) = 0. Jointly with
(15), we have

th— t4 1—0o) (£ —13)?
O (tyu) > @ (tyu) + 14#11 29 (tyu) , tyu) + ( 0)47(54111 2) |2
(27)
1 —0p) (2 — t3)°
_ q)(t2u) + ( 0) (41 2) ||U||2
and
th— ¢ (1—6) (82 — 2)°
O (tyu) > @ (tyu) + 24#21 L@ (tyu) , tou) + 4#; L2
(28)
1—6p) (13 — 13)?
_ q)(tlu) + ( 0) (42 1) HU||2
(27) and (28) imply t; = to. Hence, t, > 0 is unique for any u € A. O
Lemma 3.3. Under assumptions (fo)—(f2), then
inf ®(u) :=c= inf max®(tu) > 0.
ueN ueN,u#0 t>0
Proof. Both Corollary 3.1 and Lemma 3.2 imply that
c= inf max®(tu).
ueAu#0 t>0
Using Lemma 3.1, it is easy to see that ¢ > 0. U

Lemma 3.4. Under assumptions (fo)—(f2), there exist a constant c,. € (0,
and a sequence {u,} C H}(R®) satisfying

® () = cor [0 ()| (1+ Jun]}) = 0 (29)

as n — 0o.
Proof. By (fy) and (11), we know that there exist dp > 0 and py > 0 such that
®(u) = po, |ull = do. (30)

In view of Lemmas 3.2 and 3.3, we may choose v, € N C A such that

1 1
C—E<(I>(vk)<c+E, ke N. (31)
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Using Lemma 3.1 and (30), it is easy to check that ®(tvy) > po for small
t > 0 and ®(tvg) < 0 for large t > 0 due to vy € A. Since ®(0) = 0,
then the mountain pass lemma in [24] implies that there exists a sequence
{trn} e C H} (R?) satisfying

D (upn) = ¢k, |9 (urn)| (L4 ||uknll) = 0, asn — 00, keN, (32)

where ¢, € [pg,suptzo ) (tvk)}. By virtue of Corollary 3.1, one has ® (vy) =
sup;sq @ (tvy). Hence, by (31) and (32), one has

1
O(unn) > € et )0 10 Gl (14 fual) 50, (33)

as n — 0o, k € N. Now, we can choose a sequence {n;} C N such that

1 1
O (usn) € [mict 1) 10 )| (U i) < o KEN (D

Let u, = ugp,, k € N. Then, going if necessary to a subsequence, we have
D (u,) — cx € [po, ], ||P (un)|l (14 |Junl]) = 0 as n — oco.
O

Lemma 3.5. Under assumptions (fo)—(f2), any sequence {u,} C H}(R?) sat-
isfying (29) is bounded in H!(R?).

Proof. By Lemma 3.1, one has

1 1-6
ot 0(1) =  (un) = 3 (@ (1) 1) = —2 .

This shows that sequence {u,} is bounded in H!(R?). O

Next, we prove the minimizer of the constrained problem is a critical
point of the functional ®, which plays a crucial role to get the solution for
problem (8BP).

Lemma 3.6. Under assumptions (fo)—(f2), if up € N and ®(ug) = ¢, then ug
s a critical point of ®.

Proof. Assume that ug € N, ®(ug) = c and ®’'(ug) # 0. Then there exist 6 > 0
and p > 0 such that

Ju = uol| < 36 = [|"(u)]| = o
In view of Lemma 3.1, one has

® (tun) < @ () — LI

(1—6p) (1—12)° (35)
=c— 0 1 uoll”>, V> 0.
For ¢ := min{S(l —tp) Hu0||2/647 1,@5/8}, S = B (uop,9), [20, Lemma 2.3]

vields a deformation n € C([0,1] x H}(R?), H}(R?)) such that
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i) n(l,u) =wif ®(u) < c—2¢e or P(u) > ¢+ 2¢;
) n (1,2 N B (ug,)) C 5

(it) @(1(1,4)) < B(u), Yu € H!(R),

(iv) n(1,u) is a homeomorphism of H!(R?).

By Corollary 3.1, ® (tug) < ® (ug) = ¢ for t > 0, then it follows from (ii) that
D (n(1tug)) <c—e, Vt>0,[t—1] </ uoll - (36)
On the other hand, by (iii) and (35), one has
® (1 (1, tuo)) < @ (tuo)

(1—60) (1—13)"
<c-— 1 ol (37)
. 2
<o 1=0)0 Vi >0, [t —1] > 6/ ||uoll -

< 1
Combining (36) with (37), we have

max O (1 (1,tug)) < c.
te[1/2,7/7/2]

We prove that 7 (1, tug) "N # () for some ¢ € [1/2,/7/2], contradicting to the
definition of c. Define

Wo(t) = (D (tug) , tug), Wi(t):= (D (n(1,tug)),n(1,tug)), Vt>0.

Since ug # 0, it follows from (iv) that n(1,tug) # 0 for all £ > 0. By Lemma
3.2 and the degree theory (see [25]), one can derive that

deg (Wo, (1/2,V/7/2),0) = 1.
It follows from (35) and (i) that
n (1, tug) = tug for t = 1/2 and t = V/7/2.

Thus, deg (U1, (1/2,v/7/2),0) = deg (o, (1/2,V7/2),0) = 1. Hence, ¥ (to) =
0 for some to € (1/2,v/7/2), that is 7(1,toug) € N, which is a contradic-
tion. U

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Lemma 3.4 implies the existence of a sequence {v,} C
H}(R?) satisfying (29), then

® (vn) = e € (0,¢, (19 (va)ll (1 + Jlvnll) — 0.

By Lemma 3.5, {v,,} is bounded in H}(R3). Passing to a subsequence, we have
v, — v in HY(R3), v, = v in L*(R3), 2 < s < 6 and v,(z) — v(z) a.e. on R3.
For every ¢ € Cg° (R?), we have

(@/(0),6) = lim (& (1,),6) =0
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Hence, ®'(v) = 0. This shows that v € N is a nontrivial solution of problem
(8BP) and ®(v) > c. It follows from (f;) and Fatou’s lemma that

c>c, = lim [cb (v,) — ! (@ (vn) ,vn>]

n—oo 4

. 1 —90 2 6)0 2
= lim { 1 l|vn ]| +Z”VWH2+/

n—oo R3

Hf (x,v) vy — F (2,0,) + %Uﬁ} dx}

1. .
> 7 liminf [(1 = 60) [Jon|* + 6o [ Ven ]

1
+ lim inf/ {Zf (x,vp) vy — F (z,0,) + @vi] dz
R3

n—oo 4

> }LHUHQ +/RB Bf(x,v)v - F(:U,v)] dz

1
= () { (@'(0).0) = 2(0).
This shows that ®(v) < ¢ and so ®(v) = ¢ = infx ® > 0. O
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