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RE-ORIENTATION OF ORTHOTROPIC AXES IN SHEET 
METAL USING A DEVELOPED METHOD BASED ON A 

SIMPLE SEMI GEOMETRICAL MODEL 

Mohammad ZEHSAZ1, Hadi MAHDIPOUR2, Alireza Ali MOHAMMADI3 

Experimental investigations demonstrate that when orthotropic sheet metal 
specimens are subjected to off-axis uniaxial tension, re-orientation of the axes 
occurs at moderate tensile plastic strain levels, while orthotropic symmetries are 
preserved. In this work this phenomenon has been investigated and simulated by 
using a developed method which is based on a simple semi geometrical model. In 
this model, a 3-elements mechanism with arbitrary angle represents two 
substructure textures of a cold rolled sheet metal. An explicit formulation has been 
obtained to determine the rotation angle of the orthotropic symmetry axes of the 
sheet metal under off-axis uniaxial tension. Also a simple method has been proposed 
to determine the direction of the orthotropic axes rotation under off-axis uniaxial 
tension. It is shown that the proposed formulations can be used to calculate the 
magnitude and direction of the rotation of the orthotropic axes under this type of 
loading and the results show good agreement with the experimental data. 

Keywords: Orthotropic axes, Semi geometrical method, Re-Orientation, Sheet 
metal 

1. Introduction 
 
The theory of anisotropic plasticity of materials is a well known topic with 

great technological significance. The first work on the orthotropic material with 
representation of a yield function was proposed by Hill in 1950 [1]. Anisotropy 
indicates the difference of a property or response, e.g. the yield stress or the 
stress-strain response of the material in different directions. Therefore it can be 
characterized by two fundamental characteristics, its intensity and its orientation 
[2]. Re-orientation of the orthotropic directions is a very significant feature that is 
related to the secondary anisotropic property and its investigation is the major 
concern of this paper. Although both the intensity and orientation of the 
orthotropic axis are important, but most of the previous research works address 
the former subject. For example, extensive experimental works have been carried 
out in understanding the yield and flow behavior of the cold rolled anisotropic 
materials [3-4]. Also, a number of researches have been reported based on 
theoretical methods in this subject [5-13]. In addition, anomalous behavior 
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observed in aluminum by Woodthrope and Pearce [14] motivated extensive 
studies on the yield functions [14-25]. 

There are also few works that address orientation of the ortotropic axis. 
For example, Kim observed that during the twisting of the cold drawn tubes, the 
orthotropic symmetry is maintained and the orthotropy axes are rotated in the 
twisting direction [26]. Boehler et al., Kim and Yin and Losilla et al. have shown 
that the cold rolled sheet metals under uniaxial off-axes tension loading remain 
approximately orthotropic but there is a large in-plane orientation of the 
orthotropic symmetric axes [27-29]. 

Bunge and Nielsen have used both experimental techniques and ODF 
measurement approaches to obtain the magnitude of the texture rotation of the 
orthotropic Aluminum cold rolled sheet specimen subjected to off-axis stretching 
[30].  

Tugcu and Neale studied the orthotropic axes rotation using the orthogonal 
tensor R that specified the polar decomposition of the deformation with no 
experimental evidence [31]. Attempts have also been made to solve the problem 
of orthotropic re-orientation [32-33].  

The main theoretical tool to explain orientation of orthotropic axes is the 
concept of plastic spin that at first suggested by Mandel [34]. This phenomenon is 
described and simulated by Dafalias using a simple theory of plasticity, which 
combines Hill’s quadratic yield criterion for orthotropic sheet metals with the 
concept of plastic spin as an essential constitutive component for the orientational 
evolution of the anisotropic tensorial internal variables [2]. 

Tong et al. presented a simplified anisotropic plasticity theory which is 
used to explain the anisotropic flow behavior of the orthotropic polycrystalline 
sheet metals under off-axis uniaxial tension. Their theory was formulated in terms 
of the intrinsic variables of principal stresses and a loading orientation angle and 
its uniaxial tension. They acquired a suitable analytical formula of macroscopic 
plastic spin proposed for orthotropic sheet metals with preserved but rotated 
orthotropic symmetry axes under off-axis uniaxial tension [35]. Also Tong in the 
years 2005 and 2006 presented a phenomenological theory based on the plastic 
spin concept, Fourier series and concepts of microscopic polycrystalline plasticity 
for describing the anisotropic plastic flow of orthotropic polycrystalline aluminum 
sheet metals under plane stress [36, 37]. Although the models mentioned above 
are based on experimental or theoretical methods, their application in industry is 
difficult due to their complexity. Therefore, in this work, the orientation of 
orthotropic axis is described and simulated using a simple geometrical method 
and a 3-elements system of substructure textures of cold rolled sheet metal. For 
this purpose, an explicit analytical formulation is proposed to determine the 
rotation angle of the orthotropic symmetry axes of a sheet metal under off-axis 
uniaxial tension. Also, associated material anisotropic constants have been 
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obtained and compared with those given by Kim and Yin based on experimental 
tests [28]. Finally, a simple method is developed with associated equations to 
determine the direction of the orthotropic axes rotation.  

2. Description of problem 

Are the orthotropic symmetries preserved when orthotropic sheet metals 
are subjected to in-plane off-axis uniaxial tension loading where the direction of 
loading is fixed with respect to the initial orthotropic axes? Moreover, if 
orthotropic symmetries are preserved, do the orthotropic axes remain the same, or 
they rotate? If yes, towards which direction? Finally, how fast do they rotate in 
relation to the plastic strain induced by the non-coaxial loading? [2] 

The above questions should be answered by experimental observations 
before developing a theory of anisotropic re-orientation. These answers can show 
whether the theoretical objective is worth pursuing or not. 
Kim demonstrated that the answer of the first question is positive [26]. Kim and 
Yin’s experiments [28] corroborate the results of Kim’s experiment [26]. In the 
next step, they answered to the second and third questions. Meanwhile, if the 
answer to the third question is that the orthotropic axes do rotate but very slowly, 
again one may reason that for practical purposes, the orthotropic orientation may 
be assumed to remain fixed. 

Kim and Yin performed an experimental method to study the cold rolled 
sheet metals anisotropy with tensile tests at different angles to the rolling direction 
[39]. They utilized variation of uniaxial yield stresses with tensile loading axis 
orientation which can be used to set up orthotropic symmetry. They selected cold 
rolled sheets of low carbon steel widely used in the automotive industry for the 
tests. This alloy has moderate initial orthotropy. To increase the degree of 
orthotropy, full size sheets were stretched along the rolling direction by 3 and 6 
percent of tensile strains. Then tensile specimens were cut at an angle ψ  from the 
rolling direction (R.D.). Fig. 1 presents a schematic diagram of the specimens. 
The R.D. and T.D. (Transverse Direction) are the initial orthotropic axes.  

 
Fig 1. Schematic presentation of the tensile specimen and the different directions and 

related angles,ψ , β , and θ . 
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Three values of ψ  were chosen at 30, 45 and 60 degrees which for each 
value of ψ , the specimens were subjected to a tensile second pre-strain ε  of 
magnitude 1, 2, 5, and 10 percent along their axis. To investigate the possible re-
orientation of the initial orthotropic directions R.D. and T.D. due to the mentioned 
pre-straining, small size specimens were cut from the pre-strained specimens at 
different angles and tested in tension. For tracing the evolution of orthotropic 
symmetries and orientation by following the “shift”, with respect to the second 
pre-strain ε , the record of tensile yield stress distribution are carried out for the 
small specimens at each ε  and ψ . It was shown that the answers of two questions 
mentioned at the beginning of this section are positive. Meanwhile, it was possible 
to investigate the evolution of the orientation of the orthotropic axes X and Y with 
respect to the second pre-strain ε . This can be done by calculating the shift of the 
symmetrical yield stress distribution using their angle β  from the ε  direction (see 
Fig. 1). 

3. Modeling of magnitude of rotation of orthotropic axes 

In this paper for the modeling of the orientation of the orthotropic axes of 
sheet metals due to the uniaxial off-axis tension (second pre-strain), a semi-
geometrical model is used which is based on the concept of substructure textures 
(see Fig. 2).  

Two arbitrary stripes of substructure texture of a second pre-strained 
specimen are simulated using the 3-element mechanism (see Fig. 2) in which one 
of the elements is grand and fixed and the other two elements can move. The 
angle between elements a  and b  is arbitrary and it is not necessary to be at 45 
degree. The horizontal element AC  shown in Fig. 2 indicates the orthotropic axis 
and its rotation represents the orientation of orthotropic axes under uniaxial off-
axis tension and the element AB  is fixed.  

 
Fig. 2. Semi-geometrical model which is based on the concept of substructure textures and is used 

to modeling of the orientation of the orthotropic axes. 
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Two joints of A  and B  have only one degree of freedom i.e. AC  can solely 
rotate around joint A  and therefore BC  can rotate around joint B . Joint C  has 
three degrees of freedom i.e. both AC  and BC  can rotate around C  and joint C  
can move both horizontally and vertically. When second plastic pre-strain is 
applying, both AC  and BC start yielding contemporaneously, according to Fig. 2. 
Consequently, the system reaches a new position which is shown with dashed 
lines in Fig. 2. In this simulation, the symbols ofψ , θ  and ε  are equivalent to 
Kim and Yin’s [28] experimental quantities and are defined in Fig. 1. Due to the 
second pre-strain experiments of Kim and Yin’s the elements of BC  and AC  are 
subjected to strains of 1

pε  and 2
pε  respectively. With the assumption of 1AB = , 

following equations can be obtained: 
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All the geometrical parameters in these equations are defined in Fig.s 1 and 2. By 
the substitution of Equation (2) into (1), it can be written as: 
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And from triangle of ABC ′  it can be shown that: 
sin cosa α θ′ =                                                                                (4) 

By substitution of Equation (1) into (4), it can be written as: 
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Moreover, the substitution of Equation (2) in the above relation leads to: 
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The result of the combining Equations (3) and (7) is: 
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And with the assumption of 
2 2 1 1,p pK Kε ε ε ε= =                                                                        (9) 
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In addition, by substitution of Equation (9) into (8) gives: 
1
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Where at above equations 1K  and 2K  are material constants. 
Equation (10) should satisfy two following initial and boundary conditions: 
If 0ε =  then 0θ =  , which is satisfied in Equation (10). 

For any orthotropic sheet metal beside the initial orthotropic axes, there is 
a direction, eqψ or equivalent angle that if the loading is applied in this direction, 
the initial orthotropic axes do not show any rotation. Also, there is a limit for the 
second pre-strain and if it is reached, the orthotropic axes do not rotate; and 
therefore, one of the orthotropic axes coincide with the secondary loading 
direction, in other words, this boundary condition for eqψ ψ<  leads to ( )Lθ ε ψ=  

and for eqψ ψ> results in ( )
2L
πθ ε ψ= − . 

The second boundary condition for eqψ ψ<  in Equation (10) is obtained as: 
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Where strain limit is shown with Lε . Above equation can be re-written as: 
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And by substitution of Equation (12) into Equation (10) and for simplicity with 
the assumption of 1K K= , it is easily shown than: 
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  The above equation is valid for eqψ ψ< and for eqψ ψ> , the same procedure leads 
to:  
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By substitution of Equation (15) into (10) and again for simplicity assuming 
that 1K K= , it is easily shown that for eqψ ψ> : 
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Above relation, have two distinct and independent constants, which consist of, K  
and Lε which can be determined using experimental data. In practice, 1K  and 2K  
used in Equation (11) are replaced by K  and Lε  in Equation (13). An advantage 
of this replacement is that the value of Lε , can be determined easily using 
experimental data and therefore, only one unknown constant ( K ) is remained 
which can be calculated using data fitting of the experimental tests.  
 

4. Re-orientation direction of the orthotropic axes under uniaxial off-
axis tension loading 
 
In the problem of re-orientation of the orthotropic axes under uniaxial off-

axis tension, both the magnitude and direction of the orientation should be 
determined.  

Dafalias [2] has discussed on the direction of the re-orientation of the 
orthotropic axes under uniaxial off-axis tension using the relation which Hill 
represented in 1950 [1] in the form of ( ) ( )2tan 2 1 / 2 1eq g h f hψ = + − + −  where f, g 
and h are normalized coefficients of Hill’s quadratic criteria. Dafalias showed that 
for the reported values of f , g and h  by Kim and Yin [28], 44.68eqψ = °  . 

In this investigation, we propose a simple relationship for the problem of 
orientation direction of orthotropic axes under off-axis uniaxial tension. To 
determine the relation for eqψ , we suppose that the yield stress for the initial sheet 
in eqψ  is σ  so the following equilibrium equations are satisfied: 
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transverse directions, respectively. Dividing both sides of the equilibrium 
equations give: 
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The equivalent angles are obtained based on Equation (18) and Kim and Yin’s 
[28] experimental data which is given in Table (1). 
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Table 1.  
 Variation of equivalent angle with initial pre-strain obtained using equation (18)  

Initial pre-strain 0% 3% 6% 
eqψ (equivalent angle) 45.22 44.6 43.9 

 
By combination of Equation (13) and (18) the final relationship for orientation of 
orthotropic axes under off-axes uniaxial tension leads can be obtained as 
for eqψ ψ< : 
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And for eqψ ψ>  as: 
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5. Results 
 
The reorientation of the orthotropic axis of the sheet metal under uniaxial 

off-axis tension is obtained using Equations (19) and (20) with different material 
constants. The results are presented in Fig.s (3) to (5). These results are compared 
with Kim and Yin’s [28] experimental data for a metal sheet by 3% initial pre-
strain. 

 
Fig. 3. Rotation of the orthotropic axis for loading angles of 30 degree with 0.2Lε =  . 
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Fig. 4. Rotation of the orthotropic axis for loading angles of 45 degree with 0.2Lε = . 

 
Fig. 5. Rotation of the orthotropic axis for loading angles of 60 degree with 0.2Lε = . 

 
  The equations (19) and (20) are explicit formulation of the state of 
orientation of anisotropic orthotropy under off-axes uniaxial tension. The rotation 
of the orthotropic axis can be obtained using these equations based on two 
variables of loading angle (ψ ) and secondary pre-strainε . The secondary pre-
strain consists of elastic and plastic strains but the former is neglected due to its 
low value. In addition to these variables, two other constants K  and Lε  are 
required which can be obtained using experimental data with given initial 
anisotropy for any specific material. 
Equations (13) and (16) give the value of the rotation of the axis and to obtain the 
direction of the rotation it is necessary to combine Equation (18) with them which 
lead to Equations (19) and (20). 
To compare the experimental results, the constants of Equations (19) and (20) are 
extracted for the orthotropic sheet metal using Kim and Yin’s experimental data 
[28]. 

The Fig.s (3), (4) and (5) show the rotation of the orthotropic axis for three 
loading angles of 30, 45 and 60 degrees respectively. These results are obtained 
using Equations (19) and (20) for low carbon sheet steel with 3% initial pre-strain. 
The material constants are given in each Fig. The agreement with experimental 
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data is good for loading angle of 30 degrees because the loading angle is smaller 
than the equivalent angle ( eqψ ψ< ), also, the difference between loading angle and 
equivalent angle is significant. For the same reason, for 60-degree loading angle 
the results compare well with the experimental data in spite of the fact that the 
loading angle is larger than the equivalent angle ( eqψ ψ> ). But there is a relatively 
large difference between the experimental data and the calculated values for the 
loading angle of 45-degrees. The main reason for this difference is that the 
loading angle is close to the equivalent angle, which we can consider that these 
two angles are coinciding. 
The limit strain, Lε , is an important parameter and its value is assumed to be the 
same for all loading conditions. 0.2Lε = .  

6. Discussion 

Dafalias in the year 2000 in the course of a work on the subject of this 
paper elaborately discussed the re-orientation of orthotropic axes under uniaxial 
off-axes tension loading [2]. He entirely connected the problem of orthotropic 
axes re-orientation to plastic spin and also concept of rotation of substructure 
texture. We have been inspired by work of Dafalias [2] and his special approach 
regarding the concept of plastic spin and re-orientation of orthotropic axes, 
especially on 2-dimensional problems. He especially discussed about concept of 
equivalent angle and direction of re-orientation of orthotropic axes. However, the 
model proposed by Dafalias is difficult to use due to its complexity. On the 
contrary, the formulation presented in this paper is very simplest and very 
succinct and also applicable. Presented model in this work is on the basis of Kim 
and Yin’s [39] experimental data and so Dafalias’s work [2]. 

To make the proposed model more flexible, one can increase the number 
of the mechanism elements and this can be a future work for this research 
program. Also, to improve the model, the relation between the rotation tensor of 
the substructure texture of the sheet metal and stretching tensor should be taken 
into account. For achieving to this target, must be a fixed support in the modeling 
mechanism.  

7. Conclusion  

The orientation of orthotropic axis is described and simulated using a 
simple geometrical method. For this purpose, an explicit analytical formulation is 
proposed to determine the rotation angle of the orthotropic symmetry axes of a 
sheet metal under off-axis uniaxial tension. Also, associated material anisotropic 
constants have been obtained and compared with those given by Kim and Yin 
[28] based on experimental tests. Finally, a simple method is developed with 
associated equations to determine the direction of the orthotropic axes rotation.  
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The results show that using this model, the orientation and intensity of the 
orthotropic axis can be calculated for uniaxial off-axis loading with good 
agreement with experimental data. This model only requires one material constant 
and this adds to its flexibility and requires affordable number of tests.  
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