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MULTI-SENSOR DATA FUSION BY AVERAGE CONSENSUS
ALGORITHM WITH FULLY-DISTRIBUTED STOPPING
CRITERION: COMPARATIVE STUDY OF WEIGHT
DESIGNS

Martin KENYERES?, Jozef KENYERES?

The average consensus tends to be used as a complementary mechanism for
multi-sensor data fusion in modern applications. This paper addresses a
comparative study of its weight designs with a fully-distributed stopping criterion
implementable into the wireless sensor networks. Two parameters of the examined
stopping criterion, namely, accuracy and counter threshold, are changed to analyze
which weight design achieves the best performance in terms of the precision
(quantified by the MSE) and the convergence rate. It is shown how the values of
both parameters affect the mentioned aspects as well as mutual comparison of the
examined weight designs is provided.

Keywords: Distributed computing, wireless sensor networks, average consensus,
stopping criterion

1. Introduction

Wireless sensor networks (WSNs) have attracted the attention of both the
academy and the industry sector in the last years. WSNs are often formed by
hundreds of geographically distributed entities (referred to as sensor nodes) for
cooperative monitoring the adjacent environment and are assumed to work
autonomously for long-lasting periods [1]. The sensor nodes, often deployed in
large-scale areas, consist of hardware components such as a wireless transceiver, a
sensor unit, the central processor, an energy source etc., which allows them to
sense a particular environmental quantity (known as sensor reading), process the
measured data, and mutually communicate in order to fulfill a specific
functionality [2]. WSNs find an application in many areas such as agriculture,
environmental ~ monitoring,  military  surveillance,  natural  disaster
detection, inventory tracking, pollution monitoring, medical systems, robotic
exploration, acoustic detection, health care etc. ([3-4]). In many of these
applications, the operation of WSNs is affected by negative factors (e.g. an
electromagnetic noise, defectiveness of the nodes, radiation temperature, output
correlations etc.) that can significantly decrease the precision of the sensor
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readings [5]. Thus, the modern applications based on WSNs are often equipped
with mechanisms for multi-sensor data fusion, whereby the negative impacts on
the quality of these applications are minimized [5]. Consensus-based algorithms
(primarily those for distributed averaging) find wide usage in WSNs as a
technique for multi-sensor data fusion and have become an attractive research
field in the signal processing during the last decades [6]. Their goal is to make the
states at all the sensor nodes identical via a neighbor-to-neighbor communication
and local updates [7]. Consensus-based algorithms find a wide usage not only in
WSNs but also in other areas such as the blockchains, cloud computing, the
Internet of Things etc. (they are assumed to be applied also in the integration of
WSNs, 10T, and cloud computing) ([8-11]).

In this paper, the average consensus algorithm (AC), a distributed linear
iterative algorithm asymptotically converging to the arithmetic average of all the
inner states, is addressed [12]. The algorithm is multi-functional, i.e. it can
estimate not only the average but also fulfills other functionalities [12]. Each
sensor node is typically aware of its neighbors and has only limited information
about the whole network [6]. At each iteration, it adapts its inner state according
to the inner states collected from the adjacent area and the state from the previous
iteration. As mentioned earlier, AC asymptotically convergences to the average
and therefore, many real-life applications require the implementation of a
stopping criterion, which ensures the consensus achievement in a finite time,
however with a limited precision [14]. In this paper, our attention is focused on
the stopping criterion from [13] and frequently discussed also in other papers ([3-
4], [14]). In this paper, we deal with four frequently quoted weight designs
(namely, the Maximum Degree, the Metropolis-Hastings, the Local Degree, and
the Best Constant weights) and change the parameters of the examined stopping
criterion (accuracy and counter threshold) to verify which design achieves the
best performance using two metrics: the mean square error (MSE) [dB] and the
number of the required iterations for the consensus.

In the next section of the paper, we provide a model of AC over WSNSs, its
basic properties, the convergence conditions etc. and introduce the implemented
stopping criterion. Section 3 deals with the analyzed weight design of AC and
their mathematical definitions. Section 4 is concerned with the experimentally
obtained results and a discussion about them. Section Future research introduces
our future plans and insight into the application of consensus-based algorithms in
WSNs, 10T, and Cloud Computing and their integration.

2. Problem formulation

WSNs can be modeled as finite indirect graphs determined by two sets
G =(V, E) [12]. The vertex/node set V gathers all the vertices, representing the
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sensor nodes in the network (the sensor nodes are identified by the unique identity
number V = {vi, v2, .... v}, where N = |V| is the size of the network). The
edge/link set E < VxV contains all the edges, whose existence indicates the direct
connection between two corresponding sensor nodes {vi, vj}, and so, these two
sensor nodes are one another’s neighbor. Subsequently, a set gathering all the
neighbors of vi can be defined as Ni = {vj : {vi, vj} € E}. It is assumed that each
sensor node is allocated the initial scalar value xi(0) € R in the beginning of the
algorithm (in our case, binary AC is assumed, i.e. the initial states take either one
or zero [14]). All the inner states at each iteration are gathered in the column
vector variant over the iterations x(k) € RN,

As mentioned earlier, AC is a set of rules ensuring that each sensor node
acquires an approximate value (referred to as an estimate) of the estimated
aggregate function (in our case the arithmetic average). It is achieved by iterative
exchanges of the local inner states among adjacent sensor nodes and updating the
inner state for the next iteration using the linear update scheme modeled as
follows [15]:

X (K+1) =W]x )+ > W],.x; (k) fori=12,..N, (1)

From a global point of view, it is possible to reformulate (1) as [12]:
x(k +1) =W x x(k), (2)
Here, W is the weight matrix, whose elements are determined by the used
weight design. It affects several aspects such as the convergence rate, the

robustness, the initial configuration etc. [12]. The limits of its sparsity pattern can
be expressed as W € S, where S is defined as follows [15]:

S={WeR"™ W], =0 if{v,v,}¢EAi=j}, (3)

The choice of the weight matrix is crucial for the convergence
conservation, i.e. the vector of the inner states x(0) converges to the value of the
arithmetic average, i.e. [16]

;
fim x(k) = lim W* xx(0) = X = lxN L x(0), (4)

Here, 1 is a column vector whose all coefficients are equal to one (known
as an all-ones vector) [12]. Equivalently to (4), one can write the followings [15]:

k—o0

. 1x1"
lim W* ==——"=—, 5
im N )

Then, we can define the asymptotic convergence factor and its associated
convergence time, measures for performance evaluation, as follows [15]:
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lem(W) = sup lim LMJ ' Toeym(W) . (6)

s ok [x(0) =] ~log(1/,

As discussed in [15], the convergence of the algorithm is ensured if and
only if the limits in (4) exists. Its existence is conditioned by holding these
necessary and sufficient conditions (see [17] for a proof):

sym)

Wxl=1 1TxW=1", p(W—%.lxlT)<1, )

Here, p(-) is the spectral radius of the corresponding matrix. The
implementation of the stopping criterion proposed in [13] is assumed in this
paper, which guarantees a finite time execution of AC. The examined stopping
criterion is fully-distributed (thereby finds the application in WSNs) and requires
that the sensor nodes store two constants: accuracy and counter threshold (both
have to be pre-set before the beginning of AC). Each sensor node has its own
counter that is incremented by one at the iterations when the difference between
two subsequent inner states is smaller than the pre-set accuracy. When not, its
value is set to zero. If y subsequent comparisons of the inner states are smaller
than accuracy, AC is considered to be completed at the corresponding sensor
node - it does not participate in AC any longer and does not update its inner state.
The value y is determined by the pre-set counter threshold. The iteration when the
last sensor node completes the algorithm is labeled as ki — it represents the number
of the iterations for the consensus. Eventually, a formalization of asymptotic AC
(Algorithm 1) and AC with the stopping criterion (Algorithm 2) are provided.

Algorithm 1: Distributed Linear Average Consensus Algorithm

In the beginning, each sensor node v; initiates its inner state with a scalar value
(1 TRUE/O FALSE in our case) labeled as xi(0).
At each iteration
1. Each sensor node vi € V sends a broadcast message containing its current inner state (i.e.
xi(k) to Vvj € Ni)
2. Each node sensor v; € V receives the inner states from Vv; € Ni
3. Each sensor node v; € V multiplies all the states with the corresponding weight [W];;
4. Each sensor node v; € V adapts its current inner state using a linear update scheme as
follows: xi(k+1) = [W]ii. Xi(k) + Z; [W]ij - xi(K)

Algorithm 2: Distributed Linear Average Consensus Algorithm with Stopping Criterion [13]

In the beginning, each sensor node vi initiates its inner state with a scalar value x;(0) (1 TRUE /
0 FALSE in our case) and counter with zero. (a node is active until it completes AC)
At each iteration as long as k # k;

1. Each active sensor node v; € V sends a broadcast message containing its current inner

state (i.e. xi(k) to Vvj e Ni)

2. Each active node sensor v; € V receives the inner states from vv; € Ni

3. Each active sensor node vi € V multiplies all the states with the weight [W];

4. Each active sensor node v; € Vadapts its current inner state using a linear update scheme
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as follows: xi(k+1) = [W];i . xi(k) + Z; [WT;; . xi(K)

5. Each active sensor node vi € V computes |Axi(k)| = [xi(k+1) - xi(k)| and increments
counter by one if |Axi(k)| < accuracy, otherwise, sets counter to zero

6. Each active sensor node v; € V verifies whether counter = counter threshold and
considers the algorithm to be completed if the condition is valid (and becomes inactive)

3. Examined weight designs

This section addresses four frequently cited weight designs for AC further
examined in this paper. The first one is the Maximum Degree weight design
(abbreviated as MD), which requires the information about the degree of the best-
connected sensor node (this information can be assessed for example by the
distributed max-consensus algorithm or pre-set in some networks). Its weight
matrix is defined as follows [12]:

; ife. ecE
mgx{d,}' !
WP, = 0, if e, e Eni = 8
- if =]
mﬁx{d,}

Here, di is the degree of a vertex and so, the number of neighbors of the
corresponding sensor node. Another weight design of our interest is the
Metropolis-Hastings weight design (abbreviated as MH). Its initial setup requires
only locally available information, i.e. the own degree and the degrees of the
sensor nodes from the adjacent area (i.e. for vi, the degrees of Vvj € Ni).
Subsequently, its weight matrix is composed as follows [12]:

@+ max{d;,d 1) if (v,,v,)€E
[WMH]ij = 1_Z:lzlvk¢i[WMH]iky fi=j (9)

0, otherwise ,

Another analyzed design is the Local Degree weight design (abbreviated
as LD), which is optimized MH in such a way that the weights for the edges are
increased by omitting one in the denominator. Its weight matrix is defined as [15]:

(max{d,,d, )™, i (.v,) €E
WPl =11->0 WP, ifi= (10)

0, otherwise,

The last design of our interest is the Best Constant weight design
(abbreviated as BC), which requires the exact values of the largest (11) and the
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second smallest (in-1) eigenvalue of the corresponding Laplacian matrix L
(a mathematical tool for a description of network topologies (see [12] for a
definition)) for its optimized variant. This weight design is considered to be the
most efficient among the uniform-weight designs [15].

2/(4 (L) + 2, (L)), if (v,,v;) €E
WET, =1-2d, (4 (L) + A, (L), Hi=j (11)
0, otherwise ,

4. Experiments and discussion

This section is concerned with the results obtained from numerical
experiments (the simulations are carried out in Matlab 2016a) and a discussion
about the observed phenomena. As mentioned above, this paper addresses a
comparative study of four AC weight designs (namely, MD, MH, LD, and BC)
with the fully-distributed stopping criterion for WSNSs presented in [13], ensuring
a finite execution time of the algorithm. The parameters of the stopping criterion
are varied: accuracy (takes these values: 107, 102, 103, 104, 10>, 10°) and
counter threshold (takes these values: 3, 5, 7, 10, 20, 40, 60, 80, 100) to examine
their impact on the precision of the final states quantified using an MSE-metric
(mean square error) and the convergence rate expressed in the number of the
iterations necessary for the consensus (a lower value means a higher rate). Thus,
the main goal of this paper is to find the most appropriate weight designs for the
examined stopping criterion (for the varied values of the mentioned parameters) in
terms of the precision and the convergence rate. As shown in ([16-18]), the MSE
is a reasonable metric frequently used for an analysis (not only) of consensus-
based algorithms and is defined as follows:

N

Our intention is demonstrated on 60 random geometric graphs (30 sparsely
and 30 densely connected) whose sensor nodes have randomly generated initial
inner states of the Bernoulli distribution with Pr(x = 1) = 0.5 and Pr(x = 0) = 0.5.
The size of all the networks is the same - 200 sensor nodes. No negatives factors
are assumed. In all the experiments, only the averaged MSE over 30 networks of
the same connectivity is shown. See Appendix for detailed information.

MSE:%.Z(xi(k,)—lT XX(O)} , (12)
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In the first experiment, the asymptotic convergence factor and the
associated convergence time for each weight design are examined. As mentioned
above, due to the limited range of the paper, only the average value over all 30
networks for the densely and the sparsely connected networks is shown separately
(see Fig. 1).
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Fig. 1. Asymptotic convergence factor and convergence time averaged over 30 randomly
generated densely and sparsely connected networks for each weight design

In the densely connected networks, MD takes the highest values of both
parameters and so, is the worst among the examined weight designs (a smaller
value means a higher convergence rate). The second worst is MH, the third one is
LD, and the best results are observed for BC. In the sparsely connected network,
the highest values of both parameters are taken by MD, the second highest one by
MH, the third one by BC, and the lowest values are taken by LD (thus, LD
outperforms BC compared to the densely connected networks). Generally, it can
be seen that the algorithm is slower in the sparsely connected networks than in the
densely connected ones regardless of the used weight design. Higher performance
is caused by the fact that the second largest eigenvalue of W in magnitude is
generally lower in graphs with more edges.

The next experiment is concerned with a performance analysis of the
mentioned weight designs with the implemented examined stopping criterion
quantified by an MSE-metric (the MSE is converted into dB). The results
obtained in the densely connected networks are shown in Fig. 2 (the y-axis is
reversed). It can be seen from the results that an increase in counter threshold and
a decrease in the value of accuracy result in lower values of the MSE and so, a
higher precision of the final estimates regardless of the used weight design.
Moreover, for each accuracy with each counter threshold, BC achieves the
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highest performance, LD is the second most precise, MH is the third one, and the
lowest precision is achieved by MD.
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Fig. 2. MSE in decibels averaged over 30 randomly generated densely connected networks as
function of counter threshold for each accuracy

In the sparsely connected networks (Fig. 3), an increase in counter threshold and a
decrease in accuracy cause that lower values of the MSE can be observed again.
For accuracy = 10! with each value of counter threshold, the highest precision is
achieved by LD, the second highest one by BC, the third one by MH, and the
lowest precision is achieved by MD. For accuracy = 102 — 10 with counter
threshold = 3 — 40, BC achieves the highest precision, LD the second highest one,
MH the third one, and the lowest one is achieved by MD. For the other values of
counter threshold (i.e. {60, 80, 100}), LD outperforms BC and so, is the most
precise (BC is the second one), MH is the third most precise, and MD is the most
imprecise. For accuracy = 10 with each counter threshold, the order of the
weight designs sorted according to the precision is the same as in the densely
connected networks, i.e. BC is the best one, LD is the second, MH is the third one,
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and MD is the worst. Moreover, it is seen that the precision is higher in the
densely connected networks in general.
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Fig. 3. MSE in decibels averaged over 30 randomly generated sparsely connected networks as
function of counter threshold for each accuracy

The following paragraphs address the convergence rate of the examined weight
designs in both sets of the networks. The convergence rates of all the examined
weight designs in the densely connected networks are shown in Fig. 4. An
increase in counter threshold and a decrease in accuracy (and so, factors ensuring
a higher precision of the final estimates) result in a deceleration of the algorithm
regardless of the used weight design. For accuracy = 10 with each counter
threshold, the highest convergence rate is achieved by MH and LD (both achieve
the same average convergence rate), the third fastest is MD, and the lowest
convergence rate is observed for BC. For accuracy = 102 — 10 with each counter
threshold, LD is the fastest, MH is the second, MD is the third, and BC is the
slowest again. For accuracy = 107°, BC outperforms MD for each value of counter
threshold and is thus the third fastest (MD is the slowest), MH is the second
fastest, and LD the fastest one. For accuracy = 10 with counter threshold = 3 —
20, the highest convergence rate is achieved by BC, the second highest one by
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LD, the third one by MH, and the lowest one by MD. For counter threshold = 40
— 100, BC is outperformed by LD (the fastest weight designs in this interval) and
MH (the second fastest) and MD is slowest again.
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Fig.4. Convergence rate (expressed as iterations for consensus) averaged over 30 randomly
generated densely connected networks as function of counter threshold for each accuracy

In the sparsely connected networks, an increase in counter threshold and a
decrease in accuracy cause a deceleration of the algorithm regardless of the used
weight design like in the densely connected networks. Furthermore, for accuracy
= 10! — 102 with each counter threshold, MH achieves the highest performance,
LD is the second, MD is the third, and BC is the slowest. For all other examined
values of accuracy with each counter threshold, LD is the fastest, MH is the
second fastest, MD is the third, and BC is the slowest. In general, the convergence
rate is higher in the densely connected networks.

Furthermore, we prove the unpredictability of BC, whose convergence rate
and precision are also the most significantly affected by factors such as the
network topology, the connectivity, the distribution of the initial states ([14],
[19]), also when the algorithm is bounded by the stopping criterion from [13]. The
weight design is the slowest for most of the stopping criterion parameters,
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however, we can see that it is also the fastest one for some configuration of the
parameters in the densely connected networks.

The novelty of our paper compared to other papers: we analyze four
frequently weight designs of AC bounded by the stopping criterion from [13]
proposed for WSNs. Only in [13], this stopping criterion is experimentally
analyzed, however, this paper is concerned with the Constant weight design and
also a significantly different research methodology is applied. Thus, the other
papers focused on the same problems either theoretically discuss the implemented
stopping criterion ([3], [14], [26-33]) or a comparative study is carried out using a
different research methodology (e.g. no/another stopping criterion is
implemented) ([19], [34-35]).

As mentioned earlier, the only paper focused on an experimental analysis
of the implemented stopping criterion is [13]. The other papers ([3], [14], [26-27],
[29-33]) citing the paper where this stopping criterion is proposed only
theoretically discuss its advantages/disadvantages without any simulation
evaluation. In [13], the stopping criterion is implemented into a hardware platform
from Memsic. The authors focus their attention on the Constant weight design
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Fig.5. Convergence rate (expressed as iterations for consensus) averaged over 30 randomly
generated sparsely connected networks as function of counter threshold for each accuracy
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with a modifiable mixing parameter. They show that an increase in the mixing
parameter ensures a higher convergence rate until it reaches the threshold value
determined by the size of a network - then, the convergence rate decreases.
Moreover, they prove that lower values of the mixing parameter result in higher
robustness of the algorithm to collisions (however, the character is, in general, the
exact opposite when the link failures are assumed). It is also shown that lower
values of accuracy decelerate the algorithm (this statement is proven also in our
paper). In the paper [28], the authors confirm the same results as in [13].

5. Future research

Our future research related to the examined stopping criterion is going to
be focused on finding the most appropriate weight design also in terms of other
aspects (the robustness, other functionalities etc.) and its optimization.
Furthermore, our plans also include experimental verification of whether the
examined stopping criterion is suitable for the distributed gossip-based algorithms
— this research can provide a sufficient background for a mutual comparison.

As mentioned above, consensus-based algorithms find the application in
WSNs, loT, and Cloud Computing and their integration. In this paragraph, we
provide a brief overview of this topic. There are many papers concerned with
these technologies and their mutual integration in the literature ([8], [20-25]). In
[20], an approach based on Timed Colored Petri Net and Ontology. The authors of
the paper address the controlling of the logical correctness of the context-aware
services, which is considered to be one of the most important challenges in the
IoT technology. Some approaches are based on merging of artificial intelligence
with 10T. The authors of [21] propose and present a hybrid model consisting of
IoT and artificial neural networks taught by the back-propagation algorithm.
It allows heterogeneous technologies to act as intelligent entities that are able to
make independent decisions and interact with human beings or other smart
devices. In paper [22], the premise that the residential houses will evolve into
modern households with own solar panels and wind turbines able to sell or buy
energy to or from the smart power grid is addressed. The authors propose a
holistic framework for the integration of smart home objects in a cloud-centric
loT solution is proposed. This hybrid serves not only for collecting and storing the
data but works as a gateway to third-parties that develop applications. In [23], the
authors propose a low-cost automation system based on WSNs incorporating 10T.
This mechanism provides a cost-effective solution to Home Automation. The
authors of [8] integrate WSNs, 10T, and Cloud Computing and propose a concept
for controlling and monitoring an irrigation system that is connected to an loT
platform. The authors of [24] propose a cloud computing and fog computing
architecture for effectively processing IoT data. A classification mechanism for
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IoT data types is presented. The data placement problem is cast by the authors as
an optimization problem so that the latency in accessing the data can be
minimized. The authors of [25] conclude that the current trends in WSNs are to
embrace IP-based sensor network using standards such as 6LoWAN and IPv6.
Moreover, the authors propose a framework to harmonize new installations and
non-IP based ones and preserve the possibility to migrate to an all-IP
environment. Our future goals will also include an effort to find the applicability
of the average consensus algorithm in the integration of WSNs, 10T, and Cloud
Computing in order to increase QoS (Quality of Service) of the executed
applications.

6. Conclusion

This paper addresses a comparative study of four weight designs of AC
(MD, MH, LD, BC) with a fully-distributed stopping criterion proposed for WSNs
and finds out which weight design achieves the highest/the lowest precision
(using an MSE-metric) and the highest/the lowest convergence rate for various
accuracy and counter threshold over 30 densely and 30 sparsely connected
random geometric graphs.

It is seen that the precision of the final estimates and the convergence rate
is higher in the densely connected networks for each weight design (when the
results for same accuracy and same counter threshold are mutually compared).
Thus, it is shown that the theoretical assumptions (that higher performance is
achieved in networks with a higher connectivity - demonstrated among others by
Fig. 1 in this paper, i.e. a smaller asymptotic convergence time and associated
time are achieved in the densely connected networks) valid for AC, whose
execution is not bounded, are valid also for AC with the implemented stopping
criterion. Moreover, it can be seen that an increase in counter threshold and a
decrease in accuracy ensure a lower MSE (and so, a higher precision) at a cost of
a deceleration of the algorithm in both sets of the networks and regardless of the
used weight design. Moreover, it can be seen that BC is the most precise in the
densely connected networks (it maximally outperforms MD by approx. 39 dB,
MH by approx. 27 dB, and LD by approx. 25 dB). This design has also a
significantly lower rasym and zsym in these networks than the concurrent ones. The
lowest precision is achieved by MD, which has also the highest rasym and zasym. In
terms of the convergence rate, the best performance is in general achieved by LD
(it maximally outperforms MD by approx. 86 iterations, MH by approx. 11
iterations, and BC by approx. 82 iterations) and the worst one by BC.
Paradoxically, BC outperforms all the concurrent weight designs for lowest
examined accuracy with lower counter threshold (it maximally outperforms
fastest LD by approx. 10).
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In the sparse networks, the highest precision is achieved by BC (primarily,
either for lower values of counter threshold or lower values of accuracy - it
maximally outperforms MD by approx. 12 dB, MH by approx. 7.5 dB, and LD by
approx. 6 dB) and LD (primarily, either for higher values of counter threshold or
higher values of accuracy - it maximally outperforms MD by approx. 8 dB, MH
by approx. 3 dB, and LD by approx. 1 dB). Regarding rasym and zasym, LD has the
lowest values of these parameters in the sparsely connected networks, meanwhile,
BC the second lowest. Like in the densely connected networks, MD (the highest
rasym and zsym) has the lowest precision again. The highest convergence rate is
achieved by LD except for lower values of accuracy, when it is slightly (less than
2 dB) outperformed by MH (the second highest rasym and zsym) (LD maximally
outperforms MD by approx. 441 iterations, MH by approx. 102 iterations, and BC
by approx. 1296 iterations). Furthermore, BC is significantly slower in the
sparsely connected networks than the concurrent weight designs. So, BC achieves
generally the highest performance in terms of the precision, meanwhile, LD is the
fastest in general among the examined weight designs. The unpredictable
character of BC, i.e. this weight design is more significantly affected by the
network topology, the initial states, the connectivity etc., is confirmed also in this
paper. In our work, we show that this weight design is the slowest in the most of
the cases, however, also the fastest one for some configuration of the stopping
criterion parameters in the densely connected networks.
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Appendix

Table 1
Summarization of simulation setup parameters

SIMULATION PARAMATERS

Simulation tool

Matlab 2016a (all the used simulation software was developed by the authors of this paper)

Used Environment

Random Geometric Graphs

Graph Size 200 vertices
Connectivity Dense / Sparse
Number of graphs in each graph set 30 unique graphs
Topology Time-invariant
Implemented stopping criterion
Character Fully-distributed
Values of accuracy 10%, 102,103,104, 105, 10°©
Values of counter threshold 3,5, 7,10, 20, 40, 60, 80, 100

Initial inner states

Random variables of Bernoulli distribution x;(0) ~ B(1, 0.5)

Analyzed parameters

Asymptotic convergence factor averaged over 30 densely/sparsely connected networks
Associated convergence time averaged over 30 densely/sparsely connected networks
Mean square error averaged over 30 densely/sparsely connected networks
Convergence rate expressed as the number of the iterations for the consensus achievement
averaged over 30 densely/sparsely connected networks

Restrictions and presumptions

The algorithm execution is affected by no negative factors such as communication interference,
potential link/node failures, communication delays, noises etc. Moreover, the sensor nodes are
homogenous in all the aspects and synchronized.




