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SOME RESULTS ON RICCI-HARMONIC BOURGUIGNON SOLITONS

AND APPLICATIONS

Sakineh Hajiaghasi1, Shahroud Azami2, Jafar Ebrahimi3

We study some results for the almost Ricci-harmonic Bourguignon soliton

which is a generalization of the Ricci-harmonic soliton. Next, we find some integral

formulas for the compact almost gradient Ricci-harmonic Bourguignon soliton. As an

important application, we prove that every almost gradient Ricci-harmonic Bourguignon

soliton with dimension n ≥ 3 is trivially rigid under certain condition.
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1. Introduction

Consider two complete Riemannian n-dimensional manifolds (M1, g1), and (M2, g2)

with φ :M1 −→M2, such that φ is critical point of the energy integral E(φ) =
∫
M

|∇φ|2gdv,
andM2 is isometrically embedded in Rd, d ≥ n. By an one parameter family of Riemannian

metrics (g(x, t), φ(x, t)), t ∈ [0, T ), and a family of smooth maps φ(x, t), the Ricci-harmonic

Bourguignon flow is defined by
∂

∂t
g(x, t) = −2Ric(x, t) + 2ρR(x, t) + 2α∇φ(x, t)⊗∇φ(x, t), g(0) = g0,

∂

∂t
φ(x, t) = τgφ(x, t), φ(0) = φ0.

(1)

Here α is a positive constant, and τgφ is the intrinsic Laplacian of map φ which denotes the

tension field of map φ [3]. In (1), if we have α = 0 or φ is a constant map, then it defines

Ricci-Bourguignon flow. This concept was introduced in [7]. If ρ = 0, then (1) is just the

Ricci-harmonic flow, and if α = ρ = 0, then it reduces to the Ricci flow.

1.1. The Ricci-harmonic Bourguignon soliton

Let (M1, g1) be a smooth n-dimensional Riemannian manifold, and Y : M1 → TM1

be a smooth vector field. Then the system (M1, g1, Y, λ, ρ, φ) defines a Ricci-harmonic

1Corresponding author. Department of Pure Mathematics, Faculty of Science, Imam Khomeini Inter-

national University, Qazvin, Iran, e-mail: s.hajiaghasi@edu.ikiu.ac.ir

2Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin,

Iran, e-mail: azami@sci.ikiu.ac.ir

3Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin,

Iran, e-mail: jeffryebra@gmail.com

43



44 Sakineh Hajiaghasi, Shahroud Azami, Jafar Ebrahimi

Bourguignon soliton (RHBS for short), when it satisfies in the following equations

Ric +
1

2
LY g = λg + ρRg + α∇φ⊗∇φ,

τgφ− LY ∇φ = 0, (2)

where λ, α, and ρ are constants, R is scalar curvature, LY is Lie derivative along vector field

Y , and φ : (M1, g1) → (M2, g2) is smooth function, where M1,M2 are static Riemannian

manifolds. Here we provide some special examples of solitons:

(1) If in first equation of (2) α = ρ = 0 or ρ = 0 and ∇φ = 0, then M1 is Ricci soliton

Ric +
1

2
LY g = λg.

(2) If α = 0 or ∇φ = 0, then M1 is Ricci-Bourguignon soliton and equation becomes

Ric +
1

2
LY g = λg + ρRg.

(3) If ρ = 0 then, M1 is Ricci-harmonic soliton and equation changes as

Ric +
1

2
LY g = λg + α∇φ⊗∇φ.

When λ is a smooth function, we call the manifold endowed with (2), an almost Ricci-

harmonic Bourguignon soliton.

In definition of RHBS if Y = ∇h for some smooth function h on M1, then M1 is called a

gradient Ricci-harmonic Bourguignon soliton (GRHBS for short). Moreover, (2) changes as

follows:

Ric + Hessh− ρRg − α∇φ⊗∇φ = λg,

τgφ− < ∇φ,∇h > = 0. (3)

The GRHBS is called steady, expanding or shrinking respectively, when λ = 0, λ < 0 or

λ > 0.

In this paper, we denote Ric− α∇φ⊗∇φ by Ricφ, its components in local coordinates by

Rij
φ := Rij − α∇iφ∇jφ, and the metric trace of Rij

φ by Rφ := R− α|∇φ|2.
Some basic structural equations for compact almost Ricci-Bourguignon solitons, and almost

Ricci-harmonic solitons were proved in [1] and [8]. In [8], Dwivedi showed that a compact

gradient Ricci-Bourguignon soliton is isometric to an Euclidean sphere, if it has constant

scalar curvature or its associated vector field is conformal. Abolarinwa [1] proved that a

nontrivial gradient almost Ricci-harmonic soliton Nk with k ≥ 2, and constant map φ is

isometric to an k-Euclidean sphere, iff any of the following conditions hold:

(1) (N, g) has constant scalar curvature,

(2)
∫
N
< Ricφ,∆h > dv = 0,

(3)
∫
N

(
Ricφ(∇h,∇h) + (n− 2) < ∇λ,∇h >

)
dv ≤ 0,

(4) ∇h is a conformal vector field.

Here dv is the volume measure of N . Also, he obtained the main condition for a gradient

almost Ricci-harmonic soliton (RH)α to be rigid in the sense of triviality. See [4, 5, 6, 9, 10]

for more study on rigidity and triviality of Ricci solitons.

Motivated by the mentioned articles, in this paper we succeeded in classifying Ricci-harmonic

Bourguignon solitons. Also, we generalized the rigidity results in [1], for gradient Ricci-

harmonic Bourguignon solitons under certain conditions. Here is our first result:
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Theorem 1.1. Let (N, g, h, λ, ρ, φ) be a k-dimensional compact almost GRHBS. The fol-

lowing equation holds on N :

2

∫
N

|Hessh− 1

k
g∆h|2dv = (

k − 2

k
+ 2kρ)

∫
N

g(∇R,∇h)dv

−k − 2

k

∫
N

αg(∇|∇φ|2,∇h)dv

−2α

∫
N

|g(∇φ,∇h)|2dv + ρ

∫
N

∆Rdv,

where dv is the volume element of N .

Studying on traviality results for Ricci-harmonic Bourguignon solitons, we provide

the following classification:

Theorem 1.2. Let (Nk, g, Y, λ, ρ, φ) be a compact almost RHBS. For k ≥ 3, If ρ ̸= 1

k
and∫

N

[Ric(Y, Y ) +
kρ

kρ− 1
∇Y divY − 2ρg(∇R, Y )− (k − (2ρ+ 1)− 2)

kρ− 1
g(∇λ, Y )

−2αg(τg(φ)∇φ, Y )− αkρ

kρ− 1
g(∇|∇φ|2, Y )]dv ≤ 0,

thus Y is a Killing vector field, and M is a trivial RHBS.

We tried to know that under which conditions different types of GRHBS (i.e. steady, shrink-

ing, expanding) have nonnegative scalar curvature, although we just proved the next theorem

for steady Ricci-harmonic Bourguignon solitons.

Theorem 1.3. For a compact almost RHBS (Nk, g, h, λ, ρ, φ) with ∆λ ≤ 0, let Rmin :=

minN Rφ, then

(1) if N be steady with R = 0, then Rmin = 0,

(2) if N be steady and R > 0, then 0 ≤ Rmin ≤ kρR,

(3) if N be steady and R < 0, then kρR ≤ Rmin < 0.

The next result is the generalization of [1] for (RH)αsoliton to the almost GRHBS.

Theorem 1.4. Let (Nk, g, h, λ, ρ, φ) be an almost GRHBS with k ≥ 3. If∫
N

(Ricφ(∇h,∇h) + (n− 2)g(∇λ,∇h) + 2(n− 1)ρg(∇R,∇h))dv ≤ 0,

then N is trivially rigid.

2. Preliminaries

We need the following propositions to prove our main results.

Proposition 2.1. For an almost GRHBS (Nk, g, h, λ, ρ, φ), the following equations hold

(1− kρ)R+∆h = kλ+ α|∇φ|2, (4)

(
1

2
− ρ(k − 1))∇iR = Ril∇lh+ (k − 1)∇iλ+ α∇i|∇φ|2 − α∇j∇iφ∇jφ, (5)

∇jRim −∇mRij = Rjmil∇lh+ ρ(∇jRgim −∇mRgij) + (∇jλgim −∇mλgij) (6)

+α(∇j∇iφ∇mφ−∇m∇iφ∇jφ),
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∇i[(1− 2ρ(k − 1))R+ |∇lh|2 − 2(k − 1)λ− 2α|∇φ|2 + 2α∇iφ∇jφ] (7)

= (2λ+ 2ρR+ 2α∇iφ∇jφ)∇ih.

Proof. For an almost GRHBS we have

Rij +∇i∇jh = λgij + ρRgij + α∇iφ∇jφ, (8)

and taking the trace of this equation, we get the result for (4).

Taking the covariant derivative of (4) in a local orthonormal frame, we deduce that

(1− kρ)∇iR+∇i∇j∇jh = k∇iλ+ α∇i|∇φ|2.

Applying the consequence of contracted second Bianchi identity, we infer

(1− kρ)∇iR = Ril∇lh+ k∇iλ+ α∇i|∇φ|2 −∇j∇i∇jh.

If we substitute equation (8), in the above equation , we find

(1− kρ)∇iR = −∇j(−Rij + λgij + ρRgij + α∇iφ∇jφ) +Ril∇lh+ n∇iλ+ α∇i|∇φ|2.

Using the second Bianchi identity, we arrive at

(1− kρ)∇iR =
1

2
∇iR−∇iλ− ρ∇iR− α∇j∇iφ∇jφ+Ril∇lh+ n∇iλ+ α∇i|∇φ|2.

This completes the proof of (5). From (8), we get

∇jRim −∇mRij = (∇m∇i∇jh−∇j∇i∇mh) + ρ(∇jRgim −∇mRgij)

+(∇jλgim −∇mλgij) + α(∇j∇iφ∇mφ−∇m∇iφ∇jφ)

and rotating indices, we infer that

∇jRim −∇mRij = Rjmil∇lh+ ρ(∇jRgim −∇mRgij) + (∇jλgim −∇mλgij)

+α(∇j∇iφ∇mφ−∇m∇iφ∇jφ),

which is equation (6).

According to the second equation, we can write

(1− 2ρ(k − 1))∇iR = 2∇lh(−∇i∇lh+ λgil + ρRgil + α∇iφ∇lφ)

+2(k − 1)∇iλ+ 2α∇i|∇φ|2 − 2α∇j∇iφ∇jφ

= −2∇lh∇i∇lh+ 2λ∇ih+ 2ρR∇ih+ 2α∇lh∇iφ∇lφ

+2(k − 1)∇iλ+ 2α∇i|∇φ|2 − 2α∇j∇iφ∇jφ.

Since ∇i|∇lh|2 = 2∇lh∇i∇lh, we have

1− 2ρ(k − 1))∇iR = −∇i|∇lh|2 + 2λ∇ih+ 2ρR∇ih+ 2α∇lh∇iφ∇lφ

+2(k − 1)∇iλ+ 2α∇i|∇φ|2 − 2α∇j∇iφ∇jφ,

and hence

∇i[(1− 2ρ(k − 1))R+ |∇lh|2 − 2(k − 1)λ− 2α|∇φ|2 + 2α∇iφ∇jφ]

= (2λ+ 2ρR+ 2α∇iφ∇jφ)∇ih,

this completes the proof of equation (7). □
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Proposition 2.2. For an almost GRHBS (Nk, g, h, λ, ρ, φ), we have

divRicφ =
1

2
∇Rφ − ατg(φ)∇φ, (9)

g(∇Rφ,∇h) = 2(k − 1)g(∇h,∇λ) + 2(k − 1)ρg(∇h,∇R) + 2Ricφ(∇h,∇h), (10)

−1

2
∇Rφ +Ricφ(∇h, .) + (k − 1)∇λ+ (k − 1)ρ∇R = 0, (11)

∇(Rφ + |∇h|2) = 2(k − 1)[∇λ+ ρ∇R] + 2λ∇h+ 2ρR∇h, (12)

1

2
∆|∇h|2 = |Hessh|2 − (k − 2)g(∇λ,∇h)− 2(k − 1)ρg(∇R,∇h)

−Ricφ(∇h,∇h) + α|g(∇φ,∇h)|2. (13)

Proof. Using the second Bianchi identity divRic =
1

2
∇R, and the identity div(∇φ⊗∇φ) =

τg(φ)∇φ+
1

2
∇|∇φ|2, we obtain

1

2
∇R = divRic

= divRicφ + αdiv(∇φ⊗∇φ)

= divRicφ + ατg(φ)∇φ+
α

2
∇|∇φ|2,

this proves (9).

Using Rij
φ = Rij − α∇iφ∇jφ and (3), we have

Rij
φ = ρRgij + λgij − hij .

Taking the covariant derivative, leads

Rijm
φ = ρ∇mRgij +∇mλgij − hij,m, (14)

and tracing with respect to j,m, concludes

Rimm
φ = ρ∇iR+∇iλ− him,m.

By Ricci identity him,m − hmm,i = Rimhm, and (9), we infer

1

2
Ri

φ − ατg(φ)∇φ = ρ∇iR+∇iλ− hmm,i −Rimhm,

here τg(φ) = trace∇dφ. Taking the trace of equation (14) with respect to i, j, we obtain

Ri
φ = kρ∇iR+ k∇iλ− hmm,i,

so using the last two above equations for an almost GRHBS, we arrive at

Ri
φ = 2(k − 1)ρ∇iR+ 2(k − 1)∇iλ+ 2Rimhm − 2ατg(φ)∇φ,

and by Ric = Ricφ + α∇φ⊗∇φ, we get

g(∇Rφ,∇h) = 2(k − 1)g(∇λ,∇h) + 2(k − 1)ρg(∇R,∇h) + 2Ricφ(∇h,∇h).

For the next identity note that ρRg + λg = Hessh + Ricφ, so by taking divergence, we

conclude

div((ρR+ λ)g) = divHessh+ divRicφ.
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Since divRicφ =
1

2
∇Rφ − ατg(φ)∇φ and divHessh = ∇∆h+Ric(∇h, .), we obtain

div((ρR+ λ)g) = ∇∆h+Ric(∇h, .) + 1

2
∇Rφ − ατg(φ)∇φ. (15)

Applying (4) in (15), we infer

ρ∇R+∇λ = kρ∇R+ k∇λ− 1

2
∇Rφ +Ric(∇h, .)− ατg(φ)∇φ,

This completes the proof of (11).

From the second identity, we infer

∇Rφ = 2(k − 1)∇λ+ 2(k − 1)ρ∇R+ 2Ricφ(∇h, .).

Applying (3) in the above equation, leads

∇Rφ = 2(k − 1)∇λ+ 2(k − 1)ρ∇R+ 2(λg + ρRg −Hessh)∇h

= 2(k − 1)∇λ+ 2(k − 1)ρ∇R+ 2λ∇h+ 2ρR∇h− 2Hessh(∇h)

= 2(k − 1)[∇λ+ ρ∇R] + 2λ∇h+ 2ρR∇h−∇|∇h|2,

so

∇(Rφ + |∇h|2) = 2(k − 1)[∇λ+ ρ∇R] + 2λ∇h+ 2ρR∇h.

Using Bochner formula and (10), we find

1

2
∆|∇h|2 = |Hessh|2 + kg(∇λ,∇h)− g(∇Rφ,∇h) + Ric(∇h,∇h).

Inserting Rφ = λ− α|∇ϕ|2 and Ric = Ricφ + α∇ϕ⊗∇ϕ in last equation, we have

1

2
∆|∇h|2 = |Hessh|2 + kg(∇λ,∇h)− 2(k − 1)g(∇λ,∇h)− 2(k − 1)ρg(∇R,∇h)

−2Ricφ(∇h,∇h) + Ric(∇h,∇h)

= |Hessh|2 − (k − 2)g(∇λ,∇h)− 2(k − 1)ρg(∇R,∇h)− Ricφ(∇h,∇h)

+α|g(∇φ,∇h)|2.

□

Since the almost gradient Ricci solitons are a special kind of gradient Ricci solitons,

we have the same identities for GRHBS. We just take ∇λ = 0 to conclude the following:

Corollary 2.1. For a GRHBS similarly we have

divRicφ =
1

2
∇Rφ − ατg(φ)∇φ, (16)

g(∇Rφ,∇h) = 2(k − 1)ρg(∇R,∇h) + 2Ricφ(∇h,∇h), (17)

−1

2
∇Rφ +Ricφ(∇h, .) + (k − 1)ρ∇R = 0, (18)

∇(Rφ + |∇h|2) = 2(k − 1)ρ∇R+ 2λ∇h+ 2ρR∇h, (19)

1

2
∆|∇h|2 = |Hessh|2 − 2(n− 1)ρg(∇R,∇h)− Ricφ(∇h,∇h) + α|g(∇φ,∇h)|2.(20)
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Lemma 2.1. For an almost RHBS (Nk, g, Y, λ, ρ, φ), we have

(1− kρ)

2
∆|Y |2 = (1− kρ)|∇Y |2 + (kρ− 1)Ric(Y, Y ) + kρ∇Y divY

+2ρ(1− kρ)g(∇R, Y )− (k(2ρ+ 1)− 2)g(∇λ, Y )

+2α(1− kρ)g(τg(φ)∇φ, Y )− αkρg(∇|∇φ|2, Y ), (21)

and

(1− kρ)

2
(∆−∇Y )|Y |2 = (1− kρ)|∇Y |2 + λ(kρ− 1)|Y |2

+ρ(kρ− 1)R|Y |2 + α(kρ− 1)|∇Y φ|2

+kρ∇Y divY + 2ρ(1− kρ)g(∇R, Y )

−(k(2ρ+ 1)− 2)g(∇λ, Y )

+2α(1− kρ)g(τg(φ)∇φ, Y )− αkρg(∇|∇φ|2, Y ). (22)

Proof. By taking divergence of (2), we have

2divRic + div(LY g) = 2∇λ+ 2ρ∇R+ 2α∇(∇φ⊗∇φ), (23)

and by tracing of (2), we get

(1− kρ)R+ divY = kλ+ α|∇φ|2,

hence

(1− kρ)∇YR+∇Y divY = k∇Y λ+ α∇Y |∇φ|2. (24)

From Lemma 2.3 of [5], we have

div(LY g)(Y ) =
1

2
∆|Y |2 − |∇Y |2 +Ric(Y, Y ) +∇Y divY. (25)

Using the contracted second Bianchi identity, (23) and (24), we obtain

∇Y (divY ) = (kρ− 1)∇YR+ kg(∇λ, Y ) + αg(∇|∇φ|2, Y )

= 2(kρ− 1)divRic(Y ) + kg(∇λ, Y ) + αg(∇|∇φ|2, Y )

= (kρ− 1)
(
− div(LY g)(Y ) + 2ρg(∇R, Y ) + 2g(∇λ, Y )

+2αg(∇(∇φ⊗∇φ), Y )
)
+ kg(∇λ, Y ) + αg(∇|∇φ|2, Y ).

Placing (25) in above equation, we arrive at

∇Y (divY ) = (1− kρ)(
1

2
∆|Y |2 − |∇Y |2 +Ric(Y, Y ) +∇Y divY )

+2ρ(kρ− 1)g(∇R, Y ) + (k(2ρ+ 1)− 2)g(∇λ, Y )

+2α(kρ− 1)g(∇(∇φ⊗∇φ), Y ) + αg(∇|∇φ|2, Y ).

Since ∇(∇φ⊗∇φ) = τg(φ)∇φ+
1

2
∇|∇φ|2, the proof of (21) is complete. By (2), we have

Ric(Y, Y ) = −1

2
(LY g)(Y, Y ) + λ|Y |2 + ρR|Y |2 + α|∇Y φ|2. (26)
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Using (26) in first equation of this lemma, we deduce

(1− kρ)

2
∆|Y |2 = (1− kρ)|∇Y |2 + (kρ− 1)

(
− 1

2
(LY g)(Y, Y ) + λ|Y |2

+ρR|Y |2 + α|∇Y φ|2
)
+ kρ∇Y divY

+2ρ(1− kρ)g(∇R, Y )− (k(2ρ+ 1)− 2)g(∇λ, Y )

+2α(1− kρ)g(τg(φ)∇φ, Y )− αkρg(∇|∇φ|2, Y ).

Since LY g(Y, Y ) = 1
2∇Y |Y |2, we infer

(1− kρ)

2
∆|Y |2 = (1− kρ)|∇Y |2 + (1− kρ)

2
∇Y |Y |2 + λ(kρ− 1)|Y |2

+ρ(kρ− 1)R|Y |2 + α(kρ− 1)|∇Y φ|2 + kρ∇Y divY

+2ρ(1− kρ)g(∇R, Y )− (k(2ρ+ 1)− 2)g(∇λ, Y )

+2α(1− kρ)g(τg(φ)∇φ, Y )− αkρg(∇|∇φ|2, Y ),

this proves (22). □

Now we prove Theorem 1.1 here.

Proof of Theorem 1.1. Taking divergence of (12), we have

∆Rφ +∆|∇h|2 − 2(k − 1)∆λ− ρ∆R− 2 < ∇λ,∇h > −2λ∆h = 0. (27)

Plugging (13) into (27), we obtain

∆Rφ + 2|Hessh|2 − 2(k − 2) < ∇λ, λh > −4(k − 1)ρ < ∇R,∇h > −2Ricφ(∇h,∇h)

+2α| < ∇φ,∇h > |2 − 2(k − 1)∆λ− ρ∆R− 2 < ∇λ,∇h > −2λ∆h = 0,

and by (10), we get

∆Rφ + 2|Hessh|2 − 2(k − 2) < ∇λ,∇h > −4(k − 1)ρ < ∇R,∇h >

+2(k − 1) < ∇λ,∇h > +2(k − 1)ρ < ∇R,∇h > − < ∇Rφ,∇h >

+2α| < ∇φ,∇h > |2 − 2(k − 1)∆λ− ρ∆R− 2 < ∇λ,∇h > −λ∆h = 0.

Hence

∆Rφ + 2|Hessh|2 − 2kρ < ∇R,∇h > − < ∇Rφ,∇h > +2α| < ∇φ,∇h > |2

−2(k − 1)∆λ− ρ∆R− 2λ∆h = 0. (28)

Using the identity |Hessh− 1

k
g∆h|2 = |Hessh|2 − 1

k
(∆h)2, equation (28) becomes

∆Rφ + 2|Hessh− 1

k
g∆h|2− < ∇Rφ,∇h > −2(k − 1)∆λ− 2∆h(λ− 1

k
∆h)

−2kρ < ∇R,∇h > −ρ∆R+ 2α| < ∇φ,∇h > |2 = 0.

Notice that ∆h = kλ−Rφ so
1

k
Rφ = λ− 1

k
∆h, thus

∆Rφ + 2|Hessh− 1

k
g∆h|2− < ∇Rφ,∇h > −2(k − 1)∆λ− 2

k
Rφ∆h

−2kρ < ∇R,∇h > −ρ∆R+ 2α| < ∇φ,∇h > |2 = 0.
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Integrating over N , one has

2

∫
N

|Hessh− 1

k
g∆h|2dv =

k − 2

k

∫
N

< ∇Rφ,∇h > dv − 2α

∫
N

| < ∇φ,∇h > |2dv

+2kρ

∫
N

< ∇R,∇h > dv + ρ

∫
N

∆Rdv.

Since ∇Rφ = ∇R− α∇|∇ϕ|2, we obtain

2

∫
N

|Hessh− 1

k
g∆h|2dv =

k − 2

k

∫
N

< ∇R,∇h > dv

−k − 2

k

∫
N

α < ∇|∇φ|2,∇h > dv

−2α

∫
N

| < ∇φ,∇h > |2dv

+2kρ

∫
N

< ∇R,∇h > dv + ρ

∫
N

∆Rdv.

□

We have next Lemma just like Lemma 3.1 in [8].

Lemma 2.2. Let (Nk, g, Y, λ, ρ, α) be an almost RHBS with K ≥ 3. If Y ̸= 0 is LY g = 2ψg,

thus we get

(1− kρ)∇jR = ∇j(α|∇φ|2)− kα∇j∇iφ∇jφ+ k(
1

2
− ρ)∇jR. (29)

If ∇φ is constant, and N is connected, then R and λ− ψ are constant.

Proof. Since Y is conformal, we get the following

Ric− α∇φ⊗∇φ = (λ+ ρR− ψ)g,

and in local coordinates, we conclude

Rij − α∇iφ∇jφ = (λ+ ρR− ψ)gij . (30)

Taking the divergence, we obtain

∇iRij − α∇i∇iφ∇jφ = ∇i(λ+ ρR− ψ)gij ,

and hence

(
1

2
− ρ)∇jR− α∇i∇iφ∇jφ = ∇j(λ− ψ). (31)

On the other hand, taking trace and derivation of (30), we get

(1− kρ)∇jR−∇j(α|∇φ|2) = k∇j(λ− ψ). (32)

According to (31) and (32), we have

(1− kρ)∇jR = ∇j(α|∇φ|2) + k∇j(λ− ψ)

= ∇j(α|∇φ|2) + k(
1

2
− ρ)∇jR− kα∇i∇iφ∇jφ.

So if ∇φ is constant, and N be connected, then both R and λ− ψ are constant. □
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Corollary 2.2. With the same assumptions as in Lemma 2.2, we infer

(1) If N is compact, then LY g = 0, and hence N is a trivial RHBS.

(2) If N is non-compact, complete, and a GRHBS, then either N is isometric to the Eu-

clidean space, or LY g = 0.

In fact, we can say that this corollary is the generalization of Theorem 3 in [2], and

Theorem 1.3 in [8]. Now, we can prove Theorem 1.2 by Lemma 2.1.

Proof of Theorem 1.2. Integrating from both sides of (21) on compact N , we have∫
N

[(1− kρ)|∇Y |2 + (kρ− 1)Ric(Y, Y ) + kρ∇Y divY + 2ρ(1− kρ)g(∇R, Y )

−(k(2ρ+ 1)− 2)g(∇λ, Y ) + 2α(1− kρ)g(τg(φ)∇φ, Y )− αnρg(∇|∇φ|2, Y )]dv = 0,

and by the fact that ρ ̸= 1

k
, we get∫

N

|∇Y |2 =

∫
N

[Ric(Y, Y ) +
kρ

kρ− 1
∇Y divY − 2ρg(∇R, Y )

− (k(2ρ+ 1)− 2)

kρ− 1
g(∇λ, Y )− 2αg(τg(φ)∇φ, Y )

− αkρ

kρ− 1
g(∇|∇φ|2, Y )]dv,

so if ∫
N

[Ric(Y, Y ) +
kρ

kρ− 1
∇Y divY − 2ρg(∇R, Y )− (k − (2ρ+ 1)− 2)

kρ− 1
g(∇λ, Y )

−2αg(τg(φ)∇φ, Y )− αkρ

kρ− 1
g(∇|∇φ|2, Y )]dv ≤ 0

then Y is Killing vector field. Consequently (Nk, g, Y, λ, ρ, φ) is trivial. □

By Proposition 2.2, we can prove Theorem 1.3 as follows:

Proof of Theorem 1.3. Taking divergence of (12), we conclude

∆Rφ +∆|∇h|2 − 2(k − 1)∆λ− 2 < ∇λ,∇h > −2ρ < ∇R,∇h >

−2λ∆h− 2ρR∆h− 2(k − 1)ρ∆R = 0. (33)

Replacing (13) in (33), we have

0 = ∆Rφ + 2|Hessh|2 − 2(k − 1) < ∇λ,∇h > −2(2k − 1)ρ < ∇R,∇h >

−2Ricφ(∇h,∇h) + 2α| < ∇φ,∇h > |2 − 2(k − 1)∆λ

−2λ∆h− 2ρR∆h− 2(k − 1)ρ∆R.

Substituting (10) in last equation, we arrive at

0 = ∆Rφ + 2|Hessh|2 − 2kρ < ∇R,∇h > − < ∇Rφ,∇h > +2α| < ∇φ,∇h > |2

−2(k − 1)∆λ− 2λ∆h− 2ρR∆h− 2(k − 1)ρ∆R.
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Using identity ∆h = kλ−Rφ, we infer

0 = ∆Rφ + 2|λg + ρRg − Ricφ|2− < ∇Rφ,∇h > −2kρ < ∇R,∇h > −2(k − 1)∆λ

−2λ(kλ−Rφ)− 2ρR(kλ−Rφ) + 2α| < ∇φ,∇h > |2 − 2(k − 1)ρ∆R

= ∆Rφ + 2|Ricφ|2 + 2kρR2 + 2kρλR− 2λRφ − 2ρRRφ− < ∇Rφ,∇h >

−2kρ < ∇R,∇h > −2(k − 1)∆λ+ 2α| < ∇φ,∇h > |2 − 2(k − 1)ρ∆R.

Based on the condition ∆λ ≤ 0, which was stated in the assumptions of the theorem, and

inequality |Ricφ|2 ≥ 1

k
R2

φ, we conclude

0 ≥ ∆Rφ +
2

k
R2

φ + 2kρλR− 2λRφ − 2ρRRφ −∇Rφ(∇h)− 2kρ < ∇R,∇h >

−2(k − 1)ρ∆R.

Hence, if λ = 0, and R is constant, by compactness of N , there is a point belong to N named

q such that Rφ adopts its minimum. Applying maximum principle at this point, we have

∆Rφ(q) ≥ 0, and ∇Rφ(q) = 0, next by Rmin(Rmin − kρR) ≤ 0, we get the results. □

Now we prove the last important result of this paper.

Proof of Theorem 1.4. Integrating of (13), leads

1

2

∫
N

∆|∇h|2dv =

∫
N

|Hessh|2dv − (k − 2)

∫
N

< ∇λ,∇h > dv

−2(k − 1)ρ

∫
N

< ∇R,∇h > dv −
∫
N

Ricφ(∇h,∇h > dv

+α

∫
N | < ∇φ,∇h > |2dv.

Since N is compact, we get∫
N

|Hessh|2dv =

∫
N

(Ricφ(∇h,∇h) + (k − 2) < ∇λ,∇h > +2(k − 1)ρ < ∇R,∇h >)dv

−α
∫
N

| < ∇φ,∇h > |2dv. (34)

So, the second integration of RHS is nonnegative, and by assumption, we know Hessh = 0.

Therefore ∇h is a Killing vector field, and h is constant. □

Proposition 2.3. Let (Nk, g, h, λ, ρ, φ) be an almost GRHBS with k ≥ 2, and Ricφ ≥
0(Ricφ ≤ 0). Then Rφ is constant, iff Ricφ(∇h,∇h) = 0, < ∇λ,∇h >≤ 0 and <

∇R,∇h >≤ 0.

Proof. By Proposition 2.2, we obtain

1

2
∇Rφ(∇h) = (k − 1) < ∇λ,∇h > +(k − 1)ρ < ∇R,∇h > +Ricφ(∇h,∇h),

by assumptions we conclude ∇Rφ = 0, so Rφ is constant. □
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Conclusion

Many authors have obtained some concepts and results of Ricci soliton for Ricci-

Harmonic and Ricci Bourguignon solitons. Since Ricci-Harmonic Bourguignon solitons are

generalizations of both Ricci-Harmonic and Ricci Bourguignon solitons, it is important to

study the structure of these solitons. Also, it is interesting to investigate the conditions

that cause these solitons have special vector fields, like Killing and conformal vector fields.

Moreover, the study of the conditions that infer triviality results for all kinds of solitons is an

important topic in their geometry. So, in this paper, we tried to investigate the important

properties in the geometry of this new solitons. There are several points that require further

study. For instance, as a generalization, one can define Ricci-harmonic Bourguignon solitons

on multiply warped products. It is also interesting to replace Ricci with ∗-Ricci (this notion
was introduced by Tachibana in [11]) in equation (2).
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