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SOME RESULTS ON RICCI-HARMONIC BOURGUIGNON SOLITONS
AND APPLICATIONS

Sakineh Hajiaghasi’, Shahroud Azami?, Jafar Ebrahimi®

We study some results for the almost Ricci-harmonic Bourguignon soliton
which is a generalization of the Ricci-harmonic soliton. Next, we find some integral
formulas for the compact almost gradient Ricci-harmonic Bourguignon soliton. As an
important application, we prove that every almost gradient Ricci-harmonic Bourguignon

soliton with dimension n > 3 is trivially rigid under certain condition.
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1. Introduction

Consider two complete Riemannian n-dimensional manifolds (Mj, g1), and (Ma, g2)
with ¢ : My — Mo, such that ¢ is critical point of the energy integral E(¢) = |, |V<p|§dv,
and M, is isometrically embedded in R%, d > n. By an one parameter family of Riemannian
metrics (g(z,t), o(z,t)), t € [0,T), and a family of smooth maps ¢(x,t), the Ricci-harmonic
Bourguignon flow is defined by

d
&@(xat) = ngo(x,t), QD(O) = ¥o-

Here « is a positive constant, and 7,¢ is the intrinsic Laplacian of map ¢ which denotes the
tension field of map ¢ [3]. In (1), if we have @ = 0 or ¢ is a constant map, then it defines
Ricci-Bourguignon flow. This concept was introduced in [7]. If p = 0, then (1) is just the
Ricci-harmonic flow, and if & = p = 0, then it reduces to the Ricci flow.

1.1. The Ricci-harmonic Bourguignon soliton

Let (M, g1) be a smooth n-dimensional Riemannian manifold, and Y : My} — TM;
be a smooth vector field. Then the system (M, g1,Y, A\, p, ) defines a Ricci-harmonic
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Bourguignon soliton (RHBS for short), when it satisfies in the following equations

1
Ric + §Lyg =Ag +pRg+aVe® Vo,
g — Ly Ve =0, (2)

where A, o, and p are constants, R is scalar curvature, £y is Lie derivative along vector field
Y, and ¢ : (M1,91) = (Ma,g2) is smooth function, where My, My are static Riemannian
manifolds. Here we provide some special examples of solitons:

(1) If in first equation of (2) @« = p=0or p =0 and Vy = 0, then M; is Ricci soliton

Ric + %Lyg = Ag.
(2) f =0 o0r Vo =0, then M is Ricci-Bourguignon soliton and equation becomes
Ric + %Lyg = \g + pRg.
(3) If p =0 then, M; is Ricci-harmonic soliton and equation changes as
Ric + %Lyg =g+ aVyp® V.

When A is a smooth function, we call the manifold endowed with (2), an almost Ricci-
harmonic Bourguignon soliton.

In definition of RHBS if Y = VA for some smooth function A on My, then M is called a
gradient Ricci-harmonic Bourguignon soliton (GRHBS for short). Moreover, (2) changes as
follows:

Ric + Hessh — pRg —aVp @ Ve = Ag,
Tgp— < Ve, Vh> = 0. (3)

The GRHBS is called steady, expanding or shrinking respectively, when A = 0, A < 0 or
A>0.

In this paper, we denote Ric — aVy ® Ve by Ric,, its components in local coordinates by
ng = R;; — aV;pV e, and the metric trace of ng by R, := R— a|Vp|%.

Some basic structural equations for compact almost Ricci-Bourguignon solitons, and almost
Ricci-harmonic solitons were proved in [1] and [8]. In [8], Dwivedi showed that a compact
gradient Ricci-Bourguignon soliton is isometric to an Euclidean sphere, if it has constant
scalar curvature or its associated vector field is conformal. Abolarinwa [1] proved that a
nontrivial gradient almost Ricci-harmonic soliton N* with & > 2, and constant map ¢ is
isometric to an k-Euclidean sphere, iff any of the following conditions hold:

(1) (N, g) has constant scalar curvature,

(2) [y < Ricy, Ah > dv =0,

(3) [y (Ricy(Vh,Vh) + (n—2) < VA, Vh > )dv <0,

(4) Vh is a conformal vector field.

Here dv is the volume measure of N. Also, he obtained the main condition for a gradient
almost Ricci-harmonic soliton (RH ), to be rigid in the sense of triviality. See [4, 5, 6, 9, 10]
for more study on rigidity and triviality of Ricci solitons.

Motivated by the mentioned articles, in this paper we succeeded in classifying Ricci-harmonic
Bourguignon solitons. Also, we generalized the rigidity results in [1], for gradient Ricci-

harmonic Bourguignon solitons under certain conditions. Here is our first result:
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Theorem 1.1. Let (N, g, h,\, p,¢) be a k-dimensional compact almost GRHBS. The fol-

lowing equation holds on N:
k—2

1
2/ |Hessh — —gAh]*dv = (—— +2k:p)/ g(VR,Vh)dv
N k k N

k—2
———= [ ag(V|Vyp|*, Vh)dv
N

—2a/ |g(VLp,Vh)|2dv+p/ ARdv,
N N
where dv is the volume element of N.

Studying on traviality results for Ricci-harmonic Bourguignon solitons, we provide
the following classification:

1
Theorem 1.2. Let (N*,g,Y,\, p,¢) be a compact almost RHBS. For k >3, If p # Z and

(k—(2p+1)—2)
kp—1

k
/ [Ric(Y,Y) + —L—VydivY — 2pg(VR,Y) — g(VA,Y)
N

kp—1
akp
—2ag(7y(9)Ve,Y) —
D—
thus Y is a Killing vector field, and M is a trivial RHBS.
We tried to know that under which conditions different types of GRHBS (i.e. steady, shrink-
ing, expanding) have nonnegative scalar curvature, although we just proved the next theorem

19(V|V¢I2,Y)]dv <0,

for steady Ricci-harmonic Bourguignon solitons.

Theorem 1.3. For a compact almost RHBS (N*,g,h,\, p, o) with AN < 0, let Rpin :=
miny Ry, then

(1) if N be steady with R =0, then Ryin =0,

(2) if N be steady and R > 0, then 0 < Ry < kpR,

(8) if N be steady and R < 0, then kpR < Rin < 0.

The next result is the generalization of [1] for (RH)4soliton to the almost GRHBS.
Theorem 1.4. Let (N*,g,h, A, p,p) be an almost GRHBS with k > 3. If
/N(Ri%(th Vh) + (n—2)g(VA, Vh) +2(n—1)pg(VR,Vh))dv <0,
then N is trivially rigid.

2. Preliminaries

We need the following propositions to prove our main results.

Proposition 2.1. For an almost GRHBS (N*,g,h,\, p,¢), the following equations hold

(1—kp)R+Ah = k\+a|Ve]? (4)

1
(5 - p(k‘ — 1))Vz‘R = R;V,h+ (k — 1)Vi)\ + oni|V<p|2 — OéVjVigOngO, (5)
ViRim = VimRij = RjmaVih+ p(ViRgim — ViRgij) + (VjAgim — VinAgij) (6)

+a(V;VipVimp — Vi, VipV,ip),
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Vil(1 = 2p(k — 1) R+ |Vih|? — 2(k — DA — 2a|Ve|* 4+ 2aV,;0V ;¢ (7)
= (2A+2pR +2aV,;pV;p)V,h.
Proof. For an almost GRHBS we have
Ri; + V;Vih = Agi; + pRgij + aVoVjp, (8)

and taking the trace of this equation, we get the result for (4).
Taking the covariant derivative of (4) in a local orthonormal frame, we deduce that

(1 —kp)ViR+ V;V;V;h = EkV, A+ aV;|Ve|?.
Applying the consequence of contracted second Bianchi identity, we infer
(1 —kp)ViR = RyVih + kVi\ + aV,|Vy|> — V,;V,V;h.
If we substitute equation (8), in the above equation , we find
(1—kp)ViR = —V;(—Rij + Agij + pRygij + aVipV;p) + RyVih +nV;\ + aV; | V|2
Using the second Bianchi identity, we arrive at
(1—-kp)V,R = %VZR — Vi) — pViR — aV,;VipVip + RyVih +nV A+ aV,|Ve|?.
This completes the proof of (5). From (8), we get
ViRim —VmRij = (VmViVjh—=V,;ViVy,h) + p(ViRgim — Vi Rgij)
+(ViXim — Vi Agi;) + (Vi VioVip — Vi VipVie)
and rotating indices, we infer that
ViRim — VimRij = RjmuVih+ p(ViRgim — Vi Rgij) + (Vi gim — Vi Agij)
+a(V;iVioVimp — Vi, VipV,p),
which is equation (6).
According to the second equation, we can write
(1=2p(k—=1)V,R = 2V|h(=V;Vih+ Agi + pRgii + aV;oV )
+2(k — 1)V +2aV;|Vp|? — 2aV; VoV, 0
= =2V,hV,;Vih + 2AV;h + 2pRV;h + 2aV hV oV ¢
+2(k — 1)ViA + 2aV,|Vp|* — 2aV,; VoV p.
Since V;|Vh|? = 2V|hV;V h, we have
1-2p(k—1)ViR = —Vi|Vih|> + 2\V;h + 2pRV;h + 2aVhV;0V, ¢
+2(k — 1)V 4+ 2aV;|Vp|? — 2aV,; VoV,

and hence
Vil(1 = 2p(k — 1) R+ |Vih|? — 2(k — DA — 2a|Ve|* 4+ 2aV,;V ;¢
= (2A+2pR +2aV,;pV;p)V,h,

this completes the proof of equation (7). |
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Proposition 2.2. For an almost GRHBS (N*,g,h,\, p, ), we have

1

divRic, = §VR¢ —aty(p) Ve, 9)

g(VR,,Vh) = 2(k — 1)g(Vh, V) + 2(k — 1)pg(Vh, VR) + 2Ric,(Vh, Vh), (10)
1

—5VER, + Ricy,(Vh,.) + (k= 1)VA+ (k— 1)pVR = 0, (11)

V(R, + |Vh|?) = 2(k — 1)[VA + pVR] + 2AVh + 2pRVh, (12)

%mvm? — [Hessh|? — (k — 2)g(V\, Vh) — 2(k — 1)pg(VR, Vh)
—Ric,(Vh, Vh) + a|g(Ve, Vh)|2. (13)
Proof. Using the second Bianchi identity divRic = %VR, and the identity div(Vo ® V) =
74(0) Vo + %V|V<p|2, we obtain
%VR = divRic
= divRic, + adiv(Ve ®@ Vo)
= divRic, + aty(¢) Ve + %V\V(pﬁ,

this proves (9).
Using Ri,j = R;; — aV;pV;p and (3), we have

ng = pRgij + )\gij — h”
Taking the covariant derivative, leads
Rfajm = pVimRgij + VimAgij — hijm, (14)
and tracing with respect to 7, m, concludes
RE™ = pViR + Vi) = himm.
By Ricci identity him,m — Pmm,i = Rimhm, and (9), we infer
1o
§Rga - aT!J((p)V@ = psz + vz)‘ - hmm,i - Rimhv‘m
here 7,(¢) = traceVdp. Taking the trace of equation (14) with respect to 4, j, we obtain
R, = kpViR+ kVi\ = By i,
so using the last two above equations for an almost GRHBS, we arrive at
R}, = 2(k —1)pViR + 2(k — 1)V;A + 2R hn, — 207, () Vg,
and by Ric = Ric, + aVe ® Vi, we get
9(VR,,Vh) =2(k—1)g(VA, Vh) + 2(k — 1)pg(VR, Vh) + 2Ric,(Vh, Vh).

For the next identity note that pRg + Ag = Hessh + Ric,, so by taking divergence, we
conclude

div((pR+ \)g) = divHessh + divRic,,.
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1
Since divRic, = §VR¢ — a1y(p)Ve and divHessh = VAL + Ric(Vh,.), we obtain

1
div((pR + \)g) = VAh + Ric(Vh,.) + §VR</J —aty(¢)Ve. (15)
Applying (4) in (15), we infer
1
PVR+VA = kpVR+EVA— §VR¢ + Ric(Vh,.) — atg(p) Ve,

This completes the proof of (11).
From the second identity, we infer

VR, = 2(k—1)VA+2(k—1)pVR+ 2Ric,(Vh,.).
Applying (3) in the above equation, leads

VR, = 2(k—1)VA+2(k—1)pVR+2(\g+ pRg — Hessh)Vh
= 2(k—1)VA+2(k —1)pVR + 2AVh + 2pRVh — 2Hessh(Vh)
= 2(k—1)[VX+ pVR] + 2\Vh + 2pRVh — V|Vh/|?,

S0
V(R, +|Vh?) = 2(k — 1)[VA + pVR] + 2AVh + 2pRVh.
Using Bochner formula and (10), we find
1
§A\Vh\2 = |Hessh|? + kg(VA,Vh) — g(VR,, Vh) + Ric(Vh, Vh).
Inserting R, = A — a|V¢|? and Ric = Ric, + aVe ® V¢ in last equation, we have
1
5A|Vh|2 = |Hessh|? + kg(VA, Vh) —2(k — 1)g(VA, Vh) — 2(k — 1)pg(VR, Vh)
—2Ric,(Vh, Vh) + Ric(Vh, Vh)

= |Hessh|? — (k — 2)g(V\,Vh) — 2(k — 1)pg(VR, Vh) — Ric,(Vh, Vh)
+alg(Ve, Vh)[?.

O

Since the almost gradient Ricci solitons are a special kind of gradient Ricci solitons,
we have the same identities for GRHBS. We just take VA = 0 to conclude the following:

Corollary 2.1. For a GRHBS similarly we have

divRic, = %VRW —a1y(p) Ve, (16)
g(VR,,Vh) = 2(k — 1)pg(VR, Vh) + 2Ric,(Vh, Vh), (17)
—%VRW 4 Ric,(Vh, ) + (k — 1)pVR =0, (18)
V(R, + |Vh|?) = 2(k — 1)pV R + 2AVh + 2pRVh, (19)
%A|Vh|2 = |Hessh|* — 2(n — 1)pg(VR, Vh) — Ric,(Vh, Vh) + a|g(Ve, Vh)[*.(20)
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Lemma 2.1. For an almost RHBS (N*,g,Y,\, p,¢), we have

WMYF = (1—kp)|VY]? + (kp— DRic(Y,Y) + kpVydivY
+2p(1 = kp)g(VR,Y) — (k(2p+ 1) — 2)9(VA,Y)
+20(1 = kp)g(74(0) Ve, Y) — akpg(V[Vp|?, Y), (21)
and
URl A o) = (- ko) VYP + Mk~ DIYP?

+p(kp = DRIY|* + a(kp — 1)[Vy o|?

+kpVydivY 4 2p(1 — kp)g(VR,Y)

—(k(2p+1) = 2)g(VA,Y)

+2a(1 = kp)g(14(p) Ve, Y) — akpg(V|Ve[, V). (22)

Proof. By taking divergence of (2), we have

2divRic + div(Ly g) = 2VA + 2pVR + 2aV (Ve @ Vi), (23)
and by tracing of (2), we get

(1 —kp)R + divY = kX + a|Ve|?,
hence
(1 —kp)Vy R+ VydivY = kVy )\ + aVy|Ve|2 (24)

From Lemma 2.3 of [5], we have

div(Ly g)(Y) = %A\YF — |VY|? + Ric(Y,Y) + VydivY. (25)
Using the contracted second Bianchi identity, (23) and (24), we obtain

Vy(divY) = (kp—1)VyR+kg(VA,Y) + ag(V|Vy|?,Y)
= 2(kp — 1)divRic(Y) + kg(V\,Y) + ag(V|Ve[%,Y)
= (kp—=1)(—div(Lyg)(Y) +2pg(VR,Y) +29(VA,Y)
+2ag9(V(Ve @ V), Y)) + kg(VA,Y) + ag(V|Ve|?,Y).

Placing (25) in above equation, we arrive at

Vy(divy) = (1- kp)(%my\? — |[VY|? 4+ Ric(Y,Y) + VydivY)
+2p(kp — 1)g(VR,Y) + (k(2p+ 1) — 2)g(VA,Y)
+2a(kp = 1)g(V(Ve © V), Y) 4+ ag(V|Ve|, Y).

1
Since V(Vp @ Vo) = 74,(¢)Ve + §V|V<p|2, the proof of (21) is complete. By (2), we have

1
Ric(Y, Y) = —5(Lyg) (¥, ¥) + AV + pRIY P + o[ Tyl (26)
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Using (26) in first equation of this lemma, we deduce

1
2

+pR|Y > + a|Vy¢[?) + kpVydivY

+2p(1 = kp)g(VR,Y) — (k(2p + 1) — 2)g(VA,Y)

+2a(1 = kp)g(r4(£) Ve, Y) — akpg(V|Vel*,Y).

Since Ly g(Y,Y) = 3Vy|Y|?, we infer

W awe = koo + 20y v g ame - iy
+p(kp— DR|Y > + a(kp — 1)|Vyp|? + kpVydivY
+2p(1 = kp)g(VR,Y) — (k(2p +1) = 2)9(VA,Y)
+2a(1 = kp)g(1y(9)Ve,Y) — akpg(V|Ve|*,Y),
this proves (22). O

Now we prove Theorem 1.1 here.

Proof of Theorem 1.1. Taking divergence of (12), we have
AR, + A|Vh|? —2(k — 1)AXN — pAR — 2 < VA, Vh > —2A\Ah = 0. (27)
Plugging (13) into (27), we obtain
AR, + 2[Hessh|> — 2(k — 2) < VA, Ah > —4(k — 1)p < VR, Vh > —2Ric,(Vh, Vh)
+2a| < Vi, Vh > |> = 2(k — 1)AXN — pAR — 2 < VA, Vh > —2\Ah = 0,
and by (10), we get
AR, + 2[Hessh|? — 2(k — 2) < VA, Vh > —4(k — 1)p < VR, Vh >
+2(k—1) < VA, VA > +2(k - 1)p < VR,Vh > — <VR,,Vh >
+2a| < Vo, Vh > |? —=2(k — 1)AX — pAR — 2 < VA, Vh > —\Ah = 0.
Hence
AR, + 2|Hessh|> — 2kp < VR,Vh > — < VR,,Vh > +2a| < Vi, Vh > |2
—2(k — 1)AX — pAR — 2AAh = 0. (28)

1 1
Using the identity |Hessh — %gAh|2 = |Hessh|? — z(Ah)Q, equation (28) becomes

1 1
AR, + 2|Hessh — nghP— < VR,,Vh > —=2(k — 1)AX — 2Ah(\ — EAh)
—2kp < VR,Vh > —pAR +2a| < Vo, Vh > > =0.

1 1
Notice that Ah = kX — R, so %Rw =)\- EAh’ thus

1 2
AR, + 2|Hessh — EgAh|2— < VR,,Vh> —=2(k—1)AX - ERWAh
—2kp < VR,Vh > —pAR+2a| < Vi, Vh > |2 = 0.
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Integrating over N, one has

1 k—2
2/ |Hessh — —gAh|?dv = 7/ < VR,,Vh>dv— 2a/ | < Vo, Vh > |*dv
N k ko Jn N

+2k‘p/ <VR,Vh>dv+ p/ ARdv.
N N

Since VR, = VR — aV|V¢|?, we obtain
1 k-2
2 | |Hessh — —gAh|*dv = —— | <VR,Vh>dv
N k ko Jn
k2 ,
—— [ a<V|Vy|*,Vh > dv
ko Jn
—2a/ | < Vo, Vh > |?dv
N

+2k:p/ <VR,Vh>dv+ p/ ARdv.
N N

We have next Lemma just like Lemma 3.1 in [8].

Lemma 2.2. Let (N¥ g, Y, \, p,a) be an almost RHBS with K > 3. IfY # 0 is Ly g = 299,

thus we get
(1= kp)V,R = V;(alVeP) — kaV,VigV o + k(5 — p)V; R

If Vo is constant, and N is connected, then R and \ — 1 are constant.
Proof. Since Y is conformal, we get the following

Ric — aVp ® Vo = (A + pR — 9)g,
and in local coordinates, we conclude

Rij —aVipVip = (A + pR = ¥)gi;-
Taking the divergence, we obtain

ViRij —aV;VipVp = Vi(A+ pR — 1) gij,

and hence
1

(3 = PV;R = aViVipV;p = V;(A —¢).
On the other hand, taking trace and derivation of (30), we get
(1= kp)V;R = V;(alVe|*) = kV;(A = ).
According to (31) and (32), we have
(1-kp)V;R = V;(a|Ve’) +kV;(A— 1)
= V;(a|Ve]*) + k(% —p)\ViR — kaV;VoV .

So if Vi is constant, and N be connected, then both R and A\ — ¢ are constant.

(29)
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Corollary 2.2. With the same assumptions as in Lemma 2.2, we infer
(1) If N is compact, then Ly g =0, and hence N is a trivial RHBS.

(2) If N is non-compact, complete, and a GRHBS, then either N is isometric to the Eu-

clidean space, or Ly g = 0.

In fact, we can say that this corollary is the generalization of Theorem 3 in [2], and

Theorem 1.3 in [8]. Now, we can prove Theorem 1.2 by Lemma 2.1.
Proof of Theorem 1.2. Integrating from both sides of (21) on compact N, we have
/N[(l —kp)|[VY |2 + (kp — DRic(Y,Y) + kpVydivY + 2p(1 — kp)g(VR,Y)
~(k(2p+1) = 2)g(VAY) + 2a(1 = kp)g(ry(¢) V0, Y) — anpg(V|Ve[*,Y)]dv = 0,

1
and by the fact that p # 7 e get

k
/ VY|? = / [Ric(Y,Y) + —2—VydivY — 2pg(VR,Y)
N N kp—1

k(2p+1)—2

—((Zp_)l)gm, Y) = 209(7y () Ve, Y)
ak

5 19(VIVE Y lde,

so if
. kp ) (k—(2p+1)-2)
/N[Rlc(Y, Y)+ Fp— 1Vydle 2pg(VR,Y) - g(VA,Y)
akp

_2ag<Tg (@)VQp, Y) -

2
<
L a(VIVf Yy < 0

then Y is Killing vector field. Consequently (N*,g,Y, ), p, ¢) is trivial.
By Proposition 2.2, we can prove Theorem 1.3 as follows:

Proof of Theorem 1.3. Taking divergence of (12), we conclude

AR, + A|VA|* = 2(k — 1)AN -2 < VA, Vh > —2p < VR,Vh >
—2)\Ah — 2pRAR — 2(k — 1)pAR = 0.

Replacing (13) in (33), we have

0 = AR, +2[Hessh|*> —2(k—1) < VA, Vh > —2(2k — 1)p < VR,Vh >
—2Ric,(Vh, Vh) 4+ 2a| < Vo, Vh > |2 = 2(k — 1) A\
—2)\Ah — 2pRAR — 2(k — 1)pAR.

Substituting (10) in last equation, we arrive at

0 = AR, +2[Hessh|*> —2kp < VR,Vh > — < VR,,Vh > +2a| <V, Vh > |?

—2(k — 1)AX — 2AAh — 2pRAR — 2(k — 1)pAR.
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Using identity Ah = kX — R, we infer

0 = AR, +2|\g+pRg —Ric,|*~ < VR,,Vh > —2kp < VR,Vh > —2(k — 1)AX
—2X\(kX — R,) — 2pR(kA — Ry) +2a| < Vi, Vh > | = 2(k — 1)pAR
= AR, + 2|Ric,|* + 2kpR? + 2kpAR — 2AR, — 2pRR,— < VR,,Vh >
—2kp < VR,Vh > —2(k — 1) AN+ 2a| < Vo, Vh > |? = 2(k — 1)pAR.
Based on the condition AX < 0, which was stated in the assumptions of the theorem, and
1
inequality |Ricy,|? > ER?"’ we conclude
2
0 > AR, + %R?p + 2kpAR — 2AR, — 2pRR, — VR,(Vh) — 2kp < VR,Vh >
—2(k — 1)pAR.

Hence, if A = 0, and R is constant, by compactness of N, there is a point belong to N named
g such that R, adopts its minimum. Applying maximum principle at this point, we have
AR,(q) >0, and VR,(q) = 0, next by Rumin(Rmin — kpR) <0, we get the results. |

Now we prove the last important result of this paper.

Proof of Theorem 1.4. Integrating of (13), leads

1
7/ A|Vh|*dv = /|Hessh|2du—(k—2)/ < VA, Vh > dv
2 N N N

—2(k — 1)p/N < VR,Vh > dv— /N Ric,(Vh, Vh > dv
+a/N| < Vo, Vh > dv.
Since N is compact, we get
/N |Hessh|?dv = /JV(Ric¢(Vh, Vh) + (k—2) < VA, Vh > +2(k —1)p < VR,Vh >)dv
—a/N| <V, Vh > [2dv. (34)

So, the second integration of RHS is nonnegative, and by assumption, we know Hessh = 0.
Therefore Vh is a Killing vector field, and h is constant. O

Proposition 2.3. Let (N* g, h,\,p,¢) be an almost GRHBS with k > 2, and Ric, >
O(Ric, < 0). Then R, is constant, iff Ric,(Vh,Vh) = 0, < VA, Vh >< 0 and <
VR,Vh ><0.

Proof. By Proposition 2.2, we obtain
1
§VR¢,(Vh) =(k—1) < VA Vh>+(k—1)p < VR,Vh > +Ric,(Vh,Vh),

by assumptions we conclude VR, = 0, so R, is constant. O
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Conclusion

Many authors have obtained some concepts and results of Ricci soliton for Ricci-
Harmonic and Ricci Bourguignon solitons. Since Ricci-Harmonic Bourguignon solitons are
generalizations of both Ricci-Harmonic and Ricci Bourguignon solitons, it is important to
study the structure of these solitons. Also, it is interesting to investigate the conditions
that cause these solitons have special vector fields, like Killing and conformal vector fields.
Moreover, the study of the conditions that infer triviality results for all kinds of solitons is an
important topic in their geometry. So, in this paper, we tried to investigate the important
properties in the geometry of this new solitons. There are several points that require further
study. For instance, as a generalization, one can define Ricci-harmonic Bourguignon solitons
on multiply warped products. It is also interesting to replace Ricci with x-Ricci (this notion
was introduced by Tachibana in [11]) in equation (2).
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