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EXTRACTION OF ATTRIBUTES AND VALUES FROM
ONLINE TEXTS

Alexandra GHECENCO?, Traian REBEDEA?, Costin CHIRU?®

Web documents contain vast amounts of information that can be extracted
and processed to enhance the understanding of online data. Often, the structure of
the document can be exploited in order to identify useful information within it. Pairs
of attributes and their corresponding values are one such example of information
frequently found in many online retail websites. These concentrated bits of
information are often enclosed in specific tags of the web document, or highlighted
with certain markers which can be automatically discovered and identified. This
way, different methods can be employed to extract new pairs from other, more or
less similar, documents. The method presented in this paper relies on the DOM
(Document Object Model) structure and the text within web pages in order to
extract patterns consisting of tags and pieces of text and then to classify them.
Several classifiers have been compared and the best results have been obtained with
a C4.5 decision tree classifier.

Keywords: information retrieval; attribute-value pairs; information extraction;
text mining; classification

1. Introduction

This paper presents a system for extracting tokens that represent attributes
and their corresponding values from web pages. As part of the combined effort to
build a semantic web, this would improve the automatic understanding of web
pages by computers, giving additional meaning to texts. Furthermore, this would
significantly improve the efficiency and intuitiveness of web searches, by
correlating words and phrases to the role humans attribute to them in natural
conversations.

The web contains heterogeneous texts, most of which are structured in
HTML (or web) pages. Given their inherent tag (or DOM — Document Object
Model) hierarchy and division into specific components, web pages can be easily
split into entities that form a tree and that have attributes of their own. The basic
idea is that, based on the correlations found between these attributes and the role
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each analyzed entity plays in a semantic view, a classifier can be trained on a
manually annotated corpus with attribute-value pairs so that any web page may be
later processed and useful information derived from it by identifying the attribute-
value pairs with the trained classifier.

The rest of the paper is structured as follows. In the next section, we
present the most important previous approaches to the problem of attribute and
value extraction. Section 3 is dedicated to an overview of the proposed system,
while each component is described in detail in section 4. Then, section 5 describes
the experiments performed to validate our approach, together with the results
obtained by the system. Finally, the last section highlights the main contributions
of this paper and proposes several future improvements.

2. Related Work

Exploiting the Document Object Model (DOM) tree structure is a popular
idea in online information extraction, and the more similar a web page will be to
the ones in the training corpus, the better the accuracy — as pointed out by Ravi
and Pasca [1]. They developed a system that analyzes the location of the relevant
nodes (i.e. attributes and values) within the DOM tree, keeping track of it using
pattern vectors. The training phase consists in building these pattern vectors,
while the classification phase applies them to other pages, extracting the attributes
and values, together with a certain correlated probability. This approach is very
intuitive to humans and similar to the way we interpret web pages too — note how
on websites such as Wikipedia or retailer sites, punctual information, in the form
of attribute-value pairs, is usually in the same place relatively to the layout. In
computer science terms, this translates into pattern vectors, probabilities,
parameterization and machine learning techniques. The method presented in this
paper also takes into account the placement of important nodes within a webpage,
using their XPath and child / sibling information as training attributes in the
learning process. Moreover, a heuristic described by [1] is also of critical
importance in our proposed method: the discrimination between attribute nodes
and irrelevant nodes by the corresponding tag. Ravi and Pasca [1] suggest that
nodes representing an attribute are frequently enclosed in HTML tags that
emphasize the text within, such as <b>, <i>, <u>, etc. This helps building a set of
tags that are relevant to the learning algorithm and another set of tags that denotes
nodes that can be completely discarded — for instance, <img>, <script>, <meta>,
etc.

Ravi and Pasca [1] present a comparative analysis of the results obtained
with three variants of the system. The first represents the baseline system with
structured text, ranking the attributes by frequency. The second one (Shier) USES
hierarchical patterns to rank the attributes instead, while the third one (Dpatt) uses a
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previous, classic approach based on patterns such as X-of-Y to extract attributes
from unstructured text. Pruning by POS tags returned by WordNet [2] enhances
each of these subsystems, trimming out irrelevant parts of speech. The data source
consisted in web search results of querying class instances, filtering HTML
documents out of the first N results of a search.

While the system presented in this paper also relies on the DOM structure,
it does not use pattern vectors, but instead it builds training instances that are
classified by several algorithms. The best score for precision obtained by [1] was
0.87 with the Shier implementation at rank 5.

Moreover, as far as structuring information goes, tables are the most
effective way of synthesizing attribute-value relations, as observed by Wang et al.
[3]. They built a search engine that processes tables on the web and builds the
result set as a table as well, given a training set of tabular data for learning the
semantic connections between attributes (found in the header) and values (found
in the body of the table). Therefore, the previously mentioned set of relevant
nodes can be extended to contain tags such as <th> and <tr>. Their search engine
processed two corpora of tables — the ones in Wikipedia, counting up to 0.65
million, and the rest of the World Wide Web, around 0.3 billion pages — that
unified the retrieved information into a table-formatted answer.

In order to connect the data in a table with their meaning, the authors used
Probase [4], a probabilistic taxonomy of facts significantly larger than WordNet
(WordNet — 25,229 concepts, Probase — 2,653,872 concepts) containing sets of
ranked entities and instances for each concept. The first step in the algorithm they
designed was to find tables relevant to the query. Then, each table is scanned for
the header in order to assign a label/attribute to the data, and then one is generated
using Probase if the header cannot be found. The column containing entities is
identified, such that the remaining columns contain attributes and associated
values. If the header or entity column cannot be derived from the table, it is
discarded; otherwise, the information it contains is structured into relationships
and added to Probase for further use.

The data corpus used by this framework consists in approximately 65.5
million raw HTML tables extracted using a simple rule-based system that filters
out irrelevant tables (tiny, very large, calendars etc.) from webpages, paying
special attention to Wikipedia due to its high degree of relevance. Although not all
extracted tables are relational, Probase processing eliminates them at a later point.
Random sampling has led to a percentage of 79.5% relational tables. Interrogating
the search engine with queries containing concepts, entities, attributes and
keywords leads to the discovery of new attributes and values for them.

Wang et al. [3] obtained results of over 0.80 for precision@1. These
numbers surpass the scores achieved by the system presented in this paper. It is
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noteworthy, however, that their framework is a search engine specialized for
tables and cannot deal with standard HTML pages.

Another concept that has previously attracted the attention of researchers
is the fact that product description pages’ structure data in a way that makes it
easy to distinguish between attributes, values, and other text. Probst et al. [5] have
developed a semi-supervised system for the extraction of attribute-value pairs
from product descriptions. They used textual descriptions taken from retailer sites
using simple web crawlers. Their system is composed of specialized modules for
data collection, automatic seed generation, entity extraction using 2 algorithms
(Naive Bayes and co-EM), relationship extraction using MiniPar [6] and user
aided error correction.

The data collection and preprocessing are done on unlabeled training data.
Only relevant phrases are extracted from the text, eliminating irrelevant parts of
speech. This is done using a POS tagger. The remaining words are stemmed, and
numbers and measures are replaced with special tokens. After these steps, the
method proceeds to seed generation, providing the input data for the classifiers.
Initially, all seeds are labeled either as attributes or as values, and the remaining
words as neither. After the learning algorithm of choice is done processing, each
word will have a label with an associated probability of being an attribute or a
value. After the labeling, the relationships between attributes and values remain to
be established. This is done using heuristics. First, the correlation values are
computed for the phrases that are to be analyzed and the phrases with high scores
are merged. Then, known seed pairs are identified and linked together. Linking is
also done on phrases that have a high syntactic correlation score and that have
relevant co-location information.

The best precision obtained by Probst et al. [5] was 0.96, considering
attributes and values that were not necessarily related. As the system proposed in
this paper does not discover attribute-value relationships either, it can be said that
the precision is similar, with a slightly higher score of 0.97. The methods,
however, differ. The ones presented in this paper rely on supervised search instead
of semi-supervised and do not compute correlations between attributes and values,
but extract them separately.

Bellare et al. [7] employ different learning algorithms in their
attribute/value learning system. One of them is DL-coTrain, an adaptation of the
classic co-training algorithm [8] to learn decision lists given examples from only
one class. A decision list is a function that maps a feature and a label to a
confidence value. The algorithm induces decision lists from multiple classes
starting from seeds provided by the user. The authors also propose an alternative
algorithm, MaxEnt, based on maximum-entropy self-training. This classifier
works on a dataset divided in positive and negative instances (initially, the seeds
being only the positive examples).
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The system works in two steps. The first step is one of preprocessing.
After annotating the text with a POS tagger, pairs in the form of (noun, noun) are
extracted from sentences. These represent entity-attribute pairs that are used as
seeds for the training of the classifiers. After these operations, one of the learning
algorithms is run, resulting in a larger number of attribute-value pairs. These
results are re-ranked using a function of the confidence value and co-training
scores specific for each attribute and value. The final results are the top ranking
ones.

The data used in the experiments consisted in a newswire corpus of 122
million tokens with articles collected from Wall Street Journal, AFP and Xinhua
News. The attributes and corresponding values extracted belonged to the Country
and Company classes.

Several flavors of the method were tested and compared, starting with a
baseline system, a reconstruction of Espresso [9], then enhancing with CoTraining
or MaxEnt extraction and additional context and features. The best performing
algorithm, SE+R, consisted of a MaxEnt model with additional context and
lexical features and with re-ranking both on the extracted data and on the initial
seeds. It had the best results both for attribute and for tuple extraction, with an
overall average precision of 0.80. While this is below the scores achieved by the
system proposed in this paper, the method developed by Bellare et al. [7] differs
from it by working on unstructured text.

Another framework for attribute and value extraction took into account
both the page-independent content information and the page-dependent layout.
Wong et al. [10] designed a probabilistic graphical model [11] for the relationship
between layout and content which extracts and normalizes product attributes from
web pages in an unsupervised manner. Their approach can be seen as a
combination between the solutions previously discussed. They have developed a
complex mathematical formulation describing their model, but the core idea
behind it is as follows: the observable information regarding a text fragment
depends both on the content, C, and the layout, L. The unobservable information
is whether the text fragment is an attribute, which can be modeled as a binary
variable called target (T), and its attribute information (value) A. The problem of
extracting attributes is therefore identical to finding for each text fragment T = t*
such that t* = argmax{P(T =t | C, L)}, while attribute normalization is identical to
finding for each text fragment A = a* such that a* = argmax{P(A =a | C, L)}.
These two probabilities are dependent, therefore attribute extraction and
normalization must be done simultaneously in order to ensure consistency of the
variables. The probabilities can be merged into P(T, A | C, L), thus reducing the
whole problem to one of maximizing the value of this expression.

The system was tested on 85 pages from 41 sites containing information
about digital cameras, 96 pages from 62 sites regarding MP3 players, 111 pages
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from 61 sites about camcorders and 29 pages extracted from a restaurant guide.
Each page contained one product with a variable number of attributes. Text
fragments were extracted considering certain HTML tags as delimiters, recording
the HTML layout of the page during the process. 10 runs of experiments were
conducted for each product class. The results obtained by the framework were
quite satisfactory, with an average precision of 0.76, recall of 0.79 and F1
measure of 0.78. The main difference between method presented by Wong et al.
[10] and the one described in this paper is the mathematical aspect of it. Instead of
a learning algorithm, as is used in the system described in the following section,
Wong et al. [10] view attribute and value extraction as a function.

More recently, the system developed by Han et al. [12] proposes the use of
spatial relations based on the rendering of the web page, similarly to its display in
a browser, in order to extract various types of tuples from web pages. Their results
are encouraging, but they have not tested their work on pairs of attributes and
values.

3. Overview of the System

In order to extract attributes and values, two subsystems work together: the
former is responsible with training a classifier on a manually annotated attribute-
value pairs extracted from a set of web pages, while the latter performs the actual
extraction of new attributes and values during the classification phase.

3.1. Training Phase

The training phase takes place in two steps. Firstly, training data is
generated manually by labeling web pages returned by a Google search. The
search query should be either a class name (such as ‘digital camera’ or ‘laptop’) or
an instance name (‘Nikon Coolpix L280’ or ‘Toshiba Satellite L350’). For better
results, the search engine can be customized to prioritize certain sites in the result
set; as mentioned in the introduction, retailer sites are among the best structured.
The labeling requires the web page to be downloaded locally. For the purpose of
this project, the labeling system has been designed to work as simple as possible
and in any web browser. The user highlights HTML elements considered to be
attributes and values, with different colors. This color code is saved in the HTML
body as an attribute of each element. This way, the color code of each element
will determine its class — attribute, value or none.

In the second phase, the elements of the DOM tree are used as seeds for
the learning algorithm. Since many elements of the web page are not visible to the
end user and, therefore, completely irrelevant, they are filtered out. This is the
case of <meta>, <head>, <script> and other similar tags. Image and media
elements are also eliminated from the training set because they do not contain any
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text. On this training set, a learning algorithm is then run to obtain a classifier:
C4.5 for a decision tree [13], Naive Bayes for a simple frequentionist approach
[14], K* for a cluster set analysis [15], Logistic regression for a probabilistic
model [16], and JRip for a rule set algorithm [17].

3.2. Classification Phase

The classifier obtained in the training phase is then used to classify each
element in the set of pages that need to be processed. According to the decision
rules of each classifier, these elements (once again, counting out the irrelevant
ones) are sorted into one of the 3 categories (attribute, value, or none). In the end,
the results will be a set of attribute nodes and a set of value nodes. These are
highlighted using the same color code as in the labeling phase and can be viewed
as part of the web page after saving and deploying it on a web server.

4, System Components

4.1. Platform and Technologies

The system core was implemented in Java, while the labeling component
was developed in JavaScript. The web search module uses Google Custom Search
API [18]. The search engine generating the requests can be customized to focus
the search on certain websites. This way, more relevant results can be retrieved by
setting the preference for retail sites (Amazon, Ebay, Adorama, etc.).

The HTML parsing is performed using the jsoup library [19]. It creates a
tree-structured object corresponding to the DOM tree of the document, keeping all
the attributes of the HTML elements. Its traversal is a key step for building the
values of several training attributes, such as the node’s XPath, number of child
nodes, and number of siblings.

Another training attribute used in the learning process is the part of speech
of the text enclosed in the node, or the predominant part of speech in case of
multiple words. This information is extracted using the Apache OpenNLP
framework [20].

4.2. Labeling System

Hand-picked web pages and search results as well can be used to generate
input data for the training phase. This is known as the labeling phase, in which the
user selects elements from the HTML tree and marks them as attributes or values.
To accomplish this, a JavaScript program must be inserted in the web page. For
this purpose, the web page should be downloaded locally, edited and then viewed
in a web browser. This script adds an action to mouse gestures, as well as a
selector for determining whether the user is currently marking attributes or values.
Clicking an element will change the background color to red in case of attribute
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selection, or green in case of values as shown in Fig. 1. The updated HTML page
is saved and deployed on a web server.

Fujifilm x Series X100 16 3MP ... x| +

files///E:/git/research/AVXtractor/in/glassfish/domains/domain/docroot/ebay/FujifilmxSeresX100 C || Q Search

(@) Attributes () Values () None
Product Information
The Fujifilm X100S Digital Camera features a 16 megapixel APS-C-sized X-Trans CMOS |l sensor and an EXR Proc
performance.

Product Highlights
Video
User Manual

Product Identifiers

Key Features

Dimensions

Display

Other Features

Fig. 1. Sample training page in the labeling phase DOM Parser

4.3. DOM Parser

Using the jsoup library, web pages are parsed into a tree with the same
structure as the document’s object model (DOM). Jsoup builds a Document
object, having an Element object as root of the tree and a hierarchy of Element
objects as children. The structure of the Element class allows access to the HTML
properties of the elements, along with CSS style attributes and dynamic properties
enclosed in scripts. The tree can be easily traversed, calling user defined functions
at each visited node. The used tree traversal is depth-first, which allows easy
tracking of the structural information per node. Each element object found within
the tree traversal was enriched with several properties: the enclosed text, the
XPath expression, HTML entropy for the element itself and for all its child nodes.
These will be used in the training phase as training attributes as will be described
in the next subsection.

4.4. Training the Classifiers

Weka [21] is an open source collection of algorithms for data mining and
machine learning, including various clustering and classification methods, and
helper tools for pre-processing data, feature selection and visualization.
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For the purpose of this project, several of Weka’s classifiers have been
deployed to solve the attribute-value extraction problem on the gathered dataset.
Both training and classification have been run with each of five chosen classifiers
described next, each classifier representing a different paradigm for supervised
learning. The training and test datasets have been the same for all the classifiers
that were investigated.

Since training records correspond to elements in the DOM tree - but not a
one-to-one correspondence because not all elements are relevant, as discussed in
the previous section, the possible classes are attribute, value or none. Next, we
shall present the features that are used for each element to distinguish between the
classes and the classifiers that have been taken into consideration for evaluation.

4.4.1. Attributes

Text Entropy

Text entropy is a continuous attribute with real values which depends on
the text contained in the element and represents the quantity of information
enclosed in that specific text. Text entropy is defined as follows:

H(S) = _Z p;log,p; 1)

where pi is the frequency of the i™" text token.

HTML Entropy

The HTML entropy is similar to text entropy, with the difference that
instead of analyzing text tokens in a text snippet, in this case the HTML tags in
the XPath expression of the current element are considered. Its formula is similar
to the one above, but the frequency is computed for each element in the analyzed
XPath expression rather than for each text token. This attribute represents the
quantity of information that can be extracted from the XPath.

XPath Length

The length of the XPath selector is an attribute with integer values that
underlines the relevance of how “deep” in the DOM tree the element under
scrutiny is positioned.

HTML Tag

The HTML tag is a discrete attribute. Only a subset of all the existing
HTML tags is considered relevant for the studied problem. These tags are: a, b, I,
u, li, td, th, strong and span.
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Number of Child Nodes

The number of child nodes is another attribute with integer values. Its
relevance can be seen on web pages where it is clear that value-type nodes are
often leaves in the DOM tree, such as cell nodes in a table.

Number of Sibling Nodes

Similar to the previous attribute, this one can also be empirically observed
in web pages with product descriptions, for instance, where a HTML list of value-
type nodes contains a large number of siblings with the <li> tag.

Part of Speech

The part of speech is a discrete attribute with 8 possible values considered
for the purpose of this project: noun, number, pronoun, adjective, adverb, verb,
preposition/conjunction and other. In case of text snippets with more than one
word, the most frequent part of speech in the snippet is selected to represent the
whole text. Depending on the domain to which the search results pertain, several
relations between the part of speech and the node type are easily observed — for
instance, pages describing digital cameras contain many numeric value nodes (e.g.
focal length, size, weight, price), while pages belonging to furniture shops contain
value nodes that have more adjectives or nouns.

4.4.2. Classifiers

C4.5 [13] is one of the most popular algorithms used for statistical
classification. It builds a decision tree in the training phase given a set of labeled
data, which can be later used as a classifier on sets of unlabeled data that have the
same attributes..

Naive Bayes classifiers [14] are probably among the most simplistic ones.
While this works well with HTML tags and parts of speech, which have a finite
set of values each, the other attributes taken into account in this project are all
continuous. One way of overcoming this is to estimate a distribution of the
observed continuous values, typically a Gaussian. This enables the estimation of
an unknown feature value aided by the equation corresponding to the
parameterized distribution.

Contrary to the Bayes approach, which builds a generative model, the
logistic regression classifier is based on a discriminative model [16], which,
instead of computing p(y|x), finds a direct way of mapping the probability, given
the inputs and the class labels. Weka implements this classifier as a multinomial
logistic regression model with a ridge estimator. Moreover, regularization can
improve the performance of a logit model when dealing with a dataset that has a
larger number of predictors compared to the size of the training set [21].
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K* [15] is an instance-based learning algorithm which classifies instances
by comparing them with the ones from the training set, instead of formulating
relations from which to find out which class the instance falls into. This type of
learning is also called lazy learning, as it avoids generalization and formality. K*
uses entropy as the distance function between data points.

The final approach attempted in classifying attributes and values is by
learning propositional rules from the training set and applying them to the test set.
JRip [17] is a rule based classifier implemented in Weka based on the RIPPER
algorithm which in turn is based on the IREP [22] algorithm, bringing several
enhancements and additional heuristics to improve performance.

5. Experimental Results

5.1. Training Set

A training set of manually labeled pages has been created and used with
all the classifiers in all experiments detailed in this section. The URLs of the
pages were obtained using Google search results from 4 retail websites: Ebay
(www.ebay.com), Adorama (www.adorama.com), Cameta (www.cameta.com),
and Ritz Camera (www.ritzcamera.com). The search query was “digital slr
camera specifications”. The top 50 web pages for this query were downloaded
and manually tagged. These pages were then parsed into a total of 34,339
instances (HTML elements). Out of these, 3,846 were manually labeled: 1,752 as
attributes and 2,094 as values.

5.2. Evaluation Set

For each classifier, two runs/experiments were made with the same
training set, but with two different test sets. Both test sets consisted of web pages
obtained via Google search, using the same query (“digital slr camera
specifications”). The first dataset was assembled from the same 4 websites used
for extracting the training set, while the second one was built by extending the
search to the whole web. Google search was used each time (there was no caching
of the results). In the following sections, the classifications will be called “full
search” for the case of results of searching on the entire web and “restricted
search” for the case of searches run only on the four websites used for building
the training set.

Both test sets contained about 50 web pages for each search query. The
number is not exact because occasionally, HTTP errors occurred when attempting
to download and parse some pages.

The full search test set contains about 40,000 instances, while the
restricted search set consists of approximately 36,500 instances. Of these, in the
full searches, an average of 1,810 were labeled as attributes or values, while in the
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restricted searches there were nearly twice as many (around 3,300). Table 1
contains the results obtained by the classifiers, both for full search (the rows
containing “Full” in the first column) and for restricted search (the rows
containing “Rest.” in the column). The first and second best results for the
restricted search scenario are highlighted using bold and underscore respectively.

Table 1
Comparison of the results obtained for attribute and value identification
by various classifiers
Labeled Correct Labeled | Correct
Labeled | Correct : .
attributes | attributes | values values
Full C45 1527 414 667 239 860 175
Full JRip 782 106 552 16 230 90
Full K* 3361 441 1888 134 1473 307
Full LR 618 399 184 55 434 344
Full NB 2765 414 2325 239 440 175
Rest. C45 3053 2700 1285 1087 1768 1613
Rest. JRip 2541 1820 997 684 1544 1136
Rest. K* 2653 1853 1365 698 1288 1155
Rest. LR 3727 1353 907 360 2820 993
Rest. NB 4363 2799 3872 2347 491 452

Several performance indicators were computed after the resulted classified
web pages were manually analyzed and corrected: precision, recall, specificity,
negative predictive value, fallout, false discovery rate, false negative rate,
accuracy, and F1 measure. Out of all these indicators, the most representative
measures for assessing the performance for this type of problem are precision,
recall, accuracy, and F1 measure. Fig. 2 contains a comparison of the results
obtained by the classifiers for each of these performance indicators in the case of
the restricted search evaluation.
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Fig. 2. Aggregate scores for detection of attributes and values in restricted search
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In a similar way, Fig. 3 contains the same indicators for the full search
experiment.

80
70 mC45
60 -
50 + B m JRIP
40 -
30 T Kt
20 A
10 + B N
0 m Naive Bayes
& N SN &
&8 <& R & Logistic
@ (5..' < .
R s ((,\’\3\ Regression

Fig. 3. Aggregate scores for detection of attributes and values in full search

5.3. Discussion

For the restriction search test set, the highest scores for recall (R=0.81),
accuracy (0.84), and F1 measure (F1=0.87) were achieved by JRip rule-based
classifier. Its precision was P=0.96, also a very large score, but precision is not
very important in this case as all classifiers obtained a precision lager than 0.90.
As the restricted search dataset contains web pages collected from the same web
sites as the training set, naturally their structure will match closer to the ones that
were discovered in the training set. The best scoring algorithm in terms of
precision was the K* classifier with P=0.97. The rationale is the same: in a feature
space dominated by HTML tags, the depth in the DOM tree and the part of speech
of the text in the DOM node, the attribute and the value nodes from the
classification set will cluster closely together with their counterparts from the
training set and the decision tree classifier will discover these rules with a high
precision.

However, the full search dataset contains web pages from sources that
were not available in the training set, some of which had attributes and values
expressed in free text (e.g. reviews, news articles, etc.) and not in a tabular format
delimited using HTML tags. This is why the performance is well below the
restricted dataset for all classifiers. The C4.5 classifier achieved the highest recall
(R=0.17), accuracy (0.31) and F1 score (F1=0.26), also being the second best with
regard to precision (P=0.61). A surprise of the full search was the K* classifier
which obtained the best precision, P=0.68, outperforming C4.5 in this sense, but
with much worse results on all other indicators.

With precision as the measure of choice reported in most of the related
works, the proposed system achieves better results when considering restricted
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search. However, in the case of full searches, the system performed worse than
Ravi and Pasca’s Shier approach [1] (our precision was P=0.68, compared with
P=0.74) and Wang and Zhu’s table search engine [3] (which had P@1=0.80, but
on a slightly different and simpler task). This could be explained by the fact that
content based methods, as discussed in section 2, are better at generalization
information from various sources. As most of the features used by our system are
not able to catch semantic information, being mostly layout-based, none of the
classifiers had impressive results when dealing with unstructured text, such as
reviews or user comments. However, they were highly efficient when coming
across pages containing information structured in a familiar way using tabular
data and other HTML separators, similar to the training set.

6. Conclusions and Future Work

A system aimed at extracting attributes and values from various types of
web pages has been developed in an attempt to extract richer information from the
web. These pages are obtained by searching for specific products using a search
engine. A subset of the retrieved results have been manually analyzed and labeled,
while the rest have been used for testing the accuracy of the system. To this
purpose, five different classifiers have been compared: Naive Bayes, C4.5,
Logistic Regression, K*, and JRip. To detect attributes and values in web pages,
the following features have been employed aiming at understanding the diversity
of the text in each HTML element and also in the XPath selector within the DOM
structure: text entropy, HTML entropy, XPath length, HTML tag, number of child
nodes, number of sibling nodes, and part of speech.

Our results show that the C4.5 decision tree classifier achieves very good
results both for the restricted search and for the full search test datasets.
Moreover, the restricted search experiment shows that the results obtained for new
documents from the same data sources as the one in the training set are much
better than when using the same classifier with documents from different sources,
including text comments, news, and blog items.

There are two major additions that can be brought to the system. The first
one is to link the attributes and values discovered by the system in order to extract
attribute-value pairs. This can be done using certain heuristics — for instance, if a
tagged attribute and a tagged value are close to each other in the DOM tree and
the attribute is before the value, then it is likely that the value belongs to that
attribute. Natural Language Processing (NLP) technigues can also be used, linking
numbers and adjectives to nouns and analyzing the semantic sense of the lexical
construction the two tokens form together.

The second improvement is to extend the system to work with
unstructured text as well. Currently, the HTML structure is exploited and most of
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the information is extracted from it. Precious information is often found in bulks
of text, such as reviews, forum posts, etc. However, for this type of pages more
complex NLP processing methods are required, such as syntactic or dependency
parsing or mining for patterns of words.

To further improve the performance of the system, the greatest benefits
can be drawn from enlarging the training set which now consists of data extracted
from only four different websites, which mainly use a tabular view to display
attributes and values. Adding more pages with heterogeneous structure, including
reviews and comments, would further increase the efficiency of the classifiers.
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