
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 1, 2017 ISSN 2286-3540

EXTRACTION OF ATTRIBUTES AND VALUES FROM

ONLINE TEXTS

Alexandra GHECENCO1, Traian REBEDEA2, Costin CHIRU3

Web documents contain vast amounts of information that can be extracted

and processed to enhance the understanding of online data. Often, the structure of

the document can be exploited in order to identify useful information within it. Pairs

of attributes and their corresponding values are one such example of information

frequently found in many online retail websites. These concentrated bits of

information are often enclosed in specific tags of the web document, or highlighted

with certain markers which can be automatically discovered and identified. This

way, different methods can be employed to extract new pairs from other, more or

less similar, documents. The method presented in this paper relies on the DOM

(Document Object Model) structure and the text within web pages in order to

extract patterns consisting of tags and pieces of text and then to classify them.

Several classifiers have been compared and the best results have been obtained with

a C4.5 decision tree classifier.

Keywords: information retrieval; attribute-value pairs; information extraction;

text mining; classification

1. Introduction

This paper presents a system for extracting tokens that represent attributes

and their corresponding values from web pages. As part of the combined effort to

build a semantic web, this would improve the automatic understanding of web

pages by computers, giving additional meaning to texts. Furthermore, this would

significantly improve the efficiency and intuitiveness of web searches, by

correlating words and phrases to the role humans attribute to them in natural

conversations.

The web contains heterogeneous texts, most of which are structured in

HTML (or web) pages. Given their inherent tag (or DOM – Document Object

Model) hierarchy and division into specific components, web pages can be easily

split into entities that form a tree and that have attributes of their own. The basic

idea is that, based on the correlations found between these attributes and the role

1 Engineer, Department of Computer Science, University POLITEHNICA of Bucharest, Romania,

e-mail: alexandra.ghecenco@gmail.com
2 Lecturer, Department of Computer Science, University POLITEHNICA of Bucharest, Romania,

e-mail: traian.rebedea@cs.pub.ro
3 Lecturer, Department of Computer Science, University POLITEHNICA of Bucharest, Romania,

e-mail: costin.chiru@cs.pub.ro

68 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

each analyzed entity plays in a semantic view, a classifier can be trained on a

manually annotated corpus with attribute-value pairs so that any web page may be

later processed and useful information derived from it by identifying the attribute-

value pairs with the trained classifier.

The rest of the paper is structured as follows. In the next section, we

present the most important previous approaches to the problem of attribute and

value extraction. Section 3 is dedicated to an overview of the proposed system,

while each component is described in detail in section 4. Then, section 5 describes

the experiments performed to validate our approach, together with the results

obtained by the system. Finally, the last section highlights the main contributions

of this paper and proposes several future improvements.

2. Related Work

Exploiting the Document Object Model (DOM) tree structure is a popular

idea in online information extraction, and the more similar a web page will be to

the ones in the training corpus, the better the accuracy – as pointed out by Ravi

and Pasca [1]. They developed a system that analyzes the location of the relevant

nodes (i.e. attributes and values) within the DOM tree, keeping track of it using

pattern vectors. The training phase consists in building these pattern vectors,

while the classification phase applies them to other pages, extracting the attributes

and values, together with a certain correlated probability. This approach is very

intuitive to humans and similar to the way we interpret web pages too – note how

on websites such as Wikipedia or retailer sites, punctual information, in the form

of attribute-value pairs, is usually in the same place relatively to the layout. In

computer science terms, this translates into pattern vectors, probabilities,

parameterization and machine learning techniques. The method presented in this

paper also takes into account the placement of important nodes within a webpage,

using their XPath and child / sibling information as training attributes in the

learning process. Moreover, a heuristic described by [1] is also of critical

importance in our proposed method: the discrimination between attribute nodes

and irrelevant nodes by the corresponding tag. Ravi and Pasca [1] suggest that

nodes representing an attribute are frequently enclosed in HTML tags that

emphasize the text within, such as , <i>, <u>, etc. This helps building a set of

tags that are relevant to the learning algorithm and another set of tags that denotes

nodes that can be completely discarded – for instance, , <script>, <meta>,

etc.

Ravi and Pasca [1] present a comparative analysis of the results obtained

with three variants of the system. The first represents the baseline system with

structured text, ranking the attributes by frequency. The second one (Shier) uses

hierarchical patterns to rank the attributes instead, while the third one (Dpatt) uses a

Extraction of attributes and values from online texts 69

previous, classic approach based on patterns such as X-of-Y to extract attributes

from unstructured text. Pruning by POS tags returned by WordNet [2] enhances

each of these subsystems, trimming out irrelevant parts of speech. The data source

consisted in web search results of querying class instances, filtering HTML

documents out of the first N results of a search.

While the system presented in this paper also relies on the DOM structure,

it does not use pattern vectors, but instead it builds training instances that are

classified by several algorithms. The best score for precision obtained by [1] was

0.87 with the Shier implementation at rank 5.

Moreover, as far as structuring information goes, tables are the most

effective way of synthesizing attribute-value relations, as observed by Wang et al.

[3]. They built a search engine that processes tables on the web and builds the

result set as a table as well, given a training set of tabular data for learning the

semantic connections between attributes (found in the header) and values (found

in the body of the table). Therefore, the previously mentioned set of relevant

nodes can be extended to contain tags such as <th> and <tr>. Their search engine

processed two corpora of tables – the ones in Wikipedia, counting up to 0.65

million, and the rest of the World Wide Web, around 0.3 billion pages – that

unified the retrieved information into a table-formatted answer.

In order to connect the data in a table with their meaning, the authors used

Probase [4], a probabilistic taxonomy of facts significantly larger than WordNet

(WordNet – 25,229 concepts, Probase – 2,653,872 concepts) containing sets of

ranked entities and instances for each concept. The first step in the algorithm they

designed was to find tables relevant to the query. Then, each table is scanned for

the header in order to assign a label/attribute to the data, and then one is generated

using Probase if the header cannot be found. The column containing entities is

identified, such that the remaining columns contain attributes and associated

values. If the header or entity column cannot be derived from the table, it is

discarded; otherwise, the information it contains is structured into relationships

and added to Probase for further use.

The data corpus used by this framework consists in approximately 65.5

million raw HTML tables extracted using a simple rule-based system that filters

out irrelevant tables (tiny, very large, calendars etc.) from webpages, paying

special attention to Wikipedia due to its high degree of relevance. Although not all

extracted tables are relational, Probase processing eliminates them at a later point.

Random sampling has led to a percentage of 79.5% relational tables. Interrogating

the search engine with queries containing concepts, entities, attributes and

keywords leads to the discovery of new attributes and values for them.

Wang et al. [3] obtained results of over 0.80 for precision@1. These

numbers surpass the scores achieved by the system presented in this paper. It is

70 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

noteworthy, however, that their framework is a search engine specialized for

tables and cannot deal with standard HTML pages.

Another concept that has previously attracted the attention of researchers

is the fact that product description pages’ structure data in a way that makes it

easy to distinguish between attributes, values, and other text. Probst et al. [5] have

developed a semi-supervised system for the extraction of attribute-value pairs

from product descriptions. They used textual descriptions taken from retailer sites

using simple web crawlers. Their system is composed of specialized modules for

data collection, automatic seed generation, entity extraction using 2 algorithms

(Naïve Bayes and co-EM), relationship extraction using MiniPar [6] and user

aided error correction.

The data collection and preprocessing are done on unlabeled training data.

Only relevant phrases are extracted from the text, eliminating irrelevant parts of

speech. This is done using a POS tagger. The remaining words are stemmed, and

numbers and measures are replaced with special tokens. After these steps, the

method proceeds to seed generation, providing the input data for the classifiers.

Initially, all seeds are labeled either as attributes or as values, and the remaining

words as neither. After the learning algorithm of choice is done processing, each

word will have a label with an associated probability of being an attribute or a

value. After the labeling, the relationships between attributes and values remain to

be established. This is done using heuristics. First, the correlation values are

computed for the phrases that are to be analyzed and the phrases with high scores

are merged. Then, known seed pairs are identified and linked together. Linking is

also done on phrases that have a high syntactic correlation score and that have

relevant co-location information.

The best precision obtained by Probst et al. [5] was 0.96, considering

attributes and values that were not necessarily related. As the system proposed in

this paper does not discover attribute-value relationships either, it can be said that

the precision is similar, with a slightly higher score of 0.97. The methods,

however, differ. The ones presented in this paper rely on supervised search instead

of semi-supervised and do not compute correlations between attributes and values,

but extract them separately.

Bellare et al. [7] employ different learning algorithms in their

attribute/value learning system. One of them is DL-coTrain, an adaptation of the

classic co-training algorithm [8] to learn decision lists given examples from only

one class. A decision list is a function that maps a feature and a label to a

confidence value. The algorithm induces decision lists from multiple classes

starting from seeds provided by the user. The authors also propose an alternative

algorithm, MaxEnt, based on maximum-entropy self-training. This classifier

works on a dataset divided in positive and negative instances (initially, the seeds

being only the positive examples).

Extraction of attributes and values from online texts 71

The system works in two steps. The first step is one of preprocessing.

After annotating the text with a POS tagger, pairs in the form of (noun, noun) are

extracted from sentences. These represent entity-attribute pairs that are used as

seeds for the training of the classifiers. After these operations, one of the learning

algorithms is run, resulting in a larger number of attribute-value pairs. These

results are re-ranked using a function of the confidence value and co-training

scores specific for each attribute and value. The final results are the top ranking

ones.

The data used in the experiments consisted in a newswire corpus of 122

million tokens with articles collected from Wall Street Journal, AFP and Xinhua

News. The attributes and corresponding values extracted belonged to the Country

and Company classes.

Several flavors of the method were tested and compared, starting with a

baseline system, a reconstruction of Espresso [9], then enhancing with CoTraining

or MaxEnt extraction and additional context and features. The best performing

algorithm, SE+R, consisted of a MaxEnt model with additional context and

lexical features and with re-ranking both on the extracted data and on the initial

seeds. It had the best results both for attribute and for tuple extraction, with an

overall average precision of 0.80. While this is below the scores achieved by the

system proposed in this paper, the method developed by Bellare et al. [7] differs

from it by working on unstructured text.

Another framework for attribute and value extraction took into account

both the page-independent content information and the page-dependent layout.

Wong et al. [10] designed a probabilistic graphical model [11] for the relationship

between layout and content which extracts and normalizes product attributes from

web pages in an unsupervised manner. Their approach can be seen as a

combination between the solutions previously discussed. They have developed a

complex mathematical formulation describing their model, but the core idea

behind it is as follows: the observable information regarding a text fragment

depends both on the content, C, and the layout, L. The unobservable information

is whether the text fragment is an attribute, which can be modeled as a binary

variable called target (T), and its attribute information (value) A. The problem of

extracting attributes is therefore identical to finding for each text fragment T = t*

such that t* = argmax{P(T = t | C, L)}, while attribute normalization is identical to

finding for each text fragment A = a* such that a* = argmax{P(A = a | C, L)}.

These two probabilities are dependent, therefore attribute extraction and

normalization must be done simultaneously in order to ensure consistency of the

variables. The probabilities can be merged into P(T, A | C, L), thus reducing the

whole problem to one of maximizing the value of this expression.

The system was tested on 85 pages from 41 sites containing information

about digital cameras, 96 pages from 62 sites regarding MP3 players, 111 pages

72 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

from 61 sites about camcorders and 29 pages extracted from a restaurant guide.

Each page contained one product with a variable number of attributes. Text

fragments were extracted considering certain HTML tags as delimiters, recording

the HTML layout of the page during the process. 10 runs of experiments were

conducted for each product class. The results obtained by the framework were

quite satisfactory, with an average precision of 0.76, recall of 0.79 and F1

measure of 0.78. The main difference between method presented by Wong et al.

[10] and the one described in this paper is the mathematical aspect of it. Instead of

a learning algorithm, as is used in the system described in the following section,

Wong et al. [10] view attribute and value extraction as a function.

More recently, the system developed by Han et al. [12] proposes the use of

spatial relations based on the rendering of the web page, similarly to its display in

a browser, in order to extract various types of tuples from web pages. Their results

are encouraging, but they have not tested their work on pairs of attributes and

values.

3. Overview of the System

In order to extract attributes and values, two subsystems work together: the

former is responsible with training a classifier on a manually annotated attribute-

value pairs extracted from a set of web pages, while the latter performs the actual

extraction of new attributes and values during the classification phase.

3.1. Training Phase

The training phase takes place in two steps. Firstly, training data is

generated manually by labeling web pages returned by a Google search. The

search query should be either a class name (such as ‘digital camera’ or ‘laptop’) or

an instance name (‘Nikon Coolpix L280’ or ‘Toshiba Satellite L350’). For better

results, the search engine can be customized to prioritize certain sites in the result

set; as mentioned in the introduction, retailer sites are among the best structured.

The labeling requires the web page to be downloaded locally. For the purpose of

this project, the labeling system has been designed to work as simple as possible

and in any web browser. The user highlights HTML elements considered to be

attributes and values, with different colors. This color code is saved in the HTML

body as an attribute of each element. This way, the color code of each element

will determine its class – attribute, value or none.

In the second phase, the elements of the DOM tree are used as seeds for

the learning algorithm. Since many elements of the web page are not visible to the

end user and, therefore, completely irrelevant, they are filtered out. This is the

case of <meta>, <head>, <script> and other similar tags. Image and media

elements are also eliminated from the training set because they do not contain any

Extraction of attributes and values from online texts 73

text. On this training set, a learning algorithm is then run to obtain a classifier:

C4.5 for a decision tree [13], Naïve Bayes for a simple frequentionist approach

[14], K* for a cluster set analysis [15], Logistic regression for a probabilistic

model [16], and JRip for a rule set algorithm [17].

3.2. Classification Phase

The classifier obtained in the training phase is then used to classify each

element in the set of pages that need to be processed. According to the decision

rules of each classifier, these elements (once again, counting out the irrelevant

ones) are sorted into one of the 3 categories (attribute, value, or none). In the end,

the results will be a set of attribute nodes and a set of value nodes. These are

highlighted using the same color code as in the labeling phase and can be viewed

as part of the web page after saving and deploying it on a web server.

4. System Components

4.1. Platform and Technologies

The system core was implemented in Java, while the labeling component

was developed in JavaScript. The web search module uses Google Custom Search

API [18]. The search engine generating the requests can be customized to focus

the search on certain websites. This way, more relevant results can be retrieved by

setting the preference for retail sites (Amazon, Ebay, Adorama, etc.).

The HTML parsing is performed using the jsoup library [19]. It creates a

tree-structured object corresponding to the DOM tree of the document, keeping all

the attributes of the HTML elements. Its traversal is a key step for building the

values of several training attributes, such as the node’s XPath, number of child

nodes, and number of siblings.

Another training attribute used in the learning process is the part of speech

of the text enclosed in the node, or the predominant part of speech in case of

multiple words. This information is extracted using the Apache OpenNLP

framework [20].

4.2. Labeling System

Hand-picked web pages and search results as well can be used to generate

input data for the training phase. This is known as the labeling phase, in which the

user selects elements from the HTML tree and marks them as attributes or values.

To accomplish this, a JavaScript program must be inserted in the web page. For

this purpose, the web page should be downloaded locally, edited and then viewed

in a web browser. This script adds an action to mouse gestures, as well as a

selector for determining whether the user is currently marking attributes or values.

Clicking an element will change the background color to red in case of attribute

74 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

selection, or green in case of values as shown in Fig. 1. The updated HTML page

is saved and deployed on a web server.

Fig. 1. Sample training page in the labeling phase DOM Parser

4.3. DOM Parser

Using the jsoup library, web pages are parsed into a tree with the same

structure as the document’s object model (DOM). Jsoup builds a Document

object, having an Element object as root of the tree and a hierarchy of Element

objects as children. The structure of the Element class allows access to the HTML

properties of the elements, along with CSS style attributes and dynamic properties

enclosed in scripts. The tree can be easily traversed, calling user defined functions

at each visited node. The used tree traversal is depth-first, which allows easy

tracking of the structural information per node. Each element object found within

the tree traversal was enriched with several properties: the enclosed text, the

XPath expression, HTML entropy for the element itself and for all its child nodes.

These will be used in the training phase as training attributes as will be described

in the next subsection.

4.4. Training the Classifiers

Weka [21] is an open source collection of algorithms for data mining and

machine learning, including various clustering and classification methods, and

helper tools for pre-processing data, feature selection and visualization.

Extraction of attributes and values from online texts 75

For the purpose of this project, several of Weka’s classifiers have been

deployed to solve the attribute-value extraction problem on the gathered dataset.

Both training and classification have been run with each of five chosen classifiers

described next, each classifier representing a different paradigm for supervised

learning. The training and test datasets have been the same for all the classifiers

that were investigated.

Since training records correspond to elements in the DOM tree - but not a

one-to-one correspondence because not all elements are relevant, as discussed in

the previous section, the possible classes are attribute, value or none. Next, we

shall present the features that are used for each element to distinguish between the

classes and the classifiers that have been taken into consideration for evaluation.

4.4.1. Attributes

Text Entropy

Text entropy is a continuous attribute with real values which depends on

the text contained in the element and represents the quantity of information

enclosed in that specific text. Text entropy is defined as follows:

 (1)

where pi is the frequency of the ith text token.

HTML Entropy

The HTML entropy is similar to text entropy, with the difference that

instead of analyzing text tokens in a text snippet, in this case the HTML tags in

the XPath expression of the current element are considered. Its formula is similar

to the one above, but the frequency is computed for each element in the analyzed

XPath expression rather than for each text token. This attribute represents the

quantity of information that can be extracted from the XPath.

XPath Length

The length of the XPath selector is an attribute with integer values that

underlines the relevance of how “deep” in the DOM tree the element under

scrutiny is positioned.

HTML Tag

The HTML tag is a discrete attribute. Only a subset of all the existing

HTML tags is considered relevant for the studied problem. These tags are: a, b, i,

u, li, td, th, strong and span.

76 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

Number of Child Nodes

The number of child nodes is another attribute with integer values. Its

relevance can be seen on web pages where it is clear that value-type nodes are

often leaves in the DOM tree, such as cell nodes in a table.

Number of Sibling Nodes

Similar to the previous attribute, this one can also be empirically observed

in web pages with product descriptions, for instance, where a HTML list of value-

type nodes contains a large number of siblings with the tag.

Part of Speech

The part of speech is a discrete attribute with 8 possible values considered

for the purpose of this project: noun, number, pronoun, adjective, adverb, verb,

preposition/conjunction and other. In case of text snippets with more than one

word, the most frequent part of speech in the snippet is selected to represent the

whole text. Depending on the domain to which the search results pertain, several

relations between the part of speech and the node type are easily observed – for

instance, pages describing digital cameras contain many numeric value nodes (e.g.

focal length, size, weight, price), while pages belonging to furniture shops contain

value nodes that have more adjectives or nouns.

4.4.2. Classifiers

C4.5 [13] is one of the most popular algorithms used for statistical

classification. It builds a decision tree in the training phase given a set of labeled

data, which can be later used as a classifier on sets of unlabeled data that have the

same attributes..

Naïve Bayes classifiers [14] are probably among the most simplistic ones.

While this works well with HTML tags and parts of speech, which have a finite

set of values each, the other attributes taken into account in this project are all

continuous. One way of overcoming this is to estimate a distribution of the

observed continuous values, typically a Gaussian. This enables the estimation of

an unknown feature value aided by the equation corresponding to the

parameterized distribution.

Contrary to the Bayes approach, which builds a generative model, the

logistic regression classifier is based on a discriminative model [16], which,

instead of computing p(y|x), finds a direct way of mapping the probability, given

the inputs and the class labels. Weka implements this classifier as a multinomial

logistic regression model with a ridge estimator. Moreover, regularization can

improve the performance of a logit model when dealing with a dataset that has a

larger number of predictors compared to the size of the training set [21].

Extraction of attributes and values from online texts 77

K* [15] is an instance-based learning algorithm which classifies instances

by comparing them with the ones from the training set, instead of formulating

relations from which to find out which class the instance falls into. This type of

learning is also called lazy learning, as it avoids generalization and formality. K*

uses entropy as the distance function between data points.

The final approach attempted in classifying attributes and values is by

learning propositional rules from the training set and applying them to the test set.

JRip [17] is a rule based classifier implemented in Weka based on the RIPPER

algorithm which in turn is based on the IREP [22] algorithm, bringing several

enhancements and additional heuristics to improve performance.

5. Experimental Results

5.1. Training Set

A training set of manually labeled pages has been created and used with

all the classifiers in all experiments detailed in this section. The URLs of the

pages were obtained using Google search results from 4 retail websites: Ebay

(www.ebay.com), Adorama (www.adorama.com), Cameta (www.cameta.com),

and Ritz Camera (www.ritzcamera.com). The search query was “digital slr

camera specifications”. The top 50 web pages for this query were downloaded

and manually tagged. These pages were then parsed into a total of 34,339

instances (HTML elements). Out of these, 3,846 were manually labeled: 1,752 as

attributes and 2,094 as values.

5.2. Evaluation Set

For each classifier, two runs/experiments were made with the same

training set, but with two different test sets. Both test sets consisted of web pages

obtained via Google search, using the same query (“digital slr camera

specifications”). The first dataset was assembled from the same 4 websites used

for extracting the training set, while the second one was built by extending the

search to the whole web. Google search was used each time (there was no caching

of the results). In the following sections, the classifications will be called “full

search” for the case of results of searching on the entire web and “restricted

search” for the case of searches run only on the four websites used for building

the training set.

Both test sets contained about 50 web pages for each search query. The

number is not exact because occasionally, HTTP errors occurred when attempting

to download and parse some pages.

The full search test set contains about 40,000 instances, while the

restricted search set consists of approximately 36,500 instances. Of these, in the

full searches, an average of 1,810 were labeled as attributes or values, while in the

78 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

restricted searches there were nearly twice as many (around 3,300). Table 1

contains the results obtained by the classifiers, both for full search (the rows

containing “Full” in the first column) and for restricted search (the rows

containing “Rest.” in the column). The first and second best results for the

restricted search scenario are highlighted using bold and underscore respectively.

Table 1

Comparison of the results obtained for attribute and value identification

by various classifiers

 Labeled Correct
Labeled

attributes

Correct

attributes

Labeled

values

Correct

values

Full C45 1527 414 667 239 860 175

Full JRip 782 106 552 16 230 90

Full K* 3361 441 1888 134 1473 307

Full LR 618 399 184 55 434 344

Full NB 2765 414 2325 239 440 175

Rest. C45 3053 2700 1285 1087 1768 1613

Rest. JRip 2541 1820 997 684 1544 1136

Rest. K* 2653 1853 1365 698 1288 1155

Rest. LR 3727 1353 907 360 2820 993

Rest. NB 4363 2799 3872 2347 491 452

Several performance indicators were computed after the resulted classified

web pages were manually analyzed and corrected: precision, recall, specificity,

negative predictive value, fallout, false discovery rate, false negative rate,

accuracy, and F1 measure. Out of all these indicators, the most representative

measures for assessing the performance for this type of problem are precision,

recall, accuracy, and F1 measure. Fig. 2 contains a comparison of the results

obtained by the classifiers for each of these performance indicators in the case of

the restricted search evaluation.

Fig. 2. Aggregate scores for detection of attributes and values in restricted search

Extraction of attributes and values from online texts 79

In a similar way, Fig. 3 contains the same indicators for the full search

experiment.

Fig. 3. Aggregate scores for detection of attributes and values in full search

5.3. Discussion

For the restriction search test set, the highest scores for recall (R=0.81),

accuracy (0.84), and F1 measure (F1=0.87) were achieved by JRip rule-based

classifier. Its precision was P=0.96, also a very large score, but precision is not

very important in this case as all classifiers obtained a precision lager than 0.90.

As the restricted search dataset contains web pages collected from the same web

sites as the training set, naturally their structure will match closer to the ones that

were discovered in the training set. The best scoring algorithm in terms of

precision was the K* classifier with P=0.97. The rationale is the same: in a feature

space dominated by HTML tags, the depth in the DOM tree and the part of speech

of the text in the DOM node, the attribute and the value nodes from the

classification set will cluster closely together with their counterparts from the

training set and the decision tree classifier will discover these rules with a high

precision.

However, the full search dataset contains web pages from sources that

were not available in the training set, some of which had attributes and values

expressed in free text (e.g. reviews, news articles, etc.) and not in a tabular format

delimited using HTML tags. This is why the performance is well below the

restricted dataset for all classifiers. The C4.5 classifier achieved the highest recall

(R=0.17), accuracy (0.31) and F1 score (F1=0.26), also being the second best with

regard to precision (P=0.61). A surprise of the full search was the K* classifier

which obtained the best precision, P=0.68, outperforming C4.5 in this sense, but

with much worse results on all other indicators.

With precision as the measure of choice reported in most of the related

works, the proposed system achieves better results when considering restricted

80 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

search. However, in the case of full searches, the system performed worse than

Ravi and Pasca’s Shier approach [1] (our precision was P=0.68, compared with

P=0.74) and Wang and Zhu’s table search engine [3] (which had P@1=0.80, but

on a slightly different and simpler task). This could be explained by the fact that

content based methods, as discussed in section 2, are better at generalization

information from various sources. As most of the features used by our system are

not able to catch semantic information, being mostly layout-based, none of the

classifiers had impressive results when dealing with unstructured text, such as

reviews or user comments. However, they were highly efficient when coming

across pages containing information structured in a familiar way using tabular

data and other HTML separators, similar to the training set.

6. Conclusions and Future Work

A system aimed at extracting attributes and values from various types of

web pages has been developed in an attempt to extract richer information from the

web. These pages are obtained by searching for specific products using a search

engine. A subset of the retrieved results have been manually analyzed and labeled,

while the rest have been used for testing the accuracy of the system. To this

purpose, five different classifiers have been compared: Naïve Bayes, C4.5,

Logistic Regression, K*, and JRip. To detect attributes and values in web pages,

the following features have been employed aiming at understanding the diversity

of the text in each HTML element and also in the XPath selector within the DOM

structure: text entropy, HTML entropy, XPath length, HTML tag, number of child

nodes, number of sibling nodes, and part of speech.

Our results show that the C4.5 decision tree classifier achieves very good

results both for the restricted search and for the full search test datasets.

Moreover, the restricted search experiment shows that the results obtained for new

documents from the same data sources as the one in the training set are much

better than when using the same classifier with documents from different sources,

including text comments, news, and blog items.

There are two major additions that can be brought to the system. The first

one is to link the attributes and values discovered by the system in order to extract

attribute-value pairs. This can be done using certain heuristics – for instance, if a

tagged attribute and a tagged value are close to each other in the DOM tree and

the attribute is before the value, then it is likely that the value belongs to that

attribute. Natural Language Processing (NLP) techniques can also be used, linking

numbers and adjectives to nouns and analyzing the semantic sense of the lexical

construction the two tokens form together.

The second improvement is to extend the system to work with

unstructured text as well. Currently, the HTML structure is exploited and most of

Extraction of attributes and values from online texts 81

the information is extracted from it. Precious information is often found in bulks

of text, such as reviews, forum posts, etc. However, for this type of pages more

complex NLP processing methods are required, such as syntactic or dependency

parsing or mining for patterns of words.

To further improve the performance of the system, the greatest benefits

can be drawn from enlarging the training set which now consists of data extracted

from only four different websites, which mainly use a tabular view to display

attributes and values. Adding more pages with heterogeneous structure, including

reviews and comments, would further increase the efficiency of the classifiers.

Acknowledgments

The work has been partly funded by the Sectoral Operational Programme

Human Resources Development 2007-2013 of the Ministry of European Funds

through the Financial Agreements POSDRU/159/1.5/S/132397 and

POSDRU/159/1.5/S/ 132395.

R E F E R E N C E S

[1] S. Ravi and M. Paşca, “Using structured text for large-scale attribute extraction”, CIKM '08

Proceedings of the 17th ACM conference on Information and knowledge management, pp.

1183-1192, 2008

[2] G.A. Miller, “WordNet, A lexical Database for English”, Communications of the ACM, vol.

38, no. 11, pp. 39-41, 1995

[3] J. Wang, H. Wang, Z. Wang and K. Q. Zhu, “Understanding tables on the web”, ER'12

Proceedings of the 31st international conference on Conceptual Modeling, pp. 141-155,

2012

[4] W. Wu, H. Li, H. Wang and K. Zhu, “Probase: a probabilistic taxonomy for text

understanding”, SIGMOD '12 Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, pp. 481-492, 2012

[5] K. Probst, R. Ghani, M. Krema, A. Fano and Y. Liu, “Semi-Supervised Learning of

Attribute-Value Pairs from Product Descriptions”, IJCAI'07 Proceedings of the 20th

international joint conference on Artifical intelligence, pp. 2838-2843, 2007

[6] D. Lin, "Dependency-Based Evaluation of Minipar," in Treebanks: Building and Using

Parsed Corpora, Springer Netherlands, pp. 317-329, 2003

[7] K. Bellare, P. P. Talukdar, G. Kumaran, O. Pereira, M. Liberman, A. Mccallum and M.

Dredze, “LightlySupervised Attribute Extraction for Web Search”, Proceedings of Machine

Learning for Web Search Workshop, NIPS 2007 Conference, 2007

[8] A. Blum and T. Mitchell, “Combining Labeled and Unlabeled Data with Co-Training”,

COLT: Proceedings of the Workshop of Computational Learning Theory, Morgan

Kaufmann, pp. 92-100, 1998

[9] P. Pantel and M. Pennacchiotti, “Espresso: Leveraging generic patterns for automatically

harvesting semantic relations”, ACL-44 Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics, pp. 113-120, 2006

82 Alexandra Ghecenco, Traian Rebedea, Costin Chiru

[10] T. L. Wong, W. Lam and T. S. Wong, “An Unsupervised Framework for Extracting and

Normalizing Product Attributes from Multiple Web Sites”, SIGIR '08 Proceedings of the

31st annual international ACM SIGIR conference on Research and development in

information retrieval, pp. 35-42, 2008

[11] D. Koller and N. Friedman, “Probabilistic graphical models: principles and techniques”,

MIT Press, 2009

[12] W.-S. Han, W. Kwak, H. Yu, J.-H. Lee and M.-S. Kim, "Leveraging spatial join for robust

tuple extraction from web pages," Information Sciences, vol. 261, pp. 132-148, 2014

[13] R. Quinlan, “C4.5: Programs for Machine Learning”, Morgan Kaufmann Publishers Inc.

San Francisco, CA, USA, 1993

[14] D. D. Lewis, “Naïve (Bayes) at forty: The Independence Assumption in Information

Retrieval”, ECML '98 Proceedings of the 10th European Conference on Machine Learning,

pp. 4-15, 1998

[15] J. G. Cleary and L. E. Trigg, “K*: An Instance-Based Learner Using an Entropic Distance

Measure”, Proceedings of the 12th International Conference on Machine Learning, pp. 108-

114, 1995

[16] A. Y. Ng and M. I. Jordan, “On Discriminative vs. Generative Classifiers: A Comparison of

Logistic Regression and Naïve Bayes”, Proceedings of NIPS 2002 Conference, 2002

[17] M. Sasaki and K. Kita, “Rule-Based Text Categorization Using. Hierarchical Categories”,

1998 IEEE International Conference on Systems, Man, and Cybernetics, p. 2827-2830, vol.

3, 1998

[18] ***, Google Custom Search APIS, https://developers.google.com/custom-search/json-

api/v1/overview, accessed at 15 November 2015

[19] J. Hedley, “jsoup: Java HTML Parser”, http://jsoup.org, accessed at 15 November 2015

[20] The Apache Software Foundation, “Apache OpenNLP”, https://opennlp.apache.org/,

accessed at 15 November 2015

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, “The WEKA

Data Mining Software: An Update” ACM SIGKDD Explorations Newsletter, vol. 11, Issue

1, pp 10-18, 2009

[22] W. W. Cohen, “Learning to Classify English Text with ILP Methods”, Advances in ILP, ed.

L. de Readt, IOS Press, 1995

