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ENERGY-MOMENTUM DISTRIBUTION OF A GENERAL PLANE

SYMMETRIC SPACETIME IN METRIC f(R) GRAVITY

Morteza Yavari1

In this paper, the exact vacuum solution of a general plane symmetric

spacetime is investigated in metric f(R) gravity with the assumption of constant

Ricci scalar. For this solution, we have studied the generalized Landau-Lifshitz

energy-momentum complex in this theory to determine the energy distribution

expressions for some specific f(R) models. Also, we show that these models satisfy

the constant curvature condition.
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1. Introduction

The energy localization is still an unsolved problem in the framework of general

relativity. A considerable amount of work has been devoted to study of the en-

ergy localization. For solving this problem, Einstein [1] introduced the energy-

momentum pseudotensors. He formulated the energy-momentum conservation law

as ∂[
√
−g (Tµ

ν +tµν )]
∂xµ = 0, where tµν is called the gravitational field pseudotensor. Many

authors like Bergmann [2], Goldberg [3] and Weinberg [4] have studied the energy-

momentum complexes and covariant conservation laws. The most of these studies

were restricted in Cartesian coordinates. Møller [5] was the first who describe the

energy-momentum complexe in any coordinate system. Landau-Lifshitz [6] pre-

sented the energy-momentum complex in the geodesic coordinate system. Chang

et al. [7] showed that any energy-momentum complex is connected with a Hamil-

tonian boundary term. This shows that we can consider the energy-momentum as

quasi-local. The quasi-local energy were investigated by several authors (see e.g. [8]).

Cooperstock and Sarracino [9] proved that the localization of energy in the spherical

systems is the necessary condition for the localizable in any system. Aguirregabiria

et al. [10] proved that the different energy-momentum complexes could give the

same energy distribution for any Kerr-Schild spacetime. Recently, a number of au-

thors have tried to solve the problem of energy localization via the modified theories

of gravity.

Different data from the recent astrophysical observations such as Super-Nova

Ia [11], Cosmic Microwave Background Radiations [12] and Wilkinson Microwave
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Anisotropy Probe (WMAP) [13] have indicated that the expansion of universe is

currently accelerating. The standard general theory of relativity can not describe

the accelerated expansion. Based on these data, physicists now believe that the

most part of universe contains dark energy with negative pressure, in which this

energy constrain the cosmic expansion [14]. One of the seriously approaches which

may help to explain the origin of dark energy is to modify the general theory of

relativity. The modified theories of gravity, such as f(R) gravity, have gained a

lot of interest in recent years. In these theories, the geometrical part of Einstein-

Hilbert action is modified by adding the higher-order curvature invariants. Stelle

[15] showed that the higher-order actions are renormalizable. Hence, modifying of

Einstein-Hilbert action is a possible approach to make a renormalized theory of

gravity. Among the modified theories, the f(R) gravity seems to be an attractive

model which is relatively simple but has many applications in gravity, cosmology

and high energy physics. In this theory, a general function of Ricci scalar as f(R) is

replaced instead of R in the Einstein-Hilbert action, first discussed by Buchdahl [16].

Nojiri and Odintsov [17,18] showed that the modified theories of gravity provide a

natural gravitational alternative way for dark energy. Nojiri and Odintsov [17,18]

and Faraoni [19] have shown that the some f(R) theories can pass the Solar System

tests.

Multamäki et al. [20] studied the energy-momentum complexes in metric f(R)

gravity. They generalized the energy-momentum complexe in metric f(R) gravity

for constant curvature solutions. Sharif and Shamir [21] found the energy densities

for some static plane symmetric solutions by using the generalized Landau-Lifshitz

energy-momentum complex. In the present paper, we would like to extend this

analysis for a general plane symmetric spacetime.

This paper is organized as follows: In section 2, the field equations in metric

f(R) gravity are discussed. In section 3, the vacuum solutions of a general plane

symmetric spacetime for constant curvature are found. In section 4, we firstly give a

brief introduction about the generalized Landau-Lifshitz energy-momentum complex

in the framework of f(R) gravity. Then, the energy distribution for the obtained

solutions in section 3 are computed for a number of commonly considered f(R)

theories. In the last section, we conclude the results.

2. Field equations in f(R) gravity

In this section, we give a brief review of the modified field equations in metric

f(R) gravity. There are two formalisms which are applied to obtain the field equa-

tions in f(R) gravity. One is the metric formalism while the another approach is

Palatini formalism. The modified field equations obtained by these two formalisms

are not the same in general. The metric formation of this theory has been studied

by a number of authors (see e.g. [18]). The metric and Palatini f(R) gravities have

recently been reviewed in detail by Capozziello and Francaviglia [22], Sotiriou and

Faraoni [23]. Olmo [24] has reviewed the recent literature on modified theories of
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gravity in Palatini approach.

The action for f(R) gravity coupled with matter is given by1

S =
1

16π

∫
d4x

√
−g f(R) + Sm, (2.1)

where f(R) is a general function of Ricci scalar and Sm represents the action asso-

ciated with the matter fields. The field equations are reached by varying the above

action with respect to the metric tensor gµν , then they are given by

Rµν −
1

2
gµνR = T g

µν + 8πG
Tm
µν

F (R)
, (2.2)

in which T g
µν is the geometric energy-momentum tensor and it defines as2

T g
µν =

1

F (R)

{
1

2
gµν (f(R)− F (R)R) +∇α∇βF (R)(gαµgβν − gµνgαβ)

}
, (2.3)

with F (R) ≡ df(R)

dR
and Tm

µν is the standard matter stress-energy tensor derived

from the matter action. For the vacuum solutions, the field equations become

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF (R) + gµν�F (R) = 0, (2.4)

where � ≡ ∇µ∇µ is the d’Alembertian. Next, contracting the field equations, gives

the following relation between f(R) and its derivative

F (R)R− 2f(R) + 3�F (R) = 0, (2.5)

which will be used later to simplify the field equations and to determine the function

of Ricci scalar. For constant curvature solutions (R = R0), this equation reduces to

F (R0)R0 − 2f(R0) = 0. (2.6)

This condition is very important for checking the acceptability of f(R) models.

3. The plane symmetric vacuum solutions

The study of plane symmetric solutions in Einstein theory has a long history.

The general vacuum solution of the plane symmetric model was first considered by

Taub more than 60 years ago. A generalization of this spacetime with cosmological

constant was first obtained by Novotný and Horský [25]. In recent years, the plane

symmetric spacetimes have been discussed extensively in general relativity by many

authors. Sharif and Shamir [26] studied the constant curvature vacuum solutions

of plane symmetric spacetime in metric f(R) gravity. Yavari [27] investigated a

complete set of the exact vacuum solutions of the plane symmetric spacetime for

two cases R = constant and R ̸= constant in metric f(R) gravity. In this section,

we find the exact solutions of vacuum field equations for a general plane symmetric

1The gravitational units with c=G=1 are used.
2∇µ is the covariant derivative associated with the Levi-Civita connection of the metric.
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spacetime in metric f(R) gravity. We consider the line element of plane symmetric

spacetime in Cartesian coordinates given by

ds2 = −adt2 + b(dx2 + dy2) + cdz2, (3.1)

where a, b and c are unknown functions of z. The corresponding Ricci scalar is

R =
1

2c

{
2
a′′

a
+ 4

b′′

b
−

(
a′

a

)2

−
(

b′

b

)2

+ 2
a′

a

b′

b
− a′

a

c′

c
− 2

b′

b

c′

c

}
, (3.2)

here prime denotes derivative with respect to z. Next, by applying the equation

(2.5), the vacuum field equations take the following form

∇µ∇νF − FRµν =
�F −RF

4
gµν , (3.3)

since the metric only depends on the coordinate z, this equation is a set of differential

equations for functions a(z), b(z) and c(z). In this case both sides are diagonal and

so, we have four equations. From the equation (3.3) it is clear that the combination

Mµ ≡ ∇µ∇µF−FRµµ

gµµ
(with fixed indices) is independent of the index µ and so, we

have Mµ = Mν for all µ and ν, [28]. From the last consequence, two following

independent field equations are obtained

2

(
a′

a
− b′

b

)
F ′ −

{
2
a′′

a
− 2

b′′

b
−

(
a′

a

)2

+
a′

a

b′

b
− a′

a

c′

c
+

b′

b

c′

c

}
F = 0, (3.4)

2F ′′ −
(

a′

a
+

c′

c

)
F ′ −

{
2
b′′

b
−

(
b′

b

)2

− a′

a

b′

b
− b′

b

c′

c

}
F = 0. (3.5)

Therefore, there are only two field equations containing four unknowns, i.e. the

metric coefficients and F (z). Thus, any set of functions a(z), b(z), c(z) and F (z)

satisfying the above two equations would be a solution of the modified field equations.

It is obvious that the solution of these equations could not be found easily. On the

other hand, we know that some of the constant curvature solutions in f(R) gravity

are equal to the solutions in Einstein theory. Hence, in the next section, we will

study the simple (but important) case of solutions with constant curvature.

3.1. Constant curvature solutions

For the constant curvature solutions, R = R0 = constant, we have F ′(R0) =

F ′′(R0) = 0. By applying these conditions, equations (3.4), (3.5) and (3.2) respec-

tively are changed to

2
a′′

a
− 2

b′′

b
−

(
a′

a

)2

+
a′

a

b′

b
− a′

a

c′

c
+

b′

b

c′

c
= 0, (3.1.1)

2
b′′

b
−

(
b′

b

)2

− a′

a

b′

b
− b′

b

c′

c
= 0, (3.1.2)

2
a′′

a
+ 4

b′′

b
−

(
a′

a

)2

−
(

b′

b

)2

+ 2
a′

a

b′

b
− a′

a

c′

c
− 2

b′

b

c′

c
− 2R0c = 0. (3.1.3)
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It is not an easy task to find the general solutions for these equations. Firstly, by

eliminating the variable a from the equations (3.1.1) and (3.1.2), we lead to the

following differential equation

2
b′′′

b′
− 3

b′′

b
− c′′

c
+

(
b′

b

)2

+ 2

(
c′

c

)2

− 3

(
b′′

b′
− 1

2

b′

b

)
c′

c
= 0. (3.1.4)

In continuation, calculations show that the following expression

b′

b
= −4η

√
c

3
tan

(∫
η
√
c dz + δ

)
, (3.1.5)

can be a general solution of the equation (3.1.4), while η and δ are constants of

integration. Moreover, combining this result with the equation (3.1.2) yields

a′

a
=

4η
√
c

3

{
3cosec2

(∫
η
√
c dz + δ

)
− tan

(∫
η
√
c dz + δ

)}
. (3.1.6)

By substituting the equations (3.1.5) and (3.1.6) into equation (3.1.3), after a rather

tedious calculation and simplifying, one obtains3

c′ −mc
√
c sin 2

(∫
η
√
c dz + δ

)
= 0, (3.1.7)

where m = R0
4η + 4η

3 . By differentiating of this equation, we find that

2cc′′ − 3(c′)2 − 4ηc
√

m2c4 − (c′)2c = 0. (3.1.8)

Unfortunately only an integral expression as z = z(c) can be obtained from the

solution of this differential equation as∫
dc√

8η2(ε− 1)c3 ln c+ (m2 − 4η2ε2)c3
= ± z, (3.1.9)

where ε is an arbitrary constant. This integral equation can be solved exactly only

for ε = 1. In this case, the existence of the real solutions for R0 = 0 are impossible

and also we must have R0
2 > 4η2

3 or R0
10 < −4η2

3 . However, the solution of integral

equation (3.1.9) for special case ε = 1 becomes

c =
4

(m2 − 4η2)z2
. (3.1.10)

After substituting this expression into equation (3.1.5) and integrating, it is found

that

b = cos
4
3 (2ηθ), (3.1.11)

where θ =
ln z√

m2 − 4η2
and we also have taken the constant δ to be zero without

any loss of generality. In order to determine the another metric coefficient, we look

3Most of the calculations were done using Maple software.
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at the equation (3.1.6). It is difficult to solve this equation. But, we can use the

equation (3.1.2) which looks simpler. Therefore, after some work, it is given by

a = sin
4
3 (2ηθ) tan

2
3 (2ηθ). (3.1.12)

By introducing the new variable z̃ =
π

2
− 2θ, one can rewrite the metric (3.1) as

follows

ds2 = − cos2(ηz̃) sin−
2
3 (ηz̃)dt2 + sin

4
3 (ηz̃)(dx2 + dy2) + dz̃2, (3.1.13)

in which η has to be a real odd integer number. This metric has the same general

form as Novotný-Horský solution with cosmological constant Λ = 4η2

3 , [29].

4. Energy distribution of Novotný-Horský solution

In this section, we calculate the energy distribution of constant curvature

solution (3.1.13). For doing this, the generalized Landau-Lifshitz energy-momentum

complex will be used. We note that this energy-momentum complex is used only

for the constant curvature solutions. The calculations show that we are unable to

formulate a general expression for the energy-momentum complex which valid for all

metrics and theories. The generalized Landau-Lifshitz energy-momentum complex

for a general f(R) theory is given by, [20]:

τµν = τµνLLf
′(R0) +

1

48πG

(
f ′(R0)R0 − f(R0)

) ∂

∂xδ

(
gµνxδ − gµδxν

)
, (4.1)

where τµνLL is the Landau-Lifshitz energy-momentum complex evaluated in the frame-

work of general relativity with the following form

τµνLL = (−g)
(
tµνLL + Tµν

)
, (4.2)

and the energy-momentum pseudotensor tµνLL is defined via the following expression

16πG tµνLL =
(
gµαgνβ − gµνgαβ

)(
2Γγ

αβΓ
δ
γδ − Γγ

αδΓ
δ
βγ − Γγ

αγΓ
δ
βδ

)
+gµαgβγ

(
Γν
αδΓ

δ
βγ + Γν

βγΓ
δ
αδ − Γν

γδΓ
δ
αβ − Γν

αβΓ
δ
γδ

)
+gναgβγ

(
Γµ
αδΓ

δ
βγ + Γµ

βγΓ
δ
αδ − Γµ

γδΓ
δ
αβ − Γµ

αβΓ
δ
γδ

)
+gαβgγδ

(
Γµ
αγΓ

ν
βδ − Γµ

αβΓ
ν
γδ

)
, (4.3)

where Γσ
µν are the usual Christoffel symbols constructed from gµν . The equation

(4.1) is a generalized formula of the Landau-Lifshitz energy-momentum complex

which valid for any f(R) model with constant curvature solutions. We see that the

generalized Landau-Lifshitz energy-momentum complex in f(R) theory coincides

with the Landau-Lifshitz energy-momentum complex in general relativity only if

f(R0) = 0 and f ′(R0) = 1. Next, the 00-component of the relation (4.1) is given by

τ00 = τ00LLf
′(R0) +

1

48πG

(
f ′(R0)R0 − f(R0)

)(
3g00 +

∂g00

∂xi
xi
)
. (4.4)
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Furthermore, we know that energy of the gravitational field is obtained by the

integrated τ00 over the 3-dimensional space integral, [20]:

E =

∫∫∫
τ00dx1dx2dx3, (4.5)

which is an important quantity of the physical system.

In continuation, for determining the 00-component of tµνLL, we need to determine the

nonzero Christoffel symbols of metric (3.1.13). The calculations show that

Γ0
03 =

2η

3
(2 cos2 z− 3) csc z,

Γ1
13 = Γ2

23 =
2η

3
cot z

Γ3
00 =

η

3
(2 cos2 z− 3) cos z sin−

5
3 z,

Γ3
11 = Γ3

22 = − 2η

3
cos z sin

1
3 z, (4.6)

in which z = ηz̃. In addition, the corresponding Ricci scalar is R0 = −16η2

3 = −4Λ.

By substituting the above Christoffel symbols into equation (4.3), after a rather

tedious calculation, one obtains

t00LL = − 1

16πG
g00

{
g00Γ0

03Γ
3
00 + 4g11Γ2

23Γ
3
11 + g33(Γ0

03)
2 − 6g33(Γ1

13)
2
}
. (4.7)

After simplifying, this relation takes the simple form

t00LL = − 5Λ

24πG
sin−

4
3 z, (4.8)

and it yields

τ00LL = − 5Λ

24πG
cos2 z sin

2
3 z. (4.9)

After inserting this value into equation (4.4), we finally get

τ00 = − 5Λ

24πG
f ′(R0)Z1 +

1

48πG
(f ′(R0)R0 − f(R0))Z2, (4.10)

in which Z1 = cos2 z sin
2
3 z and Z2 = −3 sec2 z sin

2
3 z−z d

dz(sec
2 z sin

2
3 z). This relation

is valid for any f(R) theory which has the Novotný-Horský metric as a vacuum

solution. Below, we will calculate this energy density for some well known f(R)

models with the constant curvature condition.

4.1. First model

At first, we discussed an important f(R) model as follows, [17,18]:

f(R) = R− µ4

R
− σR2, (4.1.1)

where µ and σ are real numbers. This model with σ = 0 is the first dark energy model

introduced in f(R) gravity, called the Carroll-Duvuri-Tordden-Turnner model. It is

mentioned here that this f(R) model satisfy the constant curvature condition, i.e.
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f ′(R0)R0 − 2f(R0) = 0, which implies that µ4 = 16Λ2

3 . By applying this result, the

00-component of the corresponding generalized Landau-Lifshitz energy-momentum

complex is given by

τ00 = − 1 + 6σΛ

18πG
(Z2 + 5Z1)Λ. (4.1.2)

After integrating, the energy distribution function per unit surface is calculated as

E(z) = −(1 + 6σΛ)
√
Λ

9
√
3πG

Z sin
2
3 z, (4.1.3)

where Z is defined as follows
Z = −z sec2 z− 1

8
tan z(15 sin2 z+ 1)

+
77

40
hypergeom

(
1

2
,
5

6
,
11

6
; sin2 z

)
sin z. (4.1.4)

4.2. Second model

Nojiri and Odintsov [17] suggested a new model of modified gravity which

contains the positive and negative powers of curvature as follows

f(R) = R− (−1)n−1 α

Rn
+ (−1)p−1βRp, (4.2.1)

where n and p are positive integers and α, β are any real numbers. They proved

that the terms with positive powers of curvature provide the inflationary epoch

while the terms with negative powers serves as an alternative for dark energy which

is responsible for the cosmic acceleration. This model must satisfy the constant

curvature condition, and this condition yields

(n+ 2)α+ (p− 2)β(4Λ)n+p = (4Λ)n+1. (4.2.2)

For the particular case p = 2 or β = 0, we get

α =
(4Λ)n+1

n+ 2
, n ̸= −2. (4.2.3)

In this case, we have f(R0) = n+1
n+2 R0 and f ′(R0) = 2n+2

n+2 . The equation (4.2.3)

satisfies the constant curvature condition which is necessary for the acceptability

of the model (4.2.1). After imposing this condition, the energy function takes the

following form

E(z) = − (n+ 1)
√
Λ

6
√
3 (n+ 2)πG

Z sin
2
3 z. (4.2.4)

4.3. Third model

One of the another cosmologically interesting f(R) model is given by, [30]:

f(R) = R− ϱ ln

(
|R|
k

)
+ (−1)n−1ζRn, (4.3.1)

where its parameters are related to the cosmological constant. The f(R) modified

theories with the lnR term often conduct to a consistent modified gravity which
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may pass the Solar System tests, [30,31]. The constant scalar curvature condition

gives

ϱ− 4Λ− 2ϱ ln

(
4Λ

k

)
+ (n− 2)ζ(4Λ)n = 0. (4.3.2)

For the case n = 2 or ζ = 0, this condition reduces to

ϱ =
4Λ

1− 2 ln(4Λk )
, (4.3.3)

which satisfies the constant curvature condition necessary for acceptability of the

model (4.3.1). By inserting the value f ′(R0) =
2 ln( 4Λ

k
)

2 ln( 4Λ
k
)−1

into equation (4.10), we

obtain

τ00 = −
Z2 + ln(4Λk )(Z2 + 5Z1)

12πG
(
2 ln(4Λk )− 1

) Λ. (4.3.4)

Finally, the energy distribution function for the model (4.3.1) is obtained as follows

E(z) = −
Z ln(4Λk )− z sec2 z− 2 tan z+ 4

5 hypergeom
(
1
2 ,

5
6 ,

11
6 ; sin

2 z
)
sin z

6
√
3πG

(
2 ln(4Λk )− 1

) sin
2
3 z

√
Λ.

(4.3.5)

5. Conclusions

In this work, the exact solutions of a general plane symmetric spacetime have

been investigated in the framework of metric f(R) gravity. Firstly, it is found that

the vacuum solutions with constant curvature are exactly similar to the Novotný-

Horský solution with a parameter which is identified as the cosmological constant.

For this solution, the energy distribution functions have been calculated for some

important f(R) models by using the generalized Landau-Lifshitz energy-momentum

complex. It was also found that the constant curvature condition is satisfied for

these models.
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