

DUALS OF A BANACH ALGEBRA AS DUAL BANACH ALGEBRAS

Mina Ettefagh¹

Let \mathfrak{A} be a Banach algebra. We investigate $(2n)$ -th ($n \geq 1$) dual of \mathfrak{A} as a dual Banach algebra. We show that, if $\mathfrak{A}^{(2n-4)}$ is Arens regular for some $(n \geq 2)$, then the weak amenability of $\mathfrak{A}^{(2n)}$ implies the weak amenability of \mathfrak{A}^{**} .

Keywords: Banach algebra, Dual Banach algebra, weak amenability, Arens regularity.

MSC2010: 46H20

1. Introduction

Throughout this paper \mathfrak{A} is a Banach algebra. This algebra is called a *dual Banach algebra* if $\mathfrak{A} = E^*$ for a closed submodule E of \mathfrak{A}^* . This concept was introduced by V.Runde in [14]. For example the class of dual Banach algebras includes all W^* -algebras, all algebras $M(G)$ for locally compact groups G , all algebras $L(E)$ for reflexive Banach spaces E and all biduals of Arens regular Banach algebras.

For a Banach \mathfrak{A} -bimodule X , a *derivation* from \mathfrak{A} into X is a bounded linear map $D : \mathfrak{A} \rightarrow X$ satisfying

$$D(ab) = a.D(b) + D(a).b \quad (a, b \in \mathfrak{A}).$$

This derivation is called *inner* if there is $x \in X$ such that

$$D(a) = a.x - x.a \quad (a \in \mathfrak{A}).$$

The dual space X^* of X can be made into a Banach \mathfrak{A} -bimodule as well via

$$\langle a.f, x \rangle = \langle f, xa \rangle, \quad \langle f.a, x \rangle = \langle f, ax \rangle \quad (a \in \mathfrak{A}, f \in X^*, x \in X)$$

A Banach algebra \mathfrak{A} is said to be *amenable* if every derivation $D : \mathfrak{A} \rightarrow X^*$ is inner, for every Banach \mathfrak{A} -bimodule X . \mathfrak{A} is called *weakly amenable* if every derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is inner ([2] and [12]).

The second dual \mathfrak{A}^{**} is a Banach algebra with the *first [or second] Arens product* \square [or \diamond] which are given by following formulas

$$\begin{aligned} \langle F \square G, f \rangle &= \langle F, G.f \rangle \\ \langle G.f, a \rangle &= \langle G, f.a \rangle \\ \langle F \diamond G, f \rangle &= \langle G, f.F \rangle \\ \langle f.F, a \rangle &= \langle F, a.f \rangle \quad (F, G \in \mathfrak{A}^{**}, f \in \mathfrak{A}^*, a \in \mathfrak{A}). \end{aligned}$$

¹Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
ettefagh@iaut.ac.ir, minaettefagh@gmail.com

The Banach algebra \mathfrak{A} is called *Arens regular* if two products \square and \diamond coincide. We refer to Arens' original paper [1] and the survey paper [5].

As known, neither the amenability of \mathfrak{A} implies that of \mathfrak{A}^{**} , nor the weak amenability of \mathfrak{A} implies that of \mathfrak{A}^{**} , see [10,6]. By Gourdeau theorem the amenability of \mathfrak{A}^{**} implies the amenability of \mathfrak{A} (see[11]). But in generally weak amenability of \mathfrak{A}^{**} dose not imply the weak amenability of \mathfrak{A} . This problem was considered by few outhors. We mention these results in following.

Proposition 1.1. *Let \mathfrak{A} be a Banach algebra. In each of the following cases, the weak amenability of \mathfrak{A}^{**} implies weak amenability of \mathfrak{A} .*

- (1) \mathfrak{A} is left ideal in \mathfrak{A}^{**} ,
- (2) \mathfrak{A} is right ideal in \mathfrak{A}^{**} and $\mathfrak{A}^{**}\mathfrak{A} = \mathfrak{A}^{**}$,
- (3) \mathfrak{A} is dual Banach algebra,
- (4) \mathfrak{A} and the map $\varphi : \mathfrak{A} \times \mathfrak{A}^* \rightarrow \mathfrak{A}^*$ by $\varphi(a, f) = a.f$ are Arens regular,
- (5) \mathfrak{A} is Arens regular and every derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is weakly compact,
- (6) The second adjoint of each derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ satisfies $D''(\mathfrak{A}^{**}) \subseteq WAP(\mathfrak{A})$.

Proof. See [4,6,8,9,10]. ■

In section (2) we investigate $(2n)$ -th ($n \geq 1$) dual of \mathfrak{A} as a dual Banach algebra, and we study the relations between Arens regularity of $\mathfrak{A}^{(2n-2)}$ and dual Banach algebra $\mathfrak{A}^{(2n)}$ ($n \geq 1$). In section (3) we extend the condition (3) of above proposition to \mathfrak{A}^{**} , $\mathfrak{A}^{(4)}$, ... and $\mathfrak{A}^{(2n)}$ as dual Banach algebras. Our work is similar to following results of Medghalchi and Yazdanpanah.

Proposition 1.2. *Let \mathfrak{A} be an Arens regular Banach algebra such that $\mathfrak{A}^{(4)}$ is weakly amenable and each derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is weakly compact. Then \mathfrak{A} is weakly amenable (see corollary (3.15) in [13]).*

Proposition 1.3. *Let \mathfrak{A} be a completely Arens regular Banach algebra (i.e. $\mathfrak{A}^{(2n)}$ is Arens regular for every $n \in \mathbb{N}$) such that $\mathfrak{A}^{(2n)}$ is weakly amenable for some $n \in \mathbb{N}$, and each derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is weakly compact. Then \mathfrak{A} is weakly amenable (see corollary (3.17) in [13]).*

A part of our corollary (3.3) is similar to proposition (1.2), but our proof will be shorter, because we use the concept of dual Banach algebra. Also a part of our corollary (3.5) is similar to proposition (1.3), but we assume the Arens regularity only for $\mathfrak{A}^{(2n-4)}$ for some ($n \geq 2$) instead of complete Arens regularity. Finally we have some interesting results in commutative Banach algebras at the end of section (3).

2. $\mathfrak{A}^{(2n)}$ as a dual Banach algebra

Definition 2.1. *The Banach algebra \mathfrak{A} is a dual Banach algebra if there is a closed submodule E of \mathfrak{A}^* such that $\mathfrak{A} = E^*$. the space E is the predual of \mathfrak{A} [14].*

Lemma 2.2. *Let \mathfrak{A} be a Banach algebra such that $\mathfrak{A} = E^*$ as a Banach space for some Banach space E . Then \mathfrak{A} is a dual Banach algebra (with predual E) if and only if the multiplication in \mathfrak{A} is weak* separately continuous (see [14] and [3]).*

Using above lemma for \mathfrak{A}^{**} and $\mathfrak{A}^{(2n)}$ ($n \geq 1$) we have the following results (see also example (4) in [14]).

Corollary 2.3. *Let \mathfrak{A} be a Banach algebra. Then $\mathfrak{A}^{**} = (\mathfrak{A}^*)^*$ is a dual Banach algebra (with predual \mathfrak{A}^*) if and only if \mathfrak{A} is Arens regular.*

Corollary 2.4. *Let \mathfrak{A} be a Banach algebra and ($n \geq 1$). Then $\mathfrak{A}^{(2n)}$ is a dual Banach algebra if and only if $\mathfrak{A}^{(2n-2)}$ is Arens regular.*

It is easy to check that if $\mathfrak{A}^{(2n)}$ for some ($n \geq 1$) with one of the Arens products is Arens regular then $\mathfrak{A}^{(2n-2)}, \dots, \mathfrak{A}^{**}$ and \mathfrak{A} are Arens regular, so there is only one Arens product in each of the algebras $\mathfrak{A}^{(2n)}, \dots, \mathfrak{A}^4$ and \mathfrak{A}^{**} . So we have

Proposition 2.5. *Let \mathfrak{A} be a Banach algebra such that $\mathfrak{A}^{(2n)}$ is a dual Banach algebra for some ($n \geq 1$). Then $\mathfrak{A}^{(2n-2)}, \dots, \mathfrak{A}^{(4)}$ and \mathfrak{A}^{**} are dual Banach algebras.*

We can show above results in the following diagram, in which (AR) refers to Arens regularity and (DA) denotes the dual Banach algebra. The symbols (\rightarrow) and (\leftrightarrow) show conclusion and equivalency.

$$\begin{array}{ccccccc}
 & & \mathfrak{A}^{(2n-2)}(AR) & \rightarrow & \mathfrak{A}^{(2n-4)}(AR) & \rightarrow \dots & \rightarrow \mathfrak{A}^{**}(AR) & \rightarrow \mathfrak{A}(AR) \\
 \uparrow & \uparrow & \uparrow & & \uparrow & & & \\
 & & \mathfrak{A}^{(2n)}(DA) & \rightarrow & \mathfrak{A}^{(2n-2)}(DA) & \rightarrow \dots & \rightarrow \mathfrak{A}^{(4)}(DA) & \rightarrow \mathfrak{A}^{**}(DA).
 \end{array}$$

Now Let \mathfrak{A} be a commutative Banach algebra. We know that \mathfrak{A} is Arens regular if and only if \mathfrak{A}^{**} is commutative. Also \mathfrak{A} is Arens regular if and if $\mathfrak{A}^{(2n)}$ is Arens regular, for every $n \in \mathbb{N}$ (see [7]). So we have

Proposition 2.6. *Let \mathfrak{A} be a commutative Banach algebra, then $\mathfrak{A}^{(2n)}$ (with one of Arens products) ($n \geq 1$) is dual Banach algebra if and only if \mathfrak{A}^{**} is dual Banach algebra.*

Proof. $\mathfrak{A}^{(2n)} = (\mathfrak{A}^{(2n-2)})^{**}$ is dual if and only if $\mathfrak{A}^{(2n-2)}$ is Arens regular. Also $\mathfrak{A}^{(2n-2)}$ is Arens regular if and only if \mathfrak{A} is Arens regular, and \mathfrak{A} is Arens regular if and only if \mathfrak{A}^{**} is dual. \blacksquare

So we have the following diagram in the commutative case:

$$\begin{array}{ccccccc}
 & & \mathfrak{A}^{(2n)}(AR) & \leftrightarrow & \mathfrak{A}^{(2n-2)}(AR) & \leftrightarrow \dots & \leftrightarrow \mathfrak{A}^{**}(AR) & \leftrightarrow \mathfrak{A}(AR) \\
 \uparrow & \uparrow & \uparrow & & \uparrow & & & \\
 & & \mathfrak{A}^{(2n+2)}(DA) & \leftrightarrow & \mathfrak{A}^{(2n)}(DA) & \leftrightarrow \dots & \leftrightarrow \mathfrak{A}^{(4)}(DA) & \leftrightarrow \mathfrak{A}^{**}(DA)
 \end{array}$$

3. When weak amenability of $\mathfrak{A}^{(2n)}$ implies that of \mathfrak{A} ?

We use the following result of Ghahramani and Laali in [9].

Theorem 3.1. *Let \mathfrak{A} be a dual Banach algebra. If \mathfrak{A}^{**} is weakly amenable, then \mathfrak{A} is weakly amenable.*

First we consider \mathfrak{A}^{**} as a dual Banach algebra with its first Arens product and apply theorem (3.1) for \mathfrak{A}^{**} . This will be similar to proposition (1.2), but our proof is shorter.

Proposition 3.2. *If \mathfrak{A} be an Arens regular Banach algebra such that $\mathfrak{A}^{(4)}$ is weakly amenable, then \mathfrak{A}^{**} is weakly amenable.*

Proof. Since \mathfrak{A} is Arens regular, then $\mathfrak{A}^{**} = (\mathfrak{A}^*)^*$ is a dual Banach algebra by corollary (2.3). So \mathfrak{A}^{**} is weakly amenable by theorem (3.1). \blacksquare

Corollary 3.3. *Let \mathfrak{A} be an Arens regular Banach algebra with one of the following conditions*

- (1) *every derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is weakly compact,*
- (2) *the map $\varphi : \mathfrak{A} \times \mathfrak{A}^* \rightarrow \mathfrak{A}^*$ ($\varphi(a, f) = a.f$) is Arens regular.*

If $\mathfrak{A}^{(4)}$ is weakly amenable, then \mathfrak{A} is weakly amenable.

Proof. \mathfrak{A}^{**} is weakly amenable by proposition (3.2) and then \mathfrak{A} is weakly amenable by conditions (4) and (5) of proposition (1.1). \blacksquare

Now we apply theorem (3.1) for dual Banach algebra $A^{(2n-2)} (n \geq 2)$ with its first Arens product. We obtain the following result that is the general form of proposition (3.2).

Proposition 3.4. *If \mathfrak{A} be a Banach algebra such that $\mathfrak{A}^{(2n-4)}$ is Arens regular and $\mathfrak{A}^{(2n)}$ is weakly amenable for some $(n \geq 2)$, then \mathfrak{A}^{**} is weakly amenable.*

Proof. Since $\mathfrak{A}^{(2n-4)}$ is Arens regular, then $\mathfrak{A}^{(2n-2)} = (\mathfrak{A}^{(2n-4)})^{**}$ is a dual Banach algebra by corollary (2.4), so $\mathfrak{A}^{(2n-2)}$ is weakly amenable by theorem (3.1). Because $\mathfrak{A}^{(2n-2)}$ is dual Banach algebra then $\mathfrak{A}^{(2n-4)}$ is dual Banach algebra by proposition (2.5), and again we apply theorem (3.1) for $\mathfrak{A}^{(2n-4)}$ and we conclude that $\mathfrak{A}^{(2n-4)}$ is weakly amenable. Similarly $\mathfrak{A}^{(2n-6)}$, $\mathfrak{A}^{(2n-8)}$, ... and \mathfrak{A}^{**} are dual Banach algebras by proposition (2.5). By frequent applying theorem (3.1) for these dual Banach algebras we conclude that they are weakly amenable. \blacksquare

Corollary 3.5. *Let \mathfrak{A} be a Banach algebra such that $\mathfrak{A}^{(2n-4)}$ is Arens regular for some $(n \geq 2)$, with one of the following conditions*

- (1) every derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is weakly compact,
 - (2) the map $\varphi : \mathfrak{A} \times \mathfrak{A}^* \rightarrow \mathfrak{A}^* (\varphi(a, f) = a.f)$ is Arens regular.
- If $\mathfrak{A}^{(2n)}$ is weakly amenable, then \mathfrak{A} is weakly amenable.

Proof. \mathfrak{A}^{**} is weakly amenable by proposition (3.4) and then \mathfrak{A} is weakly amenable by conditions (4) and (5) of proposition (1.1). \blacksquare

In the commutative Banach algebras we have the following result

Proposition 3.6. *Let \mathfrak{A} be a commutative and Arens regular Banach algebra, with one of the following conditions*

- (1) every derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is weakly compact,
- (2) the map $\varphi : \mathfrak{A} \times \mathfrak{A}^* \rightarrow \mathfrak{A}^* (\varphi(a, f) = a.f)$ is Arens regular.

If $\mathfrak{A}^{(2n)}$ is weakly amenable for some $n \geq 1$, then \mathfrak{A} is weakly amenable.

Proof. We know that in commutative Banach algebra \mathfrak{A} , the Arens regularity of \mathfrak{A} is equivalent to Arens regularity of each $\mathfrak{A}^{(2n)} (n \geq 1)$. So in particular $\mathfrak{A}^{(2n-4)}$ is Arens regular, and the assertion is proved by corollary (3.5). \blacksquare

Corollary 3.7. *Let \mathfrak{A} be a dual Banach algebra such that $\mathfrak{A}^{(2n-4)}$ is Arens regular for some $n \geq 2$. If $\mathfrak{A}^{(2n)}$ is weakly amenable then \mathfrak{A} is weakly amenable.*

Proof. This is a consequence of proposition (3.4) and theorem (3.1). \blacksquare

Corollary 3.8. *Let \mathfrak{A} be a commutative, Arens regular and dual Banach algebra. If $\mathfrak{A}^{(2n)}$ is weakly amenable for some $n \geq 1$, then \mathfrak{A} is weakly amenable.*

Proof. In commutative Banach algebra \mathfrak{A} , the Arens regularity of \mathfrak{A} is equivalent to Arens regularity of $\mathfrak{A}^{(2n-4)}$. Hence \mathfrak{A}^{**} is weakly amenable by proposition (3.4), and \mathfrak{A} will be weakly amenable by theorem (3.1). \blacksquare

REFERENCES

1. R. Arens, *The adjoint of a bilinear operation*, Proc. Amer. Math. Soc. 2 (1951), 839-848.
2. W. G. Bade, P.C.Curtis and H. G. Dales, *Amenability and weak amenability for Beurling and Lipschitz algebras*, Proc. London Math. Soc. 55 (1987), 359-377.
3. H. G. Dales and A. T. M. Lau, *The second duals of Beurling algebras*, Mem. Amer. Math. Soc. 177 (2005), no-836.
4. H. G. Dales, A. Rodriguez and M.V.Valasco, *the second transpose of a derivation*. J. London Math. Soc. 64 (2001), 707-721.
5. J. Duncan and S. A. Hosseiniun, *The second dual of Banach algebras*, Proc. Roy. Soc. Edinburg Set. A 84 (1979), 309-325.
6. M. Eshaghi and M. Filali, *Weak amenability of the second dual of a Banach algebra*, Studia Math. 182 (3), (2007), 205-213.
7. M. Eshaghi and S. A. Hosseiniun, *The forth dual of Banach algebra*, (to appear).
8. M. Ettefagh, *The third dual of a Banach algebra*, Studia. Sci. Math. Hung. 45 (1) (2008), 1-11.
9. F. Ghahramani, J. Laali, *Amenability and topological centers of the second duals of Banach algebras*, Bull. Austral. Math. Soc. 65 (2002) 191-197.
10. F. Ghahramani, R. J. Loy and G. A. Willis, *Amenability and weak amenability of second conjugate Banach algebra*, Proc. Amer. Math. Soc. 124, (1996), 1489-1497.
11. F. Gourdeau, *Amenability and the second dual of a Banach algebra*, Studia Math. 125 (1997), 75-81.

12. B. E. Johnson, *Cohomology in Banach algebras*, Mem. Amer. Math. Soc. 127 (1972).
13. A. R. Medghalchi, T. Yazdanpanah, *Problems concerning n -weak amenability of a Banach algebra*, Czechoslovak Math. J. 55 (130) (2005), 836-876.
14. V. Runde, *Amenability for dual Banach algebras*, Studia Math. 148 (2001), 47-66.