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ROBUST OPTIMIZATION OF URBAN COLD-CHAIN
LOGISTICS LOCATION-ROUTING BASED ON AN
IMPROVED GENETIC ALGORITHM

Liying YAN "*

This study presents an in-depth exploration of the intricate issue of uncertain
demand and time-dependence within urban cold-chain logistics distribution networks.
A location-routing model with strict time windows under uncertain demand and time-
dependence is proposed to minimize the total costs including transit costs for selected
distribution centers, transportation costs, driver salaries, and refrigeration costs. We
adopt the budget-of-uncertainty robust approach to deal with the uncertainty of
customer requirements, whereas vehicle travel time is calculated using the first in first
out principle. To solve the problem, an enhanced genetic algorithm incorporating
elite and roulette selection strategy is developed based on model characteristics. This
algorithm preserves superior individuals while accelerating convergence speed and
enhancing solution efficiency. Finally, randomly generated numerical examples are
utilized to verify the feasibility and effectiveness of the model and algorithm.

Keywords: location-routing; service level; time-dependent; uncertain demand,
robust optimization

1. Introduction

Urban distribution center location is a crucial decision-making
consideration for logistics enterprises [1,2], directly affecting the logistics system’s
distribution efficiency and control level. The accurate determination of the
distribution center’s location can significantly improve the operational efficiency
and benefit of the entire distribution system [3]. The urban distribution vehicle
routing costs account for the highest proportion of the logistics distribution process
and has long been a key research area for scholars [4]. Reliable, efficient, and
flexible distribution center and distribution route decisions can not only save
distribution costs and time but also enhance distribution efficiency and the
enterprises’ competitiveness [5].

The rationality of facility location and vehicle routing can greatly optimize
the system logistics network [6]. The interdependence of these two problems has
led to the definition of the location routing problem (LRP), aimed at identifying a
optimization solution to the location and vehicle routing problem [7]. The LRP
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concept can be traced back to 1961. Boventer. [8] first discussed the relationship
between location selection and transportation costs in the transportation process.
Subsequently, scholars analyzed LRP and its variants. Prodhon. [9] analyzed the
multi-period location-routing problem and designed a hybrid evolutionary algori-
thm based on a random expansion of Clarke and Wright's algorithm to solve the
model. Kog et al. [10] investigated the location-routing problem in urban distri-
bution and developed an adaptive large-scale neighborhood search algorithm. The
algorithm’s effectiveness and feasibility were verified through standard instances.
Wang et al. [11] analyzed the two-stage location path problem of green, time win-
dow pickup, and delivery, and designed a heuristic algorithm based on Lagrangian
relaxation to solve the model. Using the Open Location-Routing Problem (OLRP),
Mansouri & Eydi. [12] designed a sustainable supply chain model that addresses
all sustainability pillars and utilized the NSGA-II, a meta-heuristic method, to solve
the proposed model and compare its efficiency with Cplex. Ferreira & Queiroz. [13]
proposed a heuristic that combines the simulated annealing method and the artificial
algae algorithm to solve a location-routing problem with two-dimensional loading
constraints.

Zhang et al. [14] utilized the uncertain information theory to establish a
multi-objective model for the emergency facility location-routing problem. The
scholars transformed the multi-objective model into a single-objective model
predominantly by using the objective function method and by developing a hybrid
intelligent algorithm to solve it. Yannis et al. [15] analyzed the location-routing
models under stochastic demand, and designed hybrid intelligent algorithms to
solve the constructed models. Rahmani& Hosseini., [16] present an extension of
the Green Location-Routing Problem (GLRP) that considers traffic congestion and
variable speeds and provides a nonlinear mixed-integer programming formulation
with preprocessing rules to minimize costs related to depots, servicing penalties,
CO> emissions, and fuel consumption. A heuristic algorithm based on the PSO
algorithm is proposed and shown to yield optimal or near-optimal solutions. Wu et
al. [17] investigated the location-routing problem considering the variation of road
travel time with vehicle travel time, and a dual-level planning model is constructed.
Pekel & Kara. [18] proposed a heuristic search algorithm that combines variable
neighborhood search and evolutionary local search to solve the location-routing
problem with fuzzy demands. Raeisi & Jafarzadeh. [19] analyzed a multi-objective
location-routing problem specifically for hazardous waste, and various algorithms
were employed to solve the model. Annarita et al. [20] proposed an indifference
zone approach to select the most optimal option from alternative configurations,
ensuring correct choice probability while minimizing computational effort. Li & Li.
[21] established a multi-objective delivery model for minimizing carbon emission
trading costs, and network costs, and maximizing customer satisfaction. They
designed an enhanced nondominated sorting genetic algorithm II (NSGA-II), which
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not only augments the diversity within the initial population but also improves the
algorithm's local search capability and elevates its search precision.

Compared with previous studies, the proposed research problem has several
contributions in theory and application: (1) In the context of cold-chain logistics, a
location-routing model is developed that concurrently takes into account both
customer demand uncertainty and vehicle travel time wuncertainty. This
comprehensive consideration renders the model more realistic and adept at
accurately capturing the intricate and dynamic aspects of cold chain logistics. (2)
An enhanced genetic algorithm with an elite selection strategy is designed to solve
the model. Through this improvement, the algorithm is able to find better solutions
while ensuring convergence speed, thus enhancing the practicality and efficiency
of the model. and (3) A multidimensional analysis was conducted to examine the
impact of the robustness of the delivery system, service level, and road congestion
on the total delivery costs. It not only reveals the interaction relationships between
various factors but also provides valuable insights and guidance for the actual
operation of cold chain logistics.

The remainder of this study is constructed as follows. A problem
description and symbol explanation are provided in Section 2. Section 3 and 4
present the model formulation and solution method, respectively. In Section 5, a
numerical case study is employed to validate the effectiveness of the proposed
model and algorithm. Conclusions are summarized in Section 6.

2. Problem description and notation explanation

2.1 Problem description

Herein, we investigate a city’s cold-chain logistics distribution network
comprising multiple candidate distribution centers and several customer demand
points (Fig. 1).

Owing to the known geographical location of customer points and their
requested service time windows, and with uncertain demand at customer points and
varying vehicle speeds due to traffic conditions during travel, the problem involves
establishing a robust model to minimize total costs and designing an algorithm.
thus, the following can be determined:

* Optimal location points for distribution centers, the most efficient
delivery routes for vehicles, and the level of distribution services under different
robust conditions.

* At the given robustness level, the relationship between total costs, total
vehicle travel time, and traffic congestion index is considered when the traffic
congestion index is different.
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Fig.1 Example of the location-routing problem

2.2 Notation explanation
Before modeling, define the relevant notations as depicted in table 1.

Table 1
Notation description
Notation| Meaning
D Set of the candidate distribution centres
K, Set of refrigerated vehicles owned by the ;j -th alternative distribution centre.; € D
N Set of customers
d, The distance between the customer point j and the customer point /
q; Requirements of the j -th customer
q Transport costs per unit distance
1 Travel time of refrigerated vehicle & of distribution centre i from road section j to /
s, Service times of refrigerated vehicle for the j -th customer
t Time when the refrigerated vehicle reaches the customer point j
ET, Customer ; requests the lower limit of service time
LT, Customer ; requests the upper limit of service time
a, Unit time drivers' wages
a, Refrigeration costs per unit time during transportation
a, Refrigeration costs per unit time during unloading
6 Time when refrigerated vehicle of distribution center j arrives at customer point ;
I The time when the refrigerated vehicle leaves the customer point j
A Transit costs of goods per unit in distribution centres
0 Capacity of refrigerated vehicles
Y, Y, is a 0-1 variable: when Y, =1, refrigerated vehicle £ is used; otherwise, Y, =0
K/is a 0-1 variable: when Y, =1, distribution center i serves customer j ; otherwise,
o X;‘ is a 0-1 variable: when X; —1, the refrigerated vehicle k from distribution center ;
Y provides service to the j -th customer; otherwise, Xf =0
o b'e is a 0-1 variable: when Xk =1 the refrigerated vehicle k from distribution center ; is
v traveling from road section j to /; otherwise, X =0
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3. Model development

3.1 Establishment of a location-routing model with uncertain demand
and time-dependent

This study presents a location-routing model for urban cold-chain logistics
with uncertain demand and time-dependent, which is expressed as follows:

Objective function minz=C, +C,+C;+C, (1)
G =/12 ZQjY;j (2
ieD jeN

C,=>>"> >ed,XiY, €)

keK;ieD jeDUN [eDUN

G=a ZZ z ZXZ;zYk (tiI;I+Sl +max{ET; ~1,,0}) (4)

keK;ieD jeDUN leDUN

Co=a, ). > > D XpY,(ty,+max{ET, - 1,0 +a; D > D Y, X5, (5)

keK;ieD jeDUN leDUN keK;ieD jeDUN

Subject to ZX;qj <Q VkeK,jeD (6)
JjeN
DX Xx5=>> X\ VieNkek, Q)
ieD jeN ieD jeN
> > Xi=1 Vkek, ()
ieD jeDUN
> > Xi=1 VkeKk, ©)
ieD jeDUN

> > Xl =1 VieN (10)

ieD keK; jeDUN

D22 Xps|S|-1 SeN (11)

lEDkEK]/ES

ETJ.X;st;.ksLJ;X,.’; VieD,jeN,kek, (12)
t, <max(ET,t,)+s,+1},+B(1-X}) VkeK,ieD (13)
ty2max(ET,,t,)+s; +tt + B( U[—l) VkeK,,ieD (14)

ijl

Equation (1) represents minimizes the total costs including transit costs of
the distribution center, transportation costs, driver wages, and refrigeration costs.
Equation (2) represents the transfer costs of candidate distribution centers. Equation
(3) represents the transportation costs of delivery vehicles. Equation (4) represents
driver wages. Equation (5) represents the refrigeration costs of delivery vehicles,
which is the sum of the refrigeration costs incurred during transportation and
unloading processes. Constraint (6) states the load constraint of delivery vehicles.
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Constraint (7) is the balance between the inflow and outflow of nodes. Constraints
(8) and (9) indicate that vehicles ought to be returned to the initial distribution
center after serving customers. Constraint (10) states that each customer can be
serviced only once by one vehicle. Constraint (11) prevents sub-loops in the
distribution vehicle’s distribution routing. Constraint (12) represents the customer's
hard time window constraint. Constraints (13) and (14) represent the continuity of
delivery time for vehicles.

3.2 Uncertain demand and time-dependent processing

3.2.1 Customer demand uncertainty processing method

There are three methods for addressing customer demand uncertainty:
random optimization, fuzzy optimization, and robust optimization. We adopt the
method of budget-of-uncertainty robust optimization mentioned in references [22,
23] to deal with the uncertainty of customer requirements (Constraint (6) in the
model).

First, define the range of customer demand ¢, as [5 =4 5 ;+4; ], where

5/. denotes the mean value of customer demand and ¢, denotes the maximum

absolute deviation of customer demand.

Second, forVie D,k € K, , uncertain budget I', is offered, and a protect-
ion function B(X,I",) (Vk e K,,i € D) is introduced to transform the uncertainty
of customer demand.

BX,L,)= max {z qA/Xxﬁ +(Ty _er J)qu X,

{SUIYSCN IS|=| T JteN\S} jeS

Therefore, the constraint condition (6) can be transformed from the prece-
ding equation:

> Xiq,+BX.[,)SQ VkeK,ieD
jeN
Where, the uncertain budget Notation I', is utilized to adjust the solut-
ion’s level of robustness, which can take any value from [0, V], and N represents
the number of customers being served.
* When I', taking an integer value, it means that there are I', number of
demand points where the demand attains its maximum value.
* When I’ assumes an integer value, there are |_Fl.k_| number of demand
points where the demand attains its maximum value.
Third, Z, is introduced. Meanwhile, the protection function becomes the

following programming problem:
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Objective function
BX.T,)=max Y ¢q, X\Z, VieD,keKk,

jeN
Subject to 0<Z,<1 VjeN
Z Z;shy
jeN

Finally, using the duality theorem, the problem can be transformed into its
dual problem as follows:
Objective function min o, I, + > 7,
JEN
Subject to o +y, 29, le Vje N
a, =0
7;20 VjeN

Thus, constraint condition (6) can be transformed into the following
constraint problem:

al.k+;/j2quXl.']‘. VieD,keK,,jeN (13)
a,20 ieD,kek, (16)
7,20 VjeN (17)

3.2.2 Time-dependent processing method

The travel time of a refrigerated vehicle on a road section is contingent upon
the departure time of the refrigerated vehicle and its travel speed during this period.
For the entire road section, the researchers merely consider the scenarios of the
morning peak and the evening peak. Herein, the method for calculating travel time
proposed by Ichoua et al. [24] is adopted. In this approach, the travel speed of the
refrigerated vehicle alters when it traverses the boundary of two consecutive
periods, guaranteeing that the road network complies with the first-in-first-out
(FIFO) criterion. The entire distribution time is divided into n periods [7;,7;],

[7;, .1, , [TP_I,TP], [TP,TP+1], ------ ,[T,_,,T,]. The travel speeds within each
period are v,Vv,, ::+- ,V,, respectively. Because urban distribution is a regional

distribution, the researchers consider only the cases where refrigerated vehicles
span at most two periods on the same road section. The calculation formula for the
travel time of refrigerated vehicle k£ from customer point j to customer point / is

expressed as follows:
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3.3 Establishing a location-routing robust model

With the treatment of demand uncertainty and time-dependence in 3.2, the
following location-routing robust model can be obtained.

Objective function as in Equation (1)

Subject to as in Equation (7-18)

Since the customer demand uncertainty is considered herein, there may be
cases where the optimal solution does not meet the constraint conditions. Therefore,
the service level is introduced, which can be expressed as follows:

Service Level(SL) = P(ZX; q,<0) VkeK,ieD
jeN

From the literature Ben-Tal & Nemirovski. [22]. Equation (28) can be
transformed into the following expression:

n

Service Level(SL) = P(Y. X} q, < 0) > H(1- ))C(n| v )+ 3 C(n,1)] (19)

jeN 1]+
Where,

L [=00ril=n

n

C(n,)= ! p " n—I
E ’m exp(n log(z(n — l)) +/ log(T)), otherwise

n :|N|, v={,+n)/2, y:v—l_vJ
It can be concluded from Equation (19) that for a given value of I';, , we can

calculate the lowest service level by Equation (19). By contrast, if the lowest service
level is provided, we can also calculate the value of I', backward. There- fore,

using the location-routing robust model established herein, the enterprise’s decision
maker can not only control the robustness of the solution, but also control the
refrigerated vehicle service level, and subsequently find out the refrigerated vehicle
travelling route that satisfies the service level and the selected distribution centers.

4. Algorithm design

Herein, an enhanced genetic algorithm with elite selection strategy is
designed to solve the established model, and the specific solution steps of the
algorithm are as follows:
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Step 1: Input initial data. Set the initial population value, the maximum
number of iterations of the algorithm, the crossover and mutation probability
values, the dynamic time Notation, and the algorithm's starting iteration number
gen=1

Step 2: Generating initial populations. The initial population was rand-
omly generated by encoding chromosomes according to the 3-layer coding meth-
od. There are d candidate distribution centres and » customer demand points, and
the chromosome coding method is specified as follows:

* The first layer code denotes the distribution center selection priority code.
The encoding length is d, the value interval is [0,1], and the encoding is sorted in
ascending order to obtain a sorting code, namely the selection priority code of the
candidate distribution center.

* The second layer code denotes the number of the selected distribution
centers. The length of the code is 1, and the value interval is [1,J+0.999], rounded
down to the number of selected distribution centers.

* The third level of coding denotes the service priority coding of the
demand point: a real number code of length » in the interval [0,1], sorted in
ascending order to obtain a ranking code, i.e., the service priority code of the
demand.

Step 3: Crossover operation and mutation operation.

* Single point mutation: the gene is mutated by random variation. For
example, the parent chromosome is 1, and the offspring’s chromosome is 3 after a
single point mutation.

* Two-point crossover: the random selection of two chromosomes as
parents and two offspring chromosomes are obtained by direct exchange of two
parent chromosomes. For example, select two parent chromosomes 3 and 4; the
chromosomes of the crossed offspring are 4 and 3.

Step 4: Decoding chromosomes. Based on the code’s significance, upon
obtaining the candidate distribution centers, the chromosome is decoded as foll-
ows as per the load constraints and time window constraints:

(1) Set u=1;

(2) At the outset of the u-th route, R, =0, where 0 denotes the distribution
center;

(3) Attempt to incorporate the j-th point in the chromosome Y into R, . If

the vehicle load and time window are fulfilled after its addition to R,

proceed to. Otherwise, update u# to u+1 and return to(2);

(4) Remove the j-th encoding of Y. If Y becomes empty, then proceed to
(5). Otherwise, update j to j+1, and return to (3);

(5) Output each sub-routing.
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Step S: Selection operation. Calculate the individual’s fitness value = 1.

Where F, denotes the fitness value of the i-th chromosome, and Z, denotes the
value of the objective function of the i-th first chromosome. We utilize a
combination of the elite selection strategy and the roulette strategy to select the
individual.

Step 6: Algorithm termination condition. If gen > the algorithm’s maxi-
mum number of iterations, output the most optimal solution; this marks the end of
the algorithm. Otherwise, let gen = gen + 1, and proceed to Step 3.

5. Numerical example

5.1 Data Acquisition and Notation Setting

[lustrating the capabilities of the proposed model and algorithm: we utilize
Matlab programming to generate the distribution network of a rectangular area with
a side length of 100km*100km. It is assumed that there are four distri- bution
centers available for a candidate in this area and thirty-five customers in need of
services. The distribution centers are equipped with refrigerated vehicles of the
same type and with a vehicle capacity of eight tons. It is required to select two
distribution centers from the given four candidate distribution centers; thus, transfer
and distribution services for thirty-five customers can be provided. The spatial
layout of the candidate distribution centers and their customers is illustrated in
Fig.2. The coordinates of the candidate distribution centers are P1 (45, 75), P2 (65,
70), P3 (15, 28), and P4 (39, 72), respectively. The time windows are all from 5:00
to 19:00. The customer coordinates, average demand, required service time
windows, and service times are illustrated in table 2. The notation values in the
model are depicted in table 3. The parameter values in the algorithm are depicted

in table 4.
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Fig. 2 Spatial layout of candidate distribution centers and demand points
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Table 2
Customer requirement points related information
Demand point 1 2 3 4 5 6
Coordinate /km (35, 53) (20, 25) (18,50) (61,35) (43,40) (55,20)
Time window 7:00-10:30 | 5:30-8:30 | 6:00-9:00 | 6:10-10:00 | 6:30-10:20 | 7:00-11:30
Average demand 0.5t 1.5t 1.5t 1.1t 2t 1.5t
Service time /min 10 15 15 20 20 20
Demand point 7 8 9 10 11 12
Coordinate /km (67,27) (45,10) (50,25) (40,45) (55,60) (50,65)
Time window 7:00-10:00 | 6:40-9:30 | 6:30-11:40 | 7:00-12:30 | 7:00-12:00 | 7:00-10:30
Average demand 2t 1.2t 1t 1.3t 1t 0.5t
Service time /min 25 15 10 15 10 10
Demand point 13 14 15 16 17 18
Coordinate /km (60,50) (65,40) (50,30) (55,10) (25,50) (25,60)
Time window 7:00-11:00 |7:00-12:00 | 6:20-11:30 | 6:40-11:30 | 7:00-12:00 | 6:00-11:30
Average demand 1.5t 2t 2.5t 1.5t 0.5t 2.5t
Service time /min 15 20 25 15 10 25
Demand point 19 20 21 22 23 24
Coordinate /km (15,20) (25,21) (92,53) (25,88) (9,82) (14,55)
Time window 7:00-11:00 |5:30-11:00 | 7:00-11:00 | 7:00-12:00 | 6:20-11:30 | 6:40-11:30
Average demand 1.1t 1.2t 1.3t 1t 0.5t 1.5t
Service time /min 15 15 10 10 15 20
Demand point 25 26 27 28 29 30
Coordinate /km (82,64) (10,67) (85,50) (45,70) (94,60) (85,55)
Time window 7:00-12:00 |8:00-11:30 | 7:00-9:30 | 5:50-11:00 | 7:00-11:00 | 6:30-11:00
Average demand 2t 2.5t 1.5t 0.5t 2.5t 1.1t
Service time /min 25 25 15 10 25 15
Demand point 31 32 33 34 35
Coordinate /km (65,85) (87,58) (95,65) (87,66) (80,60)
Time window 6:40-12:00 |9:00-11:00 | 8:40-10:30 | 8:30-10:30 | 7:00-9:00
Average demand 1.1t 1.2t 1.3t 1t 0.5t
Service time /min 15 15 15 15 10
Table 3
Notation values in the model
INotation Notation INotation Notation INotation| Notation Notation Notation
values values values values
4000 v (Flat peak
¢ 2 RMB/km a, |60 RMB/hour| A RMB/ton period) 25 km/hour
@, |I$RMB/hour| @ |20 RMB/hour| O 8 ton v(Peak g, 1 mhour
period)
Table 4

Parameter values in the algorithm

Parameter Parameter values Parameter Parameter values
Population size 100 Crossover probability 0.8
Maximum number of iterations 500 Mutation probability 0.1
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5.2 Algorithm performance test

The algorithm designed above is programmed and calculated using the
MATLAB R2017a package. The computer operating system is Windows 7-x32,
Intel Core 17, CPU @ 3.4GHz, and the memory is 4GB. We present the conver-
gence of the objective function values when the demand disturbance is 20% and the
uncertain budget I';, takes values of 0, 10, 20, and 30, respectively (Fig. 3). Fig. 3

indicates that the objective function values have a relatively fast converge- nce
speed, and relatively satisfactory optimal solutions are obtained in a short time,
thereby verifying the feasibility of the model and the effectiveness of the algorithm.

5.3 Comparative analysis of results in different scenarios
5.3.1 Relationship between robustness level and total costs
It is assumed that the deviation value of customer demand is 20% the mean

value, i.e., g, = q ;%x20% , It is apparent that the higher the customer demand, the

higher the deviation value. Using the algorithm designed herein, we can find the
relationship between robustness level and the total costs (table. 5).
* WhenI', =0, all demand points have demand values equal to the mean

value, and the total costs of the location-routing is the lowest, with a value of
193,677.18 RMB and a delivery vehicle requirement of six.
* When I',, =35, all demand points have demand values replaced by the

maximum customer demand, the total costs of the location-routing is the highest,
with a value of 233,255.11 RMB and a delivery vehicle requirement of eight.

* Regardless of any value of the uncertainty budget, the optimal siting
points are P2 and P3.

We can conclude that as the robustness of the system increases, the total
cost of the system keeps increasing (Fig. 4) and the number of delivery vehicles
increases. The opposite is also true. Conversely, the relationship between the sys-
tem robustness and the total system costs is as follows: the stronger the robustness,
the higher the system costs, and the weaker the robustness, the lower the system
costs.

Table 5
Total costs and minimum service level under uncertain budget

The value of ", 0 2 4 6 Q
Total costs /RMB 193677.18 196612.59 198119.35 199740.18 202175.33

Service level/% 42.9761 56.2769 68.8781 79.5901 87.7528
The value of T, 10 12 14 16 18
Total costs /RMB 205932.75 206986.16 209092.16 211060.02 213035.17

Service level/% 93.3195 96.7090 98.5457 98.8885 99.8012
The value of T, 20 22 24 26 28
Total costs /RMB 216078.43 217574.06 220002.13 221774.65 223974.64

Service level/% 99.9396 99.9842 99.9965 99.9993 99.9999
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Fig. 3 Iteration of the optimal solution at different levels of robustness
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Fig. 4 The relationship between the uncertainty budget and the total costs

5.3.2 Relationship between enterprise's level of distribution services
and total costs

Suppose the deviation value of customer demand is 20% the mean. From
Equation (19), we can calculate the distribution service level and total costs of the
enterprise under different uncertain budget values (table 5). When the uncertainty
of customer demand is not considered, the total costs of the firm is 193,677.18
RMB, and the service level is 42.9761%. When the customer demand deviates
completely, the enterprise’s total delivery cost is 233,255.11 RMB, and the service
level is 100%. We can observe that when the service level is enhanced by
57.02389%, the enterprise’s total delivery cost increases by 39,577 RMB.

From table 5 and Fig. 5, it can be concluded that when I’ =12, the

enterprise’s service level has attained 96.709%; additionally, the total costs has
increased by 13308.98 RMB compared to the deterministic demand, and the
increase 1s 6.87% (compared to the deterministic demand). However, the service
level has been enhanced by 53.7329%. When the service level is low, the
relationship curve between the distribution total cost and service level is relatively
flat, and the enterprise can enhance its service level by adjusting the uncertain
budget I',, . When the service level attains or exceeds 98%, i.e., when I';, >12, the

relationship curve between delivery total costs and service level becomes
increasingly steep, and it becomes difficult to improve the enterprise’s service level
by adjusting the value of the uncertain budget. Therefore, the decision-makers of
the enterprise can determine the final delivery scheme based on their own goals.
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Fig. 5 Relationship between the total costs and service level

5.3.3 Comparatively analyzing results considering the traffic conge-
stion coefficient

This study segments the delivery time and sets the speed of refrigerated
vehicles at 25 kilometers per hour during peak hours. However, due to varying
congestion levels on the roads, the delivery speed fluctuates accordingly. We
introduce a congestion coefficient during peak hours to reflect the varying deli- very
speeds, where the delivery speed of the refrigerated vehicle equals peak hour speed
divided by the congestion coefficient. Considering the impact of different
congestion coefficients on total delivery costs during peak hours with fixed
uncertain budgets of 0, 18, and 35 as illustrated in table 6, it can be concluded that
regardless of the value of an uncertain budget, total delivery costs and total driving
time gradually increase as congestion coefficient increases. When I', =18 and

I',, =35, if the refrigerated vehicle is congested, the congestion coefficient’s size

exerts a limited impact on total delivery costs and driving time, mainly because
efforts are made to avoid delivering during congested hours. When I', =0, total

costs of delivery and incremental increase in refrigerated vehicle travel time
gradually increases due to road congestion; however, differences are not quite
significant mainly because an enterprise can reasonably arrange deliveries when the
customer demand is determined.

6. Conclusion

This study develops a robust model for location-routing with hard time
windows under uncertain demand and time-dependent conditions, based on real
delivery scenarios. To address uncertain demand, we utilize bounded symmetric
intervals to represent its value range and introduce an uncertain budget to control
parameter disturbances. By leveraging the strong duality theorem, we transform
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the nonlinear robust optimization model into a linear programming model.
Furthermore, considering the practicalities of the delivery network, we segment the
entire delivery time into different periods during which vehicle driving speeds vary.
By analyzing the model's characteristics, we design an enhanced genetic algorithm
with an elite and roulette selection strategy to solve the established model.

Table 6.
The relationship between vehicle speed, total costs, and total travel time under uncertain
budgets
Uncertainty of traffic congestion Optimal total costs Total vehicle travelling
budget coefficient /RMB time/min
0.5 193486.16 1474.8
r,=0 0.8 193554.25 1524.6
1.1 193759.10 1681.8
0.5 212925.40 1545.6
I, =18 0.8 213135.99 1702.8
1.1 213180.54 1737.6
0.5 232901.68 1518.6
1“,.k =35 0.8 233192.75 1738.8
1.1 223277.65 1804.8

Finally, through randomly generated case studies, we validate the effectiveness and
feasibility of the model and algorithm. The following conclusions are subsequently
drawn:

(1) The uncertain budget does not impact optimal distribution center
location but significantly affects refrigerated vehicle routing and quantity. An
increase from 6 to 8§ distribution vehicles is observed as well as a reduction in their
service range-indicating a positive correlation between system robustness and total
costs.

(2) When the enterprise does not consider the uncertainty of customer dem-
and, its service level is relatively low, only 42.9761%. However, accounting for this
uncertainty can lead to higher service levels with even minor adjustments in an
uncertain budget contributing positively towards improved service levels to a value
not exceeding 96%, beyond which small changes lead to high total costs
necessitating careful consideration by decision-makers.

(3) At equivalent uncertain budget levels, increased urban delivery road
congestion coefficients prolong vehicle delivery times. However, these increases
have only a slight impact on overall costs, which vary slightly around the 300 RMB
mark, and on total travel time, which is roughly an hour with some variation. This
indicates that road congestion issues have already been factored into company
operations.

Despite the novelty of our research, there are still many aspects to be
covered. One possible extension could be to consider the comparison of the
proposed method with various traditional and advanced optimization algorithms to
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more accurately reveal its advantages and limitations. Another possible area of
work could be addressing the inventory decisions of DCs.
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