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ROBUST OPTIMIZATION OF URBAN COLD-CHAIN 

LOGISTICS LOCATION-ROUTING BASED ON AN 

IMPROVED GENETIC ALGORITHM 

Liying YAN 1,* 

This study presents an in-depth exploration of the intricate issue of uncertain 

demand and time-dependence within urban cold-chain logistics distribution networks. 

A location-routing model with strict time windows under uncertain demand and time-

dependence is proposed to minimize the total costs including transit costs for selected 

distribution centers, transportation costs, driver salaries, and refrigeration costs. We 

adopt the budget-of-uncertainty robust approach to deal with the uncertainty of 

customer requirements, whereas vehicle travel time is calculated using the first in first 

out principle. To solve the problem, an enhanced genetic algorithm incorporating 

elite and roulette selection strategy is developed based on model characteristics. This 

algorithm preserves superior individuals while accelerating convergence speed and 

enhancing solution efficiency. Finally, randomly generated numerical examples are 

utilized to verify the feasibility and effectiveness of the model and algorithm. 

Keywords: location-routing; service level; time-dependent; uncertain demand; 

robust optimization 

1. Introduction 

Urban distribution center location is a crucial decision-making                 

consideration for logistics enterprises [1,2], directly affecting the logistics system’s          

distribution efficiency and control level. The accurate determination of the 

distribution center’s location can significantly improve the operational efficiency 

and benefit of the entire distribution system [3]. The urban distribution vehicle 

routing costs account for the highest proportion of the logistics distribution process 

and has long been a key research area for scholars [4]. Reliable, efficient, and 

flexible distribution center and distribution route decisions can not only save 

distribution costs and time but also enhance distribution efficiency and the 

enterprises’ competitiveness [5]. 

The rationality of facility location and vehicle routing can greatly optimize 

the system logistics network [6]. The interdependence of these two problems has 

led to the definition of the location routing problem (LRP), aimed at identifying a 

optimization solution to the location and vehicle routing problem [7]. The LRP 
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concept can be traced back to 1961. Boventer. [8] first discussed the relationship 

between location selection and transportation costs in the transportation process. 

Subsequently, scholars analyzed LRP and its variants. Prodhon. [9] analyzed the 

multi-period location-routing problem and designed a hybrid evolutionary algori- 

thm based on a random expansion of Clarke and Wright's algorithm to solve the 

model. Koç et al. [10] investigated the location-routing problem in urban distri- 

bution and developed an adaptive large-scale neighborhood search algorithm. The 

algorithm’s effectiveness and feasibility were verified through standard instances. 

Wang et al. [11] analyzed the two-stage location path problem of green, time win- 

dow pickup, and delivery, and designed a heuristic algorithm based on Lagrangian 

relaxation to solve the model. Using the Open Location-Routing Problem (OLRP), 

Mansouri & Eydi. [12] designed a sustainable supply chain model that addresses 

all sustainability pillars and utilized the NSGA-II, a meta-heuristic method, to solve 

the proposed model and compare its efficiency with Cplex. Ferreira & Queiroz. [13] 

proposed a heuristic that combines the simulated annealing method and the artificial 

algae algorithm to solve a location-routing problem with two-dimensional loading 

constraints.  

Zhang et al. [14] utilized the uncertain information theory to establish a 

multi-objective model for the emergency facility location-routing problem. The 

scholars transformed the multi-objective model into a single-objective model 

predominantly by using the objective function method and by developing a hybrid 

intelligent algorithm to solve it. Yannis et al. [15] analyzed the location-routing 

models under stochastic demand, and designed hybrid intelligent algorithms to 

solve the constructed models. Rahmani& Hosseini., [16] present an extension of 

the Green Location-Routing Problem (GLRP) that considers traffic congestion and 

variable speeds and provides a nonlinear mixed-integer programming formulation 

with preprocessing rules to minimize costs related to depots, servicing penalties, 

CO2 emissions, and fuel consumption. A heuristic algorithm based on the PSO 

algorithm is proposed and shown to yield optimal or near-optimal solutions. Wu et 

al. [17] investigated the location-routing problem considering the variation of road 

travel time with vehicle travel time, and a dual-level planning model is constructed. 

Pekel & Kara. [18] proposed a heuristic search algorithm that combines variable 

neighborhood search and evolutionary local search to solve the location-routing 

problem with fuzzy demands. Raeisi & Jafarzadeh. [19] analyzed a multi-objective 

location-routing problem specifically for hazardous waste, and various algorithms 

were employed to solve the model.  Annarita et al. [20] proposed an indifference 

zone approach to select the most optimal option from alternative configurations, 

ensuring correct choice probability while minimizing computational effort. Li & Li. 

[21] established a multi-objective delivery model for minimizing carbon emission 

trading costs, and network costs, and maximizing customer satisfaction. They 

designed an enhanced nondominated sorting genetic algorithm II (NSGA-II), which 
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not only augments the diversity within the initial population but also improves the 

algorithm's local search capability and elevates its search precision. 

Compared with previous studies, the proposed research problem has several 

contributions in theory and application: (1) In the context of cold-chain logistics, a 

location-routing model is developed that concurrently takes into account both 

customer demand uncertainty and vehicle travel time uncertainty. This 

comprehensive consideration renders the model more realistic and adept at 

accurately capturing the intricate and dynamic aspects of cold chain logistics. (2) 

An enhanced genetic algorithm with an elite selection strategy is designed to solve 

the model. Through this improvement, the algorithm is able to find better solutions 

while ensuring convergence speed, thus enhancing the practicality and efficiency 

of the model. and (3) A multidimensional analysis was conducted to examine the 

impact of the robustness of the delivery system, service level, and road congestion 

on the total delivery costs. It not only reveals the interaction relationships between 

various factors but also provides valuable insights and guidance for the actual 

operation of cold chain logistics. 

The remainder of this study is constructed as follows. A problem              

description and symbol explanation are provided in Section 2. Section 3 and 4 

present the model formulation and solution method, respectively. In Section 5, a 

numerical case study is employed to validate the effectiveness of the proposed 

model and algorithm. Conclusions are summarized in Section 6.  

2. Problem description and notation explanation 

2.1 Problem description 

Herein, we investigate a city’s cold-chain logistics distribution network 

comprising multiple candidate distribution centers and several customer demand 

points (Fig. 1). 

Owing to the known geographical location of customer points and their 

requested service time windows, and with uncertain demand at customer points and 

varying vehicle speeds due to traffic conditions during travel, the problem involves 

establishing a robust model to minimize total costs and designing an algorithm. 

thus, the following can be determined: 

·Optimal location points for distribution centers, the most efficient 

delivery routes for vehicles, and the level of distribution services under different 

robust conditions. 

·At the given robustness level, the relationship between total costs, total 

vehicle travel time, and traffic congestion index is considered when the traffic 

congestion index is different. 



142                                                                      Liying Yan 

 
Fig.1 Example of the location-routing problem 

 

2.2 Notation explanation 

Before modeling, define the relevant notations as depicted in table 1. 

 
Table 1  

Notation description 

Notation Meaning 

D  Set of the candidate distribution centres 

iK
 Set of refrigerated vehicles owned by the i -th alternative distribution centre. i D  

N  Set of customers 

jld
 

The distance between the customer point j and the customer point l  

jq
 

Requirements of the j -th customer 

1c
 Transport costs per unit distance 

k

ijlt
 

Travel time of refrigerated vehicle k of distribution centre i  from road section j to l  

js
 

Service times of refrigerated vehicle for the j -th customer 

jt
 

Time when the refrigerated vehicle reaches the customer point j  

jET
 

Customer j  requests the lower limit of service time 

jLT
 

Customer j  requests the upper limit of service time 

1  Unit time drivers' wages 

2  Refrigeration costs per unit time during transportation 

3  Refrigeration costs per unit time during unloading 
sk

ijt
 

Time when refrigerated vehicle of distribution center i arrives at customer point j  

d

jt
 

The time when the refrigerated vehicle leaves the customer point j  

  Transit costs of goods per unit in distribution centres 

Q  Capacity of refrigerated vehicles 

kY
 kY is a 0-1 variable: when 1kY = , refrigerated vehicle k is used; otherwise, 0kY =  

ijY
 

ijY is a 0-1 variable: when 1ijY = , distribution center i  serves customer j ; otherwise, 

0ijY =  

k

ijX
 

k

ijX  is a 0-1 variable: when 1k

ijX = , the refrigerated vehicle k from distribution center i  

provides service to the j -th customer; otherwise, 0k

ijX =  

k

ijlX
 

k

ijlX is a 0-1 variable: when 1k

ijlX = , the refrigerated vehicle k from distribution center i  is 

traveling from road section j to l ; otherwise, 0k

ijlX =  
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3. Model development  

3.1 Establishment of a location-routing model with uncertain demand 

and time-dependent 

This study presents a location-routing model for urban cold-chain logistics 

with uncertain demand and time-dependent, which is expressed as follows:   

Objective function      1 2 3 4min z C C C C= + + +  (1) 


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(14) 

Equation (1) represents minimizes the total costs including transit costs of 

the distribution center, transportation costs, driver wages, and refrigeration costs. 

Equation (2) represents the transfer costs of candidate distribution centers. Equation 

(3) represents the transportation costs of delivery vehicles. Equation (4) represents 

driver wages. Equation (5) represents the refrigeration costs of delivery vehicles, 

which is the sum of the refrigeration costs incurred during transportation and 

unloading processes. Constraint (6) states the load constraint of delivery vehicles. 
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Constraint (7) is the balance between the inflow and outflow of nodes. Constraints 

(8) and (9) indicate that vehicles ought to be returned to the initial distribution 

center after serving customers. Constraint (10) states that each customer can be 

serviced only once by one vehicle. Constraint (11) prevents sub-loops in the 

distribution vehicle’s distribution routing. Constraint (12) represents the customer's 

hard time window constraint. Constraints (13) and (14) represent the continuity of 

delivery time for vehicles. 

 

3.2 Uncertain demand and time-dependent processing  

3.2.1 Customer demand uncertainty processing method 

There are three methods for addressing customer demand uncertainty: 

random optimization, fuzzy optimization, and robust optimization. We adopt the 

method of budget-of-uncertainty robust optimization mentioned in references [22, 

23] to deal with the uncertainty of customer requirements (Constraint (6) in the 

model).  

First, define the range of customer demand jq as [ jjq q


− , jjq q


+ ], where 

j
q  denotes the mean value of customer demand and jq



 denotes the maximum 

absolute deviation of customer demand. 

Second, for , ii D k K   , uncertain budget ik is offered, and a protect- 

ion function ( , )ikX  ( , )ik K i D    is introduced to transform the uncertainty  

of customer demand. 

        
{ { } , , \ }

( , ) { ( ) }max
ik

k

ik j ij ik ik t it

S t S N S t N S j S

X q X q X
 

  =     

 = +  −      

Therefore, the constraint condition (6) can be transformed from the prece- 

ding equation: 

 

                

DiKkQXqX iik

Nj

j

k

ij +


,),(

 

 

Where, the uncertain budget Notation ik  is utilized to adjust the solut- 

ion’s level of robustness, which can take any value from [0, ]N , and N represents 

the number of customers being served. 

·When ik taking an integer value, it means that there are ik  number of 

demand points where the demand attains its maximum value. 

·When ik assumes an integer value, there are ik    number of demand 

points where the demand attains its maximum value. 

Third, jZ  is introduced.  Meanwhile, the protection function becomes the 

following programming problem: 
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Objective function 

( , ) max ,k

ik j ij j i

j N

X q X Z i D k K

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 =     

 

Subject to           0 1jZ      j N    

                                      j ik
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Z
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Finally, using the duality theorem, the problem can be transformed into its 

dual problem as follows:  

Objective function    min ik ik j

j N

 


 +   

Subject to             
k

ik j j ijq X j N 
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Thus, constraint condition (6) can be transformed into the following 

constraint problem:   

                                         
NjKkDiXq i

k
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                                        iik KkDi  ,0
  

(16) 

                                         
Njj  0

 
(17) 

 

3.2.2 Time-dependent processing method  

The travel time of a refrigerated vehicle on a road section is contingent upon 

the departure time of the refrigerated vehicle and its travel speed during this period. 

For the entire road section, the researchers merely consider the scenarios of the 

morning peak and the evening peak. Herein, the method for calculating travel time 

proposed by Ichoua et al. [24] is adopted. In this approach, the travel speed of the 

refrigerated vehicle alters when it traverses the boundary of two consecutive 

periods, guaranteeing that the road network complies with the first-in-first-out 

(FIFO) criterion. The entire distribution time is divided into n periods 0 1[ , ]T T , 

1 2[ , ], ,T T  1[ , ],p pT T− 1[ , ], ,p pT T + 1[ , ]n nT T− . The travel speeds within each 

period are 1 2, , , ,pv v v  respectively. Because urban distribution is a regional 

distribution, the researchers consider only the cases where refrigerated vehicles 

span at most two periods on the same road section. The calculation formula for the 

travel time of refrigerated vehicle k from customer point j to customer point l  is 

expressed as follows: 
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(18) 

 

3.3 Establishing a location-routing robust model 

With the treatment of demand uncertainty and time-dependence in 3.2, the 

following location-routing robust model can be obtained.   

Objective function as in Equation (1) 

Subject to as in Equation (7-18) 

Since the customer demand uncertainty is considered herein, there may be 

cases where the optimal solution does not meet the constraint conditions. Therefore, 

the service level is introduced, which can be expressed as follows: 
~

( ) ( ) ,k

ij ij

j N

Service Level SL P X q Q k K i D

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From the literature Ben-Tal & Nemirovski. [22]. Equation (28) can be 

transformed into the following expression: 
~

1
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It can be concluded from Equation (19) that for a given value of ik , we can 

calculate the lowest service level by Equation (19). By contrast, if the lowest service 

level is provided, we can also calculate the value of ik  backward. There- fore, 

using the location-routing robust model established herein, the enterprise’s decision 

maker can not only control the robustness of the solution, but also control the 

refrigerated vehicle service level, and subsequently find out the refrigerated vehicle 

travelling route that satisfies the service level and the selected distribution centers. 

 

4. Algorithm design 

Herein, an enhanced genetic algorithm with elite selection strategy is 

designed to solve the established model, and the specific solution steps of the 

algorithm are as follows: 
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Step 1: Input initial data. Set the initial population value, the maximum 

number of iterations of the algorithm, the crossover and mutation probability 

values, the dynamic time Notation, and the algorithm's starting iteration number 

1=gen . 

Step 2: Generating initial populations. The initial population was rand- 

omly generated by encoding chromosomes according to the 3-layer coding meth- 

od. There are d  candidate distribution centres and n customer demand points, and 

the chromosome coding method is specified as follows: 

·The first layer code denotes the distribution center selection priority code. 

The encoding length is d, the value interval is [0,1], and the encoding is sorted in 

ascending order to obtain a sorting code, namely the selection priority code of the 

candidate distribution center. 

·The second layer code denotes the number of the selected distribution 

centers. The length of the code is 1, and the value interval is [1,J+0.999], rounded 

down to the number of selected distribution centers. 

·The third level of coding denotes the service priority coding of the 

demand point: a real number code of length n  in the interval [0,1], sorted in 

ascending order to obtain a ranking code, i.e., the service priority code of the 

demand.  

Step 3: Crossover operation and mutation operation.  

·Single point mutation: the gene is mutated by random variation. For 

example, the parent chromosome is 1, and the offspring’s chromosome is 3 after a 

single point mutation. 

·Two-point crossover: the random selection of two chromosomes as 

parents and two offspring chromosomes are obtained by direct exchange of two 

parent chromosomes. For example, select two parent chromosomes 3 and 4; the 

chromosomes of the crossed offspring are 4 and 3. 

Step 4: Decoding chromosomes. Based on the code’s significance, upon 

obtaining the candidate distribution centers, the chromosome is decoded as foll- 

ows as per the load constraints and time window constraints:  

(1) Set 1u = ;  

(2) At the outset of the u-th route, 0uR = , where 0 denotes the distribution 

center;  

(3) Attempt to incorporate the j-th point in the chromosomeY into uR . If  

the vehicle load and time window are fulfilled after its addition to uR , 

proceed to. Otherwise, update u  to 1u +  and return to(2);  

(4) Remove the j-th encoding of Y . If Y becomes empty, then proceed to 

(5). Otherwise, update j  to 1j + , and return to (3);  

(5) Output each sub-routing.  
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Step 5: Selection operation. Calculate the individual’s fitness value 1
i

i

F
Z

= . 

Where iF  denotes the fitness value of the i-th chromosome, and iZ  denotes the 

value of the objective function of the i-th first chromosome. We utilize a 

combination of the elite selection strategy and the roulette strategy to select the 

individual. 

Step 6: Algorithm termination condition. If gen > the algorithm’s maxi- 

mum number of iterations, output the most optimal solution; this marks the end of 

the algorithm. Otherwise, let gen = gen + 1, and proceed to Step 3.  

5. Numerical example 

5.1 Data Acquisition and Notation Setting  

Illustrating the capabilities of the proposed model and algorithm: we utilize 

Matlab programming to generate the distribution network of a rectangular area with 

a side length of 100 100km km . It is assumed that there are four distri- bution 

centers available for a candidate in this area and thirty-five customers in need of 

services. The distribution centers are equipped with refrigerated vehicles of the 

same type and with a vehicle capacity of eight tons. It is required to select two 

distribution centers from the given four candidate distribution centers; thus, transfer 

and distribution services for thirty-five customers can be provided. The spatial 

layout of the candidate distribution centers and their customers is illustrated in 

Fig.2. The coordinates of the candidate distribution centers are P1 (45, 75), P2 (65, 

70), P3 (15, 28), and P4 (39, 72), respectively. The time windows are all from 5:00 

to 19:00. The customer coordinates, average demand, required service time 

windows, and service times are illustrated in table 2. The notation values in the 

model are depicted in table 3. The parameter values in the algorithm are depicted 

in table 4. 

 
Fig. 2 Spatial layout of candidate distribution centers and demand points 
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Table 2 
Customer requirement points related information 

Demand point 1 2 3 4 5 6 

Coordinate /km (35, 53) (20, 25) (18,50) (61,35) (43,40) (55,20) 

Time window 7:00-10:30 5:30-8:30 6:00-9:00 6:10-10:00 6:30-10:20 7:00-11:30 

Average demand 0.5t 1.5t 1.5t 1.1t 2t 1.5t 

Service time /min 10 15 15 20 20 20 

Demand point 7 8 9 10 11 12 

Coordinate /km (67,27) (45,10) (50,25) (40,45) (55,60) (50,65) 

Time window 7:00-10:00 6:40-9:30 6:30-11:40 7:00-12:30 7:00-12:00 7:00-10:30 

Average demand 2t 1.2t 1t 1.3t 1t 0.5t 

Service time /min 25 15 10 15 10 10 

Demand point 13 14 15 16 17 18 

Coordinate /km (60,50) (65,40) (50,30) (55,10) (25,50) (25,60) 

Time window 7:00-11:00 7:00-12:00 6:20-11:30 6:40-11:30 7:00-12:00 6:00-11:30 

Average demand 1.5t 2t 2.5t 1.5t 0.5t 2.5t 

Service time /min 15 20 25 15 10 25 

Demand point 19 20 21 22 23 24 

Coordinate /km (15,20) (25,21) (92,53) (25,88) (9,82) (14,55) 

Time window 7:00-11:00 5:30-11:00 7:00-11:00 7:00-12:00 6:20-11:30 6:40-11:30 

Average demand 1.1t 1.2t 1.3t 1t 0.5t 1.5t 

Service time /min 15 15 10 10 15 20 

Demand point 25 26 27 28 29 30 

Coordinate /km (82,64) (10,67) (85,50) (45,70) (94,60) (85,55) 

Time window 7:00-12:00 8:00-11:30 7:00-9:30 5:50-11:00 7:00-11:00 6:30-11:00 

Average demand 2t 2.5t 1.5t 0.5t 2.5t 1.1t 

Service time /min 25 25 15 10 25 15 

Demand point 31 32 33 34 35  

Coordinate /km (65,85) (87,58) (95,65) (87,66) (80,60)  

Time window 6:40-12:00 9:00-11:00 8:40-10:30 8:30-10:30 7:00-9:00  

Average demand 1.1t 1.2t 1.3t 1t 0.5t  

Service time /min 15 15 15 15 10  

 

Table 3 

Notation values in the model 

Notation 
Notation 

values 
Notation 

Notation 

values 
Notation 

Notation 

values 
Notation 

Notation 

values 

1c  2 RMB/km 1  60 RMB/hour   
4000 

RMB/ton 

v (Flat peak 

period) 
25 km/hour 

2  18 RMB/hour 3  20 RMB/hour Q
 

8 ton 
v ( Peak 

period) 
50 km/hour 

 

 

Table 4 

Parameter values in the algorithm 

Parameter Parameter values Parameter Parameter values 

Population size 100 Crossover probability 0.8 

Maximum number of iterations 500 Mutation probability 0.1 
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5.2 Algorithm performance test  

The algorithm designed above is programmed and calculated using the 

MATLAB R2017a package. The computer operating system is Windows 7-x32, 

Intel Core i7, CPU @ 3.4GHz, and the memory is 4GB.  We present the conver- 

gence of the objective function values when the demand disturbance is 20% and the 

uncertain budget ik takes values of 0, 10, 20, and 30, respectively (Fig. 3). Fig. 3 

indicates that the objective function values have a relatively fast converge- nce 

speed, and relatively satisfactory optimal solutions are obtained in a short time, 

thereby verifying the feasibility of the model and the effectiveness of the algorithm.  

 

5.3 Comparative analysis of results in different scenarios 

5.3.1 Relationship between robustness level and total costs 

It is assumed that the deviation value of customer demand is 20% the mean 

value, i.e., 20%j jq q


=  , It is apparent that the higher the customer demand, the 

higher the deviation value. Using the algorithm designed herein, we can find the 

relationship between robustness level and the total costs (table. 5).  

·When 0ik = , all demand points have demand values equal to the mean 

value, and the total costs of the location-routing is the lowest, with a value of 

193,677.18 RMB and a delivery vehicle requirement of six. 

·When 35ik = , all demand points have demand values replaced by the 

maximum customer demand, the total costs of the location-routing is the highest, 

with a value of 233,255.11 RMB and a delivery vehicle requirement of eight. 

·Regardless of any value of the uncertainty budget, the optimal siting 

points are P2 and P3. 

We can conclude that as the robustness of the system increases, the total 

cost of the system keeps increasing (Fig. 4) and the number of delivery vehicles 

increases. The opposite is also true. Conversely, the relationship between the sys- 

tem robustness and the total system costs is as follows: the stronger the robustness, 

the higher the system costs, and the weaker the robustness, the lower the system 

costs. 
Table 5  

Total costs and minimum service level under uncertain budget 
The value of 

ik  0 2 4 6 8 

Total costs /RMB 193677.18 196612.59 198119.35 199740.18 202175.33 

Service level/% 42.9761 56.2769 68.8781 79.5901 87.7528 

The value of 
ik  10 12 14 16 18 

Total costs /RMB 205932.75 206986.16 209092.16 211060.02 213035.17 

Service level/% 93.3195 96.7090 98.5457 98.8885 99.8012 

The value of 
ik  20 22 24 26 28 

Total costs /RMB 216078.43 217574.06 220002.13 221774.65 223974.64 

Service level/% 99.9396 99.9842 99.9965 99.9993 99.9999 
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The value of 
ik  30 32 34 35  

Total costs /RMB 227178.61 229598.46 231787.66 233255.11  

Service level/% 99.9999 99.9999 99.9999 100.0000  

 

  
(a) =0ik  (b) =10ik  

  
(c) =20ik  (d) =30ik  

 

 
Fig. 3 Iteration of the optimal solution at different levels of robustness 
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Fig. 4 The relationship between the uncertainty budget and the total costs  

 

5.3.2 Relationship between enterprise's level of distribution services 

and total costs 

Suppose the deviation value of customer demand is 20% the mean. From 

Equation (19), we can calculate the distribution service level and total costs of the 

enterprise under different uncertain budget values (table 5). When the uncertainty 

of customer demand is not considered, the total costs of the firm is 193,677.18 

RMB, and the service level is 42.9761%. When the customer demand deviates 

completely, the enterprise’s total delivery cost is 233,255.11 RMB, and the service 

level is 100%. We can observe that when the service level is enhanced by 

57.02389%, the enterprise’s total delivery cost increases by 39,577 RMB. 

From table 5 and Fig. 5, it can be concluded that when 12=ik , the 

enterprise’s service level has attained 96.709%; additionally, the total costs has 

increased by 13308.98 RMB compared to the deterministic demand, and the 

increase is 6.87% (compared to the deterministic demand). However, the service 

level has been enhanced by 53.7329%. When the service level is low, the 

relationship curve between the distribution total cost and service level is relatively 

flat, and the enterprise can enhance its service level by adjusting the uncertain 

budget ik . When the service level attains or exceeds 98%, i.e., when 12ik  , the 

relationship curve between delivery total costs and service level becomes 

increasingly steep, and it becomes difficult to improve the enterprise’s service level 

by adjusting the value of the uncertain budget. Therefore, the decision-makers of 

the enterprise can determine the final delivery scheme based on their own goals. 
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Fig. 5 Relationship between the total costs and service level 

 

5.3.3 Comparatively analyzing results considering the traffic conge- 

stion coefficient 

This study segments the delivery time and sets the speed of refrigerated 

vehicles at 25 kilometers per hour during peak hours. However, due to varying 

congestion levels on the roads, the delivery speed fluctuates accordingly. We 

introduce a congestion coefficient during peak hours to reflect the varying deli- very 

speeds, where the delivery speed of the refrigerated vehicle equals peak hour speed 

divided by the congestion coefficient. Considering the impact of different 

congestion coefficients on total delivery costs during peak hours with fixed 

uncertain budgets of 0, 18, and 35 as illustrated in table 6, it can be concluded that 

regardless of the value of an uncertain budget, total delivery costs and total driving 

time gradually increase as congestion coefficient increases. When 18ik =  and 

35ik = , if the refrigerated vehicle is congested, the congestion coefficient’s size 

exerts a limited impact on total delivery costs and driving time, mainly because 

efforts are made to avoid delivering during congested hours. When 0ik = , total 

costs of delivery and incremental increase in refrigerated vehicle travel time 

gradually increases due to road congestion; however, differences are not quite 

significant mainly because an enterprise can reasonably arrange deliveries when the 

customer demand is determined. 

6. Conclusion  

This study develops a robust model for location-routing with hard time 

windows under uncertain demand and time-dependent conditions, based on real 

delivery scenarios. To address uncertain demand, we utilize bounded symmetric 

intervals to represent its value range and introduce an uncertain budget to control 

parameter disturbances. By leveraging the strong duality theorem, we transform  
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the nonlinear robust optimization model into a linear programming model. 

Furthermore, considering the practicalities of the delivery network, we segment the 

entire delivery time into different periods during which vehicle driving speeds vary. 

By analyzing the model's characteristics, we design an enhanced genetic algorithm 

with an elite and roulette selection strategy to solve the established model. 
 

Table 6.  

The relationship between vehicle speed, total costs, and total travel time under uncertain 

budgets 
Uncertainty of 

budget 

traffic congestion 

coefficient 

Optimal total costs 

/RMB 

Total vehicle travelling 

time/min 

0=ik  

0.5 193486.16 1474.8 

0.8 193554.25 1524.6 

1.1 193759.10 1681.8 

18=ik  

0.5 212925.40 1545.6 

0.8 213135.99 1702.8 

1.1 213180.54 1737.6 

35=ik  

0.5 232901.68 1518.6 

0.8 233192.75 1738.8 

1.1 223277.65 1804.8 

 

Finally, through randomly generated case studies, we validate the effectiveness and 

feasibility of the model and algorithm. The following conclusions are subsequently 

drawn: 

(1) The uncertain budget does not impact optimal distribution center 

location but significantly affects refrigerated vehicle routing and quantity. An 

increase from 6 to 8 distribution vehicles is observed as well as a reduction in their 

service range-indicating a positive correlation between system robustness and total 

costs. 

(2) When the enterprise does not consider the uncertainty of customer dem- 

and, its service level is relatively low, only 42.9761%. However, accounting for this 

uncertainty can lead to higher service levels with even minor adjustments in an 

uncertain budget contributing positively towards improved service levels to a value 

not exceeding 96%, beyond which small changes lead to high total costs 

necessitating careful consideration by decision-makers. 

(3) At equivalent uncertain budget levels, increased urban delivery road 

congestion coefficients prolong vehicle delivery times. However, these increases 

have only a slight impact on overall costs, which vary slightly around the 300 RMB 

mark, and on total travel time, which is roughly an hour with some variation. This 

indicates that road congestion issues have already been factored into company 

operations. 

Despite the novelty of our research, there are still many aspects to be 

covered. One possible extension could be to consider the comparison of the 

proposed method with various traditional and advanced optimization algorithms to 
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more accurately reveal its advantages and limitations. Another possible area of 

work could be addressing the inventory decisions of DCs. 
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