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A FAST CONVERGENT TWO-STEP ITERATIVE METHOD TO SOLVE THE
ABSOLUTE VALUE EQUATION

Hamid Esmaeili1, Mahdi Mirzapour2, Ebrahim Mahmoodabadi3

In this paper, we propose a fast convergent two-step iterative algorithm to solve the
NP-hard absolute value equation when the solution is unique. Our method is based on fixed
point method in first step and modification of the generalized Newton method introduced
by Mangasarian in second step. It is proved that the proposed algorithm has all of the
properties of the generalized Newton method while converges faster than it. Especially, our
wide numerical experiments showed that our algorithm can solve much more problems with
an accuracy of 10−11, whereas the generalized Newton method may fail.
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1. Introduction

In this article, we consider the absolute value equation (AVE):

Ax−|x|−b = 0, (1)

in which A ∈ Rn×n and b ∈ Rn are given, and | · | denotes absolute value. The significance
of the absolute value equation (1) arises from the fact that the absolute value equation (1) is
equivalent to the linear complementarity problem [7,8]. This equivalence formulation has
been used by Mangasarian [7,8] to solve the absolute value equation using the linear com-
plementarity problems. As we know, linear programs, quadratic programs, bimatrix games
and other problems can all be reduced to a linear complementarity problem [3,4]. A more
general form of the AVE, Ax+B|x|= b, was introduced in [13] and investigated in a more
general context in [5]. Also, the AVE (1) was investigated in detail theoretically in [8] and
a bilinear program was prescribed there for the especial case when the singular values of
A are not less than one. As was shown in [8], the general NP-hard linear complementarity
problem [2,3,4] can be formulated as an AVE (1). This implies that (1) is NP-hard in its
general form. In order to solve the AVE (1), Mangasarian [7] proposed the generalized
Newton method that is convergent when the singular values of A exceed 1. But, this method
may fail to convergence when the accuracy increases. In Sect. 2 of the present work, we
introduce a two-step iterative algorithm and prove that it has all of the properties of the
generalized Newton method. Effectiveness of proposed algorithm, with respect to the gen-
eralized Newton method, is demonstrated in Sect. 3 by solving 800 random solvable AVEs
of the size n = 100,200,500,1000. Each AVE is solved to an accuracy of 10−11. Numerical
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results showed that the our two-step iterative algorithm solves much more problems suc-
cessfully, whereas the generalized Newton method may fail in many cases, especially when
n is large. Moreover, the average time taken by computer for each problem in the two-step
iterative algorithm is less than that of the generalized Newton method. Also we compared
our algorithm with residual iterative method [9] and Yong method [15] and we saw that our
algorithm is faster than mentioned methods.

2. The two-step iterative algorithm

By defining the function f (x) as follows:

f (x) = Ax−|x|−b, (2)

we can write the AVE problem (1) in the following form:

f (x) = 0. (3)

Notice that |x| is not differentiable. A generalized Jacobian ∂ |x| of |x| based on a subgradient
[11,12] of its components is given by the diagonal matrix D(x):

∂ |x|= D(x) = diag(sign(x)), (4)

in which sign(x) denotes a vector with components equal to 1, 0 or −1, depending on
whether the corresponding component of x is positive, zero or negative. To solve the equa-
tion (3), Mangasarian [7] used the Newton method with a generalized Jacobian ∂ f (x) of
f (x) defined by:

∂ f (x) = A−D(x). (5)

The generalized Newton method for finding a zero of the equation f (x) = 0 consists of the
following iteration:

f (xk)+∂ f (xk)(xk+1 − xk) = 0, (6)

or
xk+1 = xk − (A−D(xk))−1 f (xk). (7)

Noting that D(xk)xk = |xk|, we can simplify the generalized Newton iteration (7) to solve
the AVE (1) in the following simple form:

xk+1 = (A−D(xk))−1b. (8)

It is shown [7] that if the singular values of A exceed 1, then the generalized Newton method
(8) is well defined and bounded. Consequently, there exists an accumulation point x such
that (A−D(x))x= b, meaning that the x is a solution of the AVE (1). Furthermore, under the
assumption that ∥A−1∥< 1/4 and D(xk) ̸= 0, for all k, the generalized Newton iteration (8)
converges linearly to the unique solution x∗ of the AVE (1) from any starting point. How-
ever, under stopping criterion ∥xk+1 − xk∥ < ε , the generalized Newton method may fail
when ε < 10−6, say 10−11, and n ≥ 100. Now we use the following two-step iterative algo-
rithm to solving AVE (1).

Algorithm 2.1. Two-Step Iterative Algorithm(TSIA)
Initializing:

choose a stopping criterion ε > 0, x0 ∈ Rn, ε < α and set k = 0
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First Step :

while ∥ f (xk)∥> α

xk+1 = xk −A−1 f (xk)

Second Step :
while ∥ f (xk)∥> ε

yk = xk −A−1 f (xk)

D(yk) = diag(sign(yk))

xk+1 = xk − (A−D(yk))−1 f (xk)

In the following we studied the main property of the Algorithm 2.1, and the convergence of
two steps.
First, we give the following lemma.

Lemma 2.1. [7,1] Let x and y be points in Rn. Then:

∥|x|− |y|∥ ≤ 2∥x− y∥ (9)

Proposition 2.1. Under the assumption that ∥A−1∥< 1
2 the first step iteration of Algorithm

2.1 converges linearly from any starting point to a solution x∗ for any solvable AVE (1).

Proof. By using f (xk) = Axk −|xk|−b in first step iteration of Algorithm 2.1 we have:

xk+1 = A−1(|xk|+b)

On the other hand, Ax∗−|x∗|= b. So,

xk+1 − x∗ = A−1(|xk|− |x∗|)

Now, using the Lemma 2.1 we have:

∥xk+1 − x∗∥ ≤ ∥A−1∥(2∥xk − x∗∥) =⇒ ∥xk+1 − x∗∥
∥xk − x∗∥

< 1

Hence the sequence {∥xk − x∗∥} converges linearly to zero and xk converges linearly to
x∗. �

Also Rohn and et al. in [14,Theorem 3] showed that the first step iteration of Algo-
rithm 2.1 by assumption x0 = A−1b and ∥A−1∥< 1 converges linearly to the unique solution
x∗ of AV E (1).
Now we are ready to prove main property and convergence of second step iteration of Al-
gorithm 2.1.
In second step we use the following modified generalized Newton method to solve the AVE
(1):

yk = xk −A−1 f (xk),

xk+1 = xk − (A−D(yk))−1 f (xk).
(10)
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Using f (xk) = Axk −|xk|−b, we can simplify the iteration (10) as follows:

yk = A−1
(
|xk|+b

)
,

xk+1 = (A−D(yk))−1
(
|xk|−D(yk)xk +b

)
.

(11)

To establish convergence of the iteration (10), we need a few theoretical results from
the literature.

Lemma 2.2. [7] If the singular values of A ∈ Rn×n exceed 1, then (A−D)−1 exists for any
diagonal matrix D whose diagonal elements equal ±1 or 0.

As mentioned before, our aim is to prove that the modified generalized Newton
method (10) in second step of Algorithm 2.1 has all of the good properties of the gener-
alized Newton method (8) discussed in [7]. Therefore, we now establish boundedness of
the iterates of (10) and hence the existence of an accumulation point for them.

Proposition 2.2. Let the singular values of A exceed 1. Then, the iterates (10) of the
modified generalized Newton method in second step of Algorithm 2.1 are well defined and
bounded. Consequently, there exists an accumulation point x such that (A−D)x = b for
some diagonal matrix D with diagonal elements of ±1 or 0.

Proof. Using Lemma 2.2, we notice that the matrices (A−D(xk))−1 and (A−D(yk))−1 exist
and the modified generalized Newton iteration (10) is well defined. Suppose now that the
sequence {xk} is unbounded. From the finite number of possible configurations for D(xk)
in the sequence {D(xk)}, there exists a subsequence {xki}, ∥xki∥→ ∞, such that D(xki) = D̃
is a fixed diagonal matrix with diagonal elements equal to ±1 or 0. This means that the
bounded subsequence {xki/∥xki∥} converges to a point x̃ such that ∥x̃∥ = 1 and D(x̃) = D̃.
Hence, using (11), we have

lim
i→∞

yki

∥xki∥
=

1
2

lim
i→∞

xki +(A− D̃)−1b
∥xki∥

=
x̃
2
,

so D(yki) = D̃, too. Again, using (11), we obtain

lim
i→∞

(A− D̃)
xki+1

∥xki+1∥
= (A− D̃) lim

i→∞

(A−D(yki))−1
(
|xki |−D(yki)xki +b

)
∥xki+1∥

= lim
i→∞

b
∥xki+1∥

= 0 .

In summary, there exists a x̃ ̸= 0 such that (A− D̃)x̃ = 0 which is a contradiction to Lemma
2.2. Consequently, the sequence {xk} is bounded and there exists an accumulation point x
of {xk} such that f (x) = 0. �

Proposition 2.3. Let the singular values of A exceed 1. Consider the sequence {xk} gener-
ated by the modified generalized Newton iteration (10) in second step of Algorithm 2.1. If
xk+1 = xk for some k, then xk+1 solves the AVE (1).
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Proof. According to Lemma 2.1, the modified generalized Newton iteration (10) is well
defined. If xk+1 = xk, then from (11), we have

Axk+1 −D(yk)xk+1 = |xk|−D(yk)xk +b =⇒

Axk+1 −D(yk)xk = |xk|−D(yk)xk +b =⇒

Axk+1 = |xk|+b =⇒

Axk+1 −|xk+1|−b = 0.

This shows that xk+1 solves the AVE (1). �

Lemma 2.3. Under the assumption that ∥(A−D)−1∥< 1/3 for any diagonal matrix D with
diagonal elements of ±1 or 0, the modified generalized Newton iteration (10) converges
linearly from any starting point to a solution x∗ for any solvable AVE (1).

Proof. According to (10), we have

(A−D(yk))xk+1 = |xk|−D(yk)xk +b.

On the other hand, Ax∗−|x∗|−b = 0. So,

(A−D(yk))(xk+1 − x∗) = |xk|− |x∗|−D(yk)(xk − x∗),

that results in

xk+1 − x∗ = (A−D(yk))−1
(
|xk|− |x∗|−D(yk)(xk − x∗)

)
.

Now, using Lemma 2.1 and noticing that ∥D(yk)∥= 1, we can write

∥xk+1 − x∗∥ ≤ 3∥(A−D(yk))−1∥∥xk − x∗∥< ∥xk − x∗∥.
Therefore, the sequence {∥xk − x∗∥} converges linearly to zero and {xk} converges linearly
to x∗. �

We are now ready to prove our final result.

Proposition 2.4. Let ∥A−1∥< 1/4 and D(xk) ̸= 0, for all k. Then, the AVE (1) is uniquely
solvable for any b and the modified generalized Newton iteration (10) in second step of
Algorithm 2.1 is well defined and converges linearly to the unique solution of the AVE (1)
from any starting point x0.

Proof. The unique solvability of the AVE (1) for any b is resulted from [8, Proposition 4]
which requires that ∥A−1∥ < 1. By the Banach perturbation lemma [10, p. 45], ∥(A−
D(xk))−1∥ exists for any xk since A−1 exists and ∥A−1∥∥D(xk)∥< 1. The same lemma also
suggests that:

∥(A−D(xk))−1∥ ≤ ∥A−1∥∥D(xk)∥
1−∥A−1∥∥D(xk)∥

<
1
3
.

Hence, Lemma 2.3 denotes that the sequence {xk} converges linearly to the unique solution
of the AVE (1) from any starting point x0. �

Remark 2.1. There is a similar result to Proposition 2.4 in [7] that indicates the generalized
Newton method (8) is well defined and converges linearly to the unique solution of the AVE
(1) from any starting point x0, when ∥A−1∥ < 1/4. Moreover, our proof is the same as in
[7].
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3. Computational results

To illustrate the implementation and efficiency of the proposed (TSIA), we consider
the following examples. All the experiments are performed with Intel(R) Core(TM)2 Due
CPU 1.8 GHz, 1GB RAM, and the codes are written in Matlab 7.1.

Example 3.1. In this example we compare (TSIA) with the generalized Newton method (8)
(GNM) on a random solvable AVE with fully dense matrix A∈Rn×n, n= 100,200,500,1000.
For any dimension n, we generated 100 random As from a uniform distribution on [−10,10].
We ensured that the singular values of each A exceeded 1 by actually computing the mini-
mum singular value and rescaling A by dividing it by the minimum singular value multiplied
by a random number in the interval [0,1]. Then, we chose a random x from a uniform dis-
tribution on [−1,1] and computed b = Ax− |x|. also we chose α = 10−2. Our stopping
criterion for the (TSIA) and (GNM) is ∥Ax − |x| − b∥ < ε in which ε = 10−6 or 10−11.
Therefore, overall 800 solvable AVEs is solved.
We divide our numerical experiments in two categories. One of those is corresponding to
the precision ε = 10−6 as summarized in Table 1. The other one is corresponding to the
precision ε = 10−11 as summarized in Table 2. In these tables, NS, AV, INV and TOC de-
note the number of solved problems, the average number of iterations for solved problems,
the number of computed inverse of matrix and also total solved AVEs time taken by CPU,
respectively.
As Table 1 shows, Algorithm 2.1 and the generalized Newton method (8) have almost simi-
lar behavior in the case of ε = 10−6 and both of them solved all of AVEs but our Algorithm
2.1 compute approximately half inverse of matrices compare to GNM (8), So the computed
time for the Algorithm 2.1 is less than half the computation time for the GNM (8).
The difference will be clearer in Table 2 for any n ≥ 100. We notice that the generalized
Newton method can not solve 24% problems of dimension n = 500 and 70% problems of
dimension n = 1000 Whereas proposed Algorithm 2.1 can solve all of the problems. Fur-
thermore, for n = 100,200,500,1000 same as table 1 our Algorithm 2.1 can solve all of
problems with a small number of computations and hence converges faster than GNM (8)
to uniqe solution of AVE.
furthermore if we apply the generalized Newton method (8) in second step of proposed Algo-
rithm 2.1 and solve above 800 random solvable AVE, and compare with GNM (8) in number
of solved AVEs, we see they have same result.

Table 1. Numerical results for precision ε = 10−6 and α = 0.01
100 200 500 1000

GNM TSIA GNM TSIA GNM TSIA GNM TSIA
NS 100 100 100 100 100 100 100 100
AV 4.27 8.03 4.49 8.19 4.97 8.90 5.12 9.01
INV 427 209 449 206 497 210 512 218
TOC 0.473 0.249 2.465 1.150 34.26 14.91 249.4 107.4

Table 2. Numerical results for precision ε = 10−11 and α = 0.01
100 200 500 1000

GNM TSIA GNM TSIA GNM TSIA GNM TSIA
NS 98 100 98 100 76 100 30 100
AV 4.14 7.89 4.60 8.25 4.93 8.90 5.1 9.06
INV 406 202 451 207 375 210 153 201
TOC 0.459 0.240 2.214 1.125 25.28 15.03 74.51 101.5

Example 3.2. (see [9,15]).Consider random matrix A and b in Matlab code as
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n = input(dimension o f matrix A = );

rand(state,0);

R = rand(n,n);

b = rand(n,1);

A = R′ ∗R+n∗ eye(n);

with random initial guess. The comparison between Algorithm 2.1, the residual iterative
method [9] and the Yong method [15] is presented in Table 3.
In Table 3 TOC denotes time taken by CPU. For any order of n we solve 100 randomly
generated AVEs based on obove codes and solve them using Algorithm 2.1. The average
times taken by CPU for every order of n are presented in Table 3. Note that for any size of
dimension n Algorithm 2.1 converges faster than both the residual iterative method [9] and
Yong method [15].

Table 3. Numerical results for Example 3.2.
order Residual Iterative Method[9] Yong method[15] Algorithm 2.1

No. of iter. TOC No. of iter. TOC No. of iter. TOC
4 2 0.006 2 2.230 3 0.00050
8 2 0.022 2 3.340 3 0.00065
16 2 0.025 3 3.790 3 0.00078
32 2 0.053 2 4.120 3 0.00101
64 2 0.075 3 6.690 3 0.01224
128 2 0.142 3 12.450 3 0.04209
256 2 0.201 3 34.670 3 0.06714
512 3 1.436 5 79.570 3 0.32896
1024 3 6.604 5 157.12 3 0.83559

4. Conclusion

We have proposed a fast linearly convergent algorithm for solving the NP-hard abso-
lute value equation Ax−|x|= b under certain assumptions on A. We proved that our method
has all of the properties of the generalized Newton method. Numerical experiments showed
that, in terms of the number of successfully solved problems and time of successfully solved
problems, proposed Algorithm 2.1 works better than the generalized Newton method (8),
Residual Iterative Method [9] and Young method [15]. Especially when high accuracy is
needed and n is large.
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