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In this paper, we study set-valued optimization problems, set-valued frac-
tional programming problems, set-valued D. C. optimization problems, set-valued semi-

infinite programming problems, and set-valued minimax programming problems via gen-

eralized cone convexity assumptions. We establish the existing results of optimality con-
ditions of scalar and vector optimization problems in the setting of set-valued maps.
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1. Introduction

Set-valued optimization problem which is being a new branch of optimization problem
attracts the attention of researchers to an increasing extent in the last few years. Set-valued
optimization problem makes a bridge between different areas in optimization theory. It plays
an important role in multiobjective programming problems, functional analysis, statistics,
the theory of decision making, game theory, and approximation theory.

Antczak and Pitea [1] studied parametric approach to multitime multiobjective frac-
tional variational problems under (F, ρ)-convexity. Pitea and Postolache [23] developed dual-
ity theorems for a new class of multitime multiobjective variational problems in 2012. They
also [24,25] established the necessary and sufficient efficiency conditions for minimization of
vectors of curvilinear functionals on the second order jet bundle. Borwein [4] introduced the
notion of cone convexity for set-valued maps. Cone convexity has a vital role in developing
the existence theorem of efficient points of set-valued optimization problems. The concept
of contingent derivative of set-valued maps was introduced by Aubin [3]. It is an exten-
sion of the concept of Frechet differentiability to the set-valued case. Corley [6] established
the existence results and developed Lagrangian duality theory for set-valued maximization
problems via contingent derivative. Jahn and Rauh [21] introduced another notion of dif-
ferentiability of set-valued maps viz. the notion of contingent epiderivative, which is an
extension of the concept of directional derivative to the set-valued case. Sheng and Liu [26]
investigated the KKT conditions of set-valued optimization problems via generalized con-
tingent epiderivative and preinvexity assumptions. The second-order KKT necessary and
sufficient conditions of set-valued optimization problems have been established by Zhu et
al. [27] via the second-order contingent derivative.
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Optimization problems involving difference of convex mappings are called D. C. opti-
mization problems. The sufficient optimality conditions of generalized D. C. multiobjective
optimization problems have been studied by Guo et al. [19] via the notion of subdifferential.

Semi-infinite and minimax programming problems are some classes of optimization
problems. Mishra and Jaiswal [22] have established the sufficient optimality conditions and
Mond-Weir type duality theorems of nondifferentiable multiobjective semi-infinite program-
ming problems via generalized convexity assumptions.

Das and Nahak [7–18] introduced the notion of ρ-cone convexity of set-valued maps.
They establish the sufficient KKT conditions and develop the duality results for various types
of set-valued optimization problems under contingent epiderivative and ρ-cone convexity
assumptions.

In this paper, we study set-valued optimization problems, set-valued fractional pro-
gramming problems, set-valued D. C. optimization problems, set-valued semiinfinite pro-
gramming problems, and set-valued minimax programming problems via ρ-cone convexity
assumptions.

2. Definition and Preliminaries

Let Y be a real normed space and K be a nonempty subset of Y . Then K is called a
cone if λy ∈ K, for all y ∈ K and λ ≥ 0. Furthermore, K is called non-trivial if K 6= {θY },
proper if K 6= Y , pointed if K ∩ (−K) = {θY }, solid if int(K) 6= ∅, closed if K = K, and
convex if λK+ (1−λ)K ⊆ K, for all λ ∈ [0, 1], where int(K) and K denote the interior and
closure of K, respectively and θY is the zero element of Y .

Let K be a solid pointed convex cone in Y . There are two types of cone-orderings in
Y with respect to K. For any two elements y1, y2 ∈ Y , we have

y1 ≤ y2 if y2 − y1 ∈ K

and

y1 < y2 if y2 − y1 ∈ int(K).

The following notions of minimality are mainly used with respect to a solid pointed convex
cone K in a real normed space Y .

Definition 2.1. Let B be a nonempty subset of a real normed space Y . Then minimal and
weakly minimal points of B are defined as

(i) y′ ∈ B is a minimal point of B if there is no y ∈ B \ {y′}, such that y ≤ y′.
(ii) y′ ∈ B is a weakly minimal point of B if there is no y ∈ B, such that y < y′.

We recall the notions of contingent cone and second-order contingent set in a real
normed space.

Definition 2.2. [2,3] Let Y be a real normed space, ∅ 6= B ⊆ Y , and y′ ∈ B. The contingent
cone to B at y′ is denoted by T (B, y′) and is defined as follows:

An element y ∈ T (B, y′) if there exist sequences {λn} in R, with λn → 0+ and {yn}
in Y , with yn → y, such that

y′ + λnyn ∈ B, ∀n ∈ N,
or, there exist sequences {tn} in R, with tn > 0 and {y′n} in B, with y′n → y′, such that

tn(y′n − y′)→ y.

Definition 2.3. [2, 3, 5] Let Y be a real normed space, ∅ 6= B ⊆ Y , y′ ∈ B, and u ∈ Y .
The second-order contingent set to B at y′ in the direction u is denoted by T 2(B, y′, u) and
defined as
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An element y ∈ T 2(B, y′, u) if there exist sequences {λn} in R, with λn → 0+ and
{yn} in Y , with yn → y, such that

y′ + λnu+
1

2
λn

2yn ∈ B, ∀n ∈ N,

or, there exist sequences {tn}, {t′n} in R, with tn, t
′
n > 0, tn → ∞, t′n → ∞,

t′n
tn
→ 2, and

{y′n} in B, with y′n → y′, such that

tn(y′n − y′)→ u and t′n(tn(y′n − y′)− u)→ y.

Let X, Y be real normed spaces, 2Y be the set of all subsets of Y , and K be a solid
pointed convex cone in Y . Let F : X → 2Y be a set-valued map from X to Y , i.e., F (x) ⊆ Y ,
for all x ∈ X. The effective domain, image, graph, and epigraph of F are defined by

dom(F ) = {x ∈ X : F (x) 6= ∅},

F (A) =
⋃
x∈A

F (x), for any ∅ 6= A ⊆ X,

gr(F ) = {(x, y) ∈ X × Y : y ∈ F (x)},

and

epi(F ) = {(x, y) ∈ X × Y : y ∈ F (x) +K}.

Let A be a nonempty subset of X, x′ ∈ A, F : X → 2Y be a set-valued map, with
A ⊆ dom(F ), and y′ ∈ F (x′). Jahn and Rauh [21] introduced the notion of contingent
epiderivative of set-valued maps which plays a vital role in various aspects of set-valued
optimization problems.

Definition 2.4. [21] A single-valued map D↑F (x′, y′) : X → Y whose epigraph coincides
with the contingent cone to the epigraph of F at (x′, y′), i.e.,

epi(D↑F (x′, y′)) = T (epi(F ), (x′, y′)),

is said to be the contingent epiderivative of F at (x′, y′).

Jahn et al. [20] introduced the notion of second-order contingent epiderivative of set-
valued maps which also has a fundamental role in set-valued optimization problems.

Definition 2.5. [20] A single-valued map D2
↑F (x′, y′, u, v) : X → Y whose epigraph co-

incides with the second-order contingent set to the epigraph of F at (x′, y′) ∈ gr(F ) in a
direction (u, v) ∈ X × Y , i.e.,

epi(D2
↑F (x′, y′, u, v)) = T 2(epi(F ), (x′, y′), (u, v)),

is said to be the second-order contingent epiderivative of F at (x′, y′) in the direction (u, v).

We now turn our attention to the notion of cone convexity of set-valued maps, intro-
duced by Borwein [4].

Definition 2.6. [4] Let A be a nonempty convex subset of a real normed space X. A set-
valued map F : X → 2Y , with A ⊆ dom(F ), is called K-convex on A if ∀x1, x2 ∈ A and
λ ∈ [0, 1],

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) +K.
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3. Set-Valued Fractional Programming Problems

Let X be a real normed space and A be a nonempty subset of X. Let F : X → 2R
m

,

G : X → 2R
m

, and H : X → 2R
k

be set-valued maps, with

A ⊆ dom(F ) ∩ dom(G) ∩ dom(H).

Let F = (F1, F2, ..., Fm), G = (G1, G2, ..., Gm), and H = (H1, H2, ...,Hk), where the set-
valued maps Fi : X → 2R, Gi : X → 2R; i = 1, 2, ...,m, and Hj : X → 2R; j = 1, 2, ..., k, are
defined by

dom(Fi) = dom(F ),dom(Gi) = dom(G), and dom(Hj) = dom(H),

x ∈ A, y = (y1, y2, ..., ym) ∈ F (x) =⇒ yi ∈ Fi(x),∀i = 1, 2, ...,m,

z = (z1, z2, ..., zm) ∈ G(x) =⇒ zi ∈ Gi(x),∀i = 1, 2, ...,m,

and

w = (w1, w2, ..., wk) ∈ H(x) =⇒ wj ∈ Hj(x),∀j = 1, 2, ..., k.

Assume that Fi(x) ⊆ R+ and Gi(x) ⊆ int(R+),∀i = 1, 2, ...,m and x ∈ A. Let λ′ =
(λ′1, λ

′
2, ..., λ

′
m) ∈ Rm

+ . Define elements y
z , λ
′z ∈ Rm and a subset λ′G(x) of Rm by

y

z
=

(
y1
z1
,
y2
z2
, ...,

ym
zm

)
λ′z = (λ′1z1, λ

′
2z2, ..., λ

′
mzm),

and

λ′G(x) = {λ′z : z ∈ G(x)}.

For x ∈ A, define a subset F (x)
G(x) of Rm by

F (x)

G(x)
=
{y
z

=

(
y1
z1
,
y2
z2
, ...,

ym
zm

)
: y = (y1, y2, ..., ym) ∈ F (x),

z = (z1, z2, ..., zm) ∈ G(x)
}
.

Consider a set-valued fractional programming problem (FP):

minimize
x∈A

F (x)

G(x)

subject to H(x) ∩ (−Rk
+) 6= ∅.

(FP)

The feasible set of the problem (FP) is given by

SFP = {x ∈ A : H(x) ∩ (−Rk
+) 6= ∅}.

Definition 3.1. A point (x′, y
′

z′ ) ∈ X × Rm, with x′ ∈ SFP , y′ ∈ F (x′), and z′ ∈ G(x′), is
called a minimizer of the problem (FP) if for all (x, yz ) ∈ X ×Rm, with x ∈ SFP , y ∈ F (x),
and z ∈ G(x),

y
z −

y′

z′ /∈ (−Rm
+ ) \ {0Rm}.

Definition 3.2. A point (x′, y
′

z′ ) ∈ X × Rm, with x′ ∈ SFP , y′ ∈ F (x′), and z′ ∈ G(x′),
is called a weak minimizer of the problem (FP) if for all (x, yz ) ∈ X × Rm, with x ∈ SFP ,
y ∈ F (x), and z ∈ G(x),

y

z
− y′

z′
/∈ (−int(Rm

+ )).
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Definition 3.3. Let A be a nonempty convex subset of a real normed space X, e ∈ int(K),
and F : X → 2Y be a set-valued map, with A ⊆ dom(F ). Then F is said to be ρ-K-convex
with respect to e on A if there exists ρ ∈ R, such that

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) + ρλ(1− λ)‖x1 − x2‖2e+K,

∀x1, x2 ∈ A and ∀λ ∈ [0, 1].

We construct an example of ρ-cone convex set-valued map, which is not cone convex.

Example 3.1. Consider a set-valued map F : [−1, 1] ⊆ R→ 2R
2

defined by

F (t) =

{
{(x− 2t2, x2 − 2t2) : x ≥ 0}, if 0 ≤ t ≤ 1,

{(x− 2t2, x− 2t2) : x ≤ 0}, if − 1 ≤ t < 0.

We prove that F is not R2
+-convex on [−1, 1] but is (−2)-R2

+-convex with respect to e =
1R2 = (1, 1) on [−1, 1]. �

Let λ′ ∈ Rm
+ and G : X → 2R

m

be a set-valued map. Define a set-valued map

(−λ′G) : X → 2R
m

by

(−λ′G)(x) = −λ′G(x),∀x ∈ dom(G).

We establish the sufficient optimality conditions of the problem (FP) by using the
notion of contingent epiderivable and ρ-cone convexity assumptions.

Theorem 3.1. (Sufficient optimality conditions) Let A be a nonempty convex subset of
a real normed space X, x′ be an element of the feasible set SFP of the problem (FP),

y′ ∈ F (x′), z′ ∈ G(x′), λ′ ∈ F (x′)
G(x′) , w′ ∈ H(x′) ∩ (−L), and ρ1, ρ2, ρ3 ∈ R. Assume that

F , −λ′G are ρ1-Rm
+ -convex, ρ2-Rm

+ -convex, respectively, with respect to 1Rm and H is ρ3-

Rk
+-convex with respect to 1Rk , on A. Let F , −λ′G be contingent epiderivable at (x′, y′),

(x′,−λ′z′), respectively and H be contingent epiderivable at (x′, w′). Suppose that there
exists (y∗, z∗) ∈ Rm

+ × Rk
+, with y∗ 6= 0Rm , and

(ρ1 + ρ2)〈y∗,1Rm〉+ ρ2〈z∗,1Rk〉 ≥ 0, (3.1)

such that

〈y∗, D↑F (x′, y′)(x− x′) +D↑(−λ′G)(x′,−λ′z′)(x− x′)〉
+ 〈z∗, D↑H(x′, w′)(x− x′)〉 ≥ 0,∀x ∈ A,

(3.2)

y′ − λ′z′ = 0Rm , (3.3)

and

〈z∗, w′〉 = 0. (3.4)

Then (x′, y
′

z′ ) is a weak minimizer of the problem (FP).

4. Optimization Problems with Difference of Set-Valued Maps

Let X, Y , Z be real normed spaces and A be a nonempty convex subset of X. Let K
and L be solid pointed convex cones in Y and Z, respectively. Suppose that F1 : X → 2Y ,
F2 : X → 2Y , G1 : X → 2Z , and G2 : X → 2Z are set-valued maps with

A ⊆ dom(F1) ∩ dom(F2) ∩ dom(G1) ∩ dom(G2).

Consider an optimization problem (DP) with the difference of set-valued maps:

minimize
x∈A

F1(x)− F2(x)

subject to (G1(x)−G2(x)) ∩ (−L) 6= ∅.
(DP)
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Here, the feasible set SDP of the problem (DP) is defined by

SDP = {x ∈ A : (G1(x)−G2(x)) ∩ (−L) 6= ∅}.

Definition 4.1. A point (x′, y′1−y′2) ∈ X×Y , with x′ ∈ SDP , y′1 ∈ F1(x′), and y′2 ∈ F2(x′),
is called a minimizer of the problem (DP) if for all (x, y1 − y2) ∈ X × Y , with x ∈ SDP ,
y1 ∈ F1(x), and y2 ∈ F2(x),

(y1 − y2)− (y′1 − y′2) /∈ (−K) \ {θY }.

Definition 4.2. A point (x′, y′1−y′2) ∈ X×Y , with x′ ∈ SDP , y′1 ∈ F1(x′), and y′2 ∈ F2(x′),
is called a weak minimizer of the problem (DP) if for all (x, y1−y2) ∈ X×Y , with x ∈ SDP ,
y1 ∈ F1(x), and y2 ∈ F2(x),

(y1 − y2)− (y′1 − y′2) /∈ (−int(K)).

Let y∗ ∈ Y ∗, z∗ ∈ Z∗, x′ ∈ A, y′2 ∈ F2(x′), z′2 ∈ G2(x′), T1 ∈ ∂sF2(x′; y′2) and T2 ∈
∂sG2(x′; z′2). Define maps y∗T1 + z∗T2 : X → R and y∗F1 + z∗G1 : X → 2R by

(y∗T1 + z∗T2)(x) = 〈y∗, T1(x)〉+ 〈z∗, T2(x)〉, x ∈ X
and

(y∗F1 + z∗G1)(x) = 〈y∗, F1(x)〉+ 〈z∗, G1(x)〉, x ∈ dom(F1) ∩ dom(G1).

We establish the necessary KKT conditions of the set-valued D. C. optimization
problem (DP) by using ρ-cone convexity assumptions.

Theorem 4.1. Let A be a nonempty convex subset of a real normed space X, e2 ∈ int(K),
e′2 ∈ int(L), and ρ2, ρ

′
2 ∈ R. Let (x′, y′1 − y′2), with x′ ∈ SDP , y′1 ∈ F1(x′), and y′2 ∈ F2(x′),

be a weak minimizer of the problem (DP) and there exist z′1 ∈ G1(x′) and z′2 ∈ G2(x′), with

z′1 − z′2 ∈ (−L).

Suppose that F1 : X → 2Y , G1 : X → 2Z are K-convex, L-convex, respectively, on A. Also,
suppose that F2 : X → 2Y , G2 : X → 2Z are strongly ρ2-K-convex, strongly ρ′2-L-convex,
with respect to e2, e′2, respectively, on A. Assume that ∂sF2(x′; y′2) 6= ∅ and ∂sG2(x′; z′2) 6= ∅.
Then there exists (θY ∗ , θZ∗) 6= (y∗, z∗) ∈ K+ × L+, such that

y∗T1 + z∗T2 ∈ ∂(y∗F1 + z∗G1)(x′; 〈y∗, y′1〉+ 〈z∗, z′1〉),
∀T1 ∈ ∂sF2(x′; y′2) and T2 ∈ ∂sG2(x′; z′2)

and
〈z∗, z′1 − z′2〉 = 0.

We establish the sufficient KKT conditions of the set-valued D. C. optimization prob-
lem (DP) by using ρ-cone convexity assumptions.

Theorem 4.2. Let A be a nonempty convex subset of a real normed space X, ρ2, ρ
′
2 ∈ R,

e2 ∈ int(K), and e′2 ∈ int(L). Let x′ ∈ SDP , y′1 ∈ F1(x′), y′2 ∈ F2(x′), and there exist
z′1 ∈ G1(x′) and z′2 ∈ G2(x′), with

z′1 − z′2 ∈ (−L).

Suppose that F2 : X → 2Y , G2 : X → 2Z are ρ2-K-convex, ρ′2-L-convex, with respect
to e2, e′2, respectively, on A. Assume that for any x ∈ A, y2 ∈ F2(x), and z2 ∈ G2(x),
∂sF2(x; y2) 6= ∅ and ∂sG2(x; z2) 6= ∅. If there exist y∗ ∈ K+ \ {θY ∗} and z∗ ∈ L+, satisfying

ρ2〈y∗, e2〉+ ρ′2〈z∗, e′2〉 ≥ 0, (4.5)

such that

y∗T1 + z∗T2 ∈ ∂(y∗F1 + z∗G1)(x′; 〈y∗, y′1〉+ 〈z∗, z′1〉),
∀T1 ∈ ∂sF2(x; y2), T2 ∈ ∂sG2(x; z2), x ∈ A, y2 ∈ F2(x), and z2 ∈ G2(x)

(4.6)
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and

〈z∗, z′1 − z′2〉 = 0, (4.7)

then (x′, y′1 − y′2) is a weak minimizer of the problem (DP).

5. Set-Valued Semi-Infinite Programming Problems

We consider semi-infinite programming problems in the setting of set-valued maps.
Let U be a countably infinite subset of Rp, ∅ 6= A ⊆ Rn, and F = (F1, F2, ..., Fm) : Rn →
2R

m

, G : Rn × U → 2R be two set-valued maps with

A ⊆ dom(F ) and A× U ⊆ dom(G).

Let B1, B2, ..., Bm be n × n positive semi-definite (symmetric) real matrices. Consider a
set-valued semi-infinite programming problem (SP):

minimize
x∈A

(F1(x) + (xTB1x)
1
2 , F2(x) + (xTB2x)

1
2 , ..., Fm(x) + (xTBmx)

1
2 )

subject to G(x, u) ∩ (−R+) 6= ∅,∀u ∈ U.
(SP)

The feasible set of the problem (SP) is defined by

SSP = {x ∈ A : G(x, u) ∩ (−R+) 6= ∅,∀u ∈ U}.

Definition 5.1. A point (x′, y′) ∈ Rn×Rm, with x′ ∈ SSP and y′ = (y′1, y
′
2, ..., y

′
m) ∈ F (x′),

is called a minimizer of the problem (SP) if for all (x, y) ∈ Rn × Rm, with x ∈ SSP and
y = (y1, y2, ..., ym) ∈ F (x),

(y1 + (xTB1x)
1
2 , y2 + (xTB2x)

1
2 , ..., ym + (xTBmx)

1
2 )

− (y′1 + (x′TB1x
′)

1
2 , y′2 + (x′TB2x

′)
1
2 , ..., y′m + (x′TBmx

′)
1
2 ) /∈ (−Rm

+ ) \ {0Rm}.

Definition 5.2. A point (x′, y′) ∈ Rn×Rm, with x′ ∈ SSP and y′ = (y′1, y
′
2..., y

′
m) ∈ F (x′),

is called a weak minimizer of the problem (SP) if for all (x, y) ∈ Rn × Rm, with x ∈ SSP

and y = (y1, y2, ..., ym) ∈ F (x),

(y1 + (xTB1x)
1
2 , y2 + (xTB2x)

1
2 , ..., ym + (xTBmx)

1
2 )

− (y′1 + (x′TB1x
′)

1
2 , y′2 + (x′TB2x

′)
1
2 , ..., y′m + (x′TBmx

′)
1
2 ) /∈ (−int(Rm

+ )).

Let J be the index set, such that U = {uj : j ∈ J}. Let x′ ∈ A. Denote a set J(x′)
by

J(x′) = {j ∈ J : 0 ∈ G(x′, uj)}.
Throughout this chapter, we assume that J(x′) 6= ∅. Let xi ∈ Rn, i = 1, 2, ...,m. Define
maps .TBixi : Rn → R, i = 1, 2, ...,m, by

(.TBixi)(x) = xTBixi,∀x ∈ Rn.

The gradient vector of .TBixi, denoted by ∇(.TBixi), is given by

∇(.TBixi) = Bixi.

Let x′ ∈ A and j ∈ J(x′). Define a set-valued map G(., uj) : Rn → 2R by

G(., uj)(x) = G(x, uj),∀x ∈ dom(G).

We establish the sufficient KKT conditions of the set-valued semi-infinite programming
problem (SP) by using ρ-cone convexity assumptions.



76 K. Das, C. Nahak, D. Roy

Theorem 5.1. (Sufficient optimality conditions) Let A be a nonempty convex subset of Rn,
x′ ∈ SSP , and y′ = (y′1, y

′
2, ..., y

′
m) ∈ F (x′). Let xi ∈ Rn, i = 1, 2, ...,m and z′ = (z′j)j∈J ,

with z′j ∈ G(x′, uj) ∩ (−R+). Let ρi, ρ
′
i, ρ
′′
j ∈ R, for i = 1, 2, ...,m and j ∈ J(x′). Suppose

that Fi, .
TBixi, i = 1, 2, ...,m, and G(., uj), j ∈ J(x′), are ρi-R+-convex, ρ′i-R+-convex,

and ρ′′j -R+-convex set-valued maps, respectively, with respect to 1, on A. Assume that the
contingent epiderivatives D↑Fi(x

′, y′i) and D↑G(., uj)(x
′, z′j) exist. If there exist y∗i > 0,

i = 1, 2, ...,m, and z∗j ≥ 0, j ∈ J(x′), with z∗j 6= 0, for finitely many j, and

m∑
i=1

y∗i (ρi + ρ′i) +
∑

j∈J(x′)

z∗j ρ
′′
j ≥ 0, (5.8)

satisfying the following conditions( m∑
i=1

y∗i (D↑Fi(x
′, y′i) + (Bixi)

T ) +
∑

j∈J(x′)

z∗jD↑G(., uj)(x
′, z′j)

)
(x− x′)

≥ 0,∀x ∈ A,
(5.9)

z∗j z
′
j = 0,∀j ∈ J(x′), (5.10)

xTi Bixi ≤ 1, i = 1, 2, ...,m, (5.11)

and

(x′TBix
′)

1
2 = x′TBixi, i = 1, 2, ...,m. (5.12)

Then (x′, y′) is a weak minimizer of the problem (SP).

6. Set-Valued Minimax Programming Problems

Definition 6.1. A set-valued map F : Rn → 2R
m

is called upper semicontinuous if F+(V ) =
{x ∈ Rn : F (x) ⊆ V } is open in Rn for any open set V in Rm.

Definition 6.2. Let B be a nonempty subset of Rm. Then B is called Rm
+ -semicompact

if every open cover of complements of the form {(yi + Rm
+ )c : yi ∈ B, i ∈ I} has a finite

subcover.

Definition 6.3. A set-valued map F : Rn → 2R
m

is called Rm
+ -semicompact-valued if F (x)

is Rm
+ -semicompact, for all x ∈ dom(F ).

Corley [6] derived the existence results for maximization of upper semicontinuous and
cone semicompact-valued set-valued maps.

Theorem 6.1. [6] Let X,Y be real topological vector spaces, A be a nonempty compact
subset of X, and K be an acute, (i.e., K is pointed) convex cone in Y . Let F : X → 2Y

be a K-semicompact-valued and upper semicontinuous set-valued map. Then there exists a
maximal point of the problem max

⋃
x∈A

F (x).

For simplicity, let us assume X = Rm, Y = R, and K = R+.
Let A be a nonempty subset of Rn and B be a nonempty compact subset of Rm. Let
Φ : Rn × Rm → 2R and G : Rn → 2R

p

be two set-valued maps with

A×B ⊆ dom(Φ) and A ⊆ dom(G).

Consider a set-valued minimax programming problem (MP):

minimize
x∈A

max
⋃
y∈B

Φ(x, y)

subject to G(x) ∩ (−Rp
+) 6= ∅,

(MP)
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where the set-valued map Φ(x, .) : Rm → 2R is R+-semicompact-valued and upper semi-
continuous on B, for all x ∈ A. Therefore, by Theorem 6.1, max

⋃
y∈B

Φ(x, y) always exists,

for all x ∈ A. As Φ(x, y) ⊆ R, for each x ∈ A there exists only one maximal point of the
problem max

⋃
y∈B

Φ(x, y).

The feasible set of the problem (MP) is given by

SMP = {x ∈ A : G(x) ∩ (−Rp
+) 6= ∅}.

For x ∈ A, define following sets by

I(x) = {j : 0 ∈ Gj(x), 1 ≤ j ≤ p},

J(x) = {1, 2, ..., p} \ I(x),

and

B(x) = {b ∈ B : max
⋃
y∈B

Φ(x, y) ∈ Φ(x, b)}.

Under the assumptions, B(x) 6= ∅, for all x ∈ A.

Definition 6.4. Let x′ ∈ SMP and z′ = max
⋃

y∈B
Φ(x′, y). Then (x′, z′) is called a minimizer

of the problem (MP) if for all x ∈ SMP and z = max
⋃

y∈B
Φ(x, y),

z′ ≤ z.

The sufficient KKT conditions of the set-valued minimax programming problem (MP)
are established by using ρ-cone convexity assumptions.

Theorem 6.2. (Sufficient optimality conditions) Let A be a nonempty convex subset of Rn,
x′ ∈ SMP , and z′ = max

⋃
y∈B

Φ(x′, y). Assume that there exist a positive integer k, z∗i ≥ 0,

yi ∈ B(x′), (1 ≤ i ≤ k) with

k∑
i=1

z∗i 6= 0, and w∗j ≥ 0, w′j ∈ Gj(x
′) ∩ (−R+), (1 ≤ j ≤ p),

such that

k∑
i=1

z∗iD↑Φ(., yi)(x
′, z′)(x− x′) +

p∑
j=1

w∗jD↑Gj(x
′, w′j)(x− x′) ≥ 0,

∀x ∈ A

(6.13)

and

w∗jw
′
j = 0,∀j = 1, 2, ..., p. (6.14)

Let ρi, ρ
′
j ∈ R, for i = 1, 2, ..., k and j = 1, 2, ..., p. If Φ(., yi), (1 ≤ i ≤ k) and Gj,

(1 ≤ j ≤ p) are ρi-R+-convex and ρ′j-R+-convex, respectively, with respect to 1, on A, with

k∑
i=1

z∗i ρi +

p∑
j=1

w∗j ρ
′
j ≥ 0, (6.15)

then (x′, z′) is a minimizer of the problem (MP).
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7. Set-Valued Optimization Problems via Contingent Epiderivative

Let X, Y , Z be real normed spaces and A be a nonempty subset of X. Let K and
L be solid pointed convex cones of Y and Z, respectively. Suppose that F : X → 2Y and
G : X → 2Z are two set-valued maps, with

A ⊆ dom(F ) ∩ dom(G).

Consider the set-valued optimization problem (P):

minimize
x∈A

F (x)

subject to G(x) ∩ (−L) 6= ∅.
(P)

The feasible set of the problem (P) is given by

SP = {x ∈ A : G(x) ∩ (−L) 6= ∅}.

We introduce the notions of ρ-(η, θ)-cone preinvexity and ρ-(η, θ)-cone invexity of set-valued
maps.

Definition 7.1. Let A be an invex subset of a real normed space X with respect to η :
A×A→ X, e ∈ int(K), and F : X → 2Y be a set-valued map, with A ⊆ dom(F ). Then F
is said to be ρ-(η, θ)-K-preinvex with respect to e on A if there exist a map θ : A× A→ X
and ρ ∈ R, such that

λF (x1) + (1− λ)F (x2) ⊆ F (x2 + λη(x1, x2)) + ρλ(1− λ)‖θ(x1, x2)‖2e+K,

∀x1, x2 ∈ A and ∀λ ∈ [0, 1].

Definition 7.2. Let A be a nonempty subset of a real normed space X, e ∈ int(K), and
F : X → 2Y be a set-valued map, with A ⊆ dom(F ). Let x′ ∈ A and y′ ∈ F (x′). Assume
that F is contingent epiderivable at (x′, y′). Then F is said to be ρ-(η, θ)-K-invex with
respect to e at (x′, y′) on A if there exist maps η, θ : A×A→ X and ρ ∈ R, with

η(A, x′) ⊆ dom(D↑F (x′, y′)),

such that

F (x)− y′ ⊆ D↑F (x′, y′)(η(x, x′)) + ρ‖θ(x, x′)‖2e+K,∀x ∈ A.

We give the following example of ρ-(η, θ)-cone invex set-valued map for some suitable
ρ, η and θ, which is not an η-invex set-valued map for any η.

Example 7.1. Consider a set-valued map F : R→ 2R
2

defined by

F (λ) =

{
{(x,
√
x) : x ≥ 0}, if λ ≥ 0,

{(x,
√
−x) : x ∈ [−4, 0]}, if λ < 0.

Take K = R2
+. Here F is not η-invex at (0, (0, 0)) on R. Choose any map η : R × R → R,

ρ = −1, and e = 1R2 . We also choose a map θ : R × R → R in such a way that, θ(λ, 0) ={
0, if λ ≥ 0,

2, if λ < 0.

We prove that F is ρ-(η, θ)-R2
+-invex with respect to 1R2 at (0, (0, 0)) on R. �

We establish the KKT sufficient optimality conditions of the problem (P) by using
contingent epiderivative and ρ-(η, θ)-cone preinvexity assumptions.

Theorem 7.1. (Sufficient optimality conditions) Let A be an invex subset of a real normed
space X with respect to a map η : A×A→ X, x′ ∈ SP , y′ ∈ F (x′), and z′ ∈ G(x′) ∩ (−L).
Let e ∈ int(K) and e′ ∈ int(L). Let ρ1, ρ2 ∈ R and η, θ : A× A→ X be two maps. Assume
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that F , G are ρ1-(η, θ)-K-preinvex, ρ2-(η, θ)-L-preinvex with respect to e, e′, respectively,
on A. Let F and G be contingent epiderivable at (x′, y′) and (x′, z′), respectively, with

η(A, x′) ⊆ dom(D↑F (x′, y′)) ∩ dom(D↑G(x′, z′)).

If there exists (y∗, z∗) ∈ K+ × L+, with y∗ 6= θY ∗ and

ρ1〈y∗, e〉+ ρ2〈z∗, e′〉 ≥ 0, (7.16)

such that

〈y∗, D↑F (x′, y′)(η(x, x′))〉+ 〈z∗, D↑G(x′, z′)(η(x, x′))〉 ≥ 0,∀x ∈ A (7.17)

and

〈z∗, z′〉 = 0. (7.18)

Then (x′, y′) is a weak minimizer of the problem (P).

We illustrate the Theorem 7.1 by the following example.

Example 7.2. We consider a primal problem (P), where A = R, F : R → 2R
2

is defined

like Example 7.1, and G : R→ 2R
2

is defined as

G(λ) =

{
{(x, x2) : x ≥ 0}, if λ ≥ 0,

{(x, x) : x > 8}, if λ < 0.

Take K = R2
+ and L = R2

+. Choose any map η : R × R → R, ρ1 = −1, and ρ2 = 2. We
also choose a map θ : R× R→ R in such a way that,

θ(λ, 0) =

{
0, if λ ≥ 0,

2, if λ < 0.

We prove that G is ρ2-(η, θ)-R2
+-invex with respect to 1R2 at (1, (0, 0)) on R. From Example

7.1, F is ρ1-(η, θ)-R2
+-invex with respect to 1R2 at (1, (0, 0)) on R. It is clear that for

y∗ = z∗ = (1, 1), Eqs. (7.17) and (7.18) are satisfied. Therefore, (λ′, (x′, y′)) = (1, (0, 0)) is
a weak minimizer of the problem (P). �

8. Set-Valued Optimization Problems via Second-Order Contingent Epi-
derivative

We introduce second-order ρ-(η, θ)-cone invexity of set-valued maps via second-order
contingent epiderivative.

Definition 8.1. Let A be a nonempty subset of a real normed space X, e ∈ int(K), and
F : X → 2Y be a set-valued map, with A ⊆ dom(F ). Let x′, u ∈ A, y′ ∈ F (x′), and
v ∈ F (u) + K. Assume that F is second-order contingent epiderivable at (x′, y′) in the
direction (u− x′, v− y′). Then F is said to be second-order ρ-(η, θ)-K-invex with respect to
e at (x′, y′) in the direction (u− x′, v − y′) on A if there exist maps η, θ : A× A→ X, and
ρ ∈ R, with

η(A, x′) ⊆ dom(D2
↑F (x′, y′, u− x′, v − y′)),

such that

F (x)− y′ ⊆ D2
↑F (x′, y′, u− x′, v − y′)(η(x, x′)) + ρ‖θ(x, x′)‖2e+K,∀x ∈ A.

We construct the following set-valued map F : R → 2R
2

, which is second-order ρ-
(η, θ)-R2

+-invex for some ρ, η and θ, but is not second-order η-invex, for any η.
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Example 8.1. Let a set-valued map F : R→ 2R
2

be defined by

F (λ) =

{
{(x,
√
x) : x ≥ 0}, if λ ≥ 0,

{(x,
√
−x) : x ∈ [−4, 0]}, if λ < 0.

Let K = R2
+. Here F is not second-order η-invex at (0, (0, 0)) in the direction (−1, (0, 0))

on R. Choose any map η : R× R → R and ρ = −1. We also choose a map θ : R× R → R

in such a way that, θ(λ, 0) =

{
0, if λ ≥ 0,

2, if λ < 0.

We prove that F is second-order ρ-(η, θ)-R2
+-invex with respect to 1R2 at (0, (0, 0)) in the

direction (−1, (0, 0)) on R. �

We establish the second-order KKT sufficient optimality conditions of the problem
(P) via second-order contingent epiderivative and second-order ρ-(η, θ)-cone invexity as-
sumptions.

Theorem 8.1. (Sufficient optimality conditions) Let x′ be a feasible point of the problem
(P), y′ ∈ F (x′), and z′ ∈ G(x′)∩(−L). Let u ∈ A, v ∈ F (u)+K, w ∈ G(u)+L, e ∈ int(K),
and e′ ∈ int(L). Let ρ1, ρ2 ∈ R and η, θ : A×A→ X be two maps. Assume that F is second-
order ρ1-(η, θ)-K-invex with respect to e at (x′, y′) in the direction (u− x′, v − y′) and G is
second-order ρ2-(η, θ)-L-invex with respect to e′ at (x′, z′) in the direction (u − x′, w − z′),
on A. Suppose that there exists (y∗, z∗) ∈ K+ × L+, with y∗ 6= θY ∗ , satisfying

ρ1〈y∗, e〉+ ρ2〈z∗, e′〉 ≥ 0, (8.19)

such that

〈y∗, D2
↑F (x′, y′, u− x′, v − y′)η(x, x′)〉

+ 〈z∗, D2
↑G(x′, z′, u− x′, w − z′)η(x, x′)〉 ≥ 0,∀x ∈ A

(8.20)

and

〈z∗, z′〉 = 0. (8.21)

Then (x′, y′) is a weak minimizer of the problem (P).

We illustrate the Theorem 8.1 by the following example.

Example 8.2. We consider a primal problem (P), where X = R, the set-valued map F :

R→ 2R
2

is given in Example 8.1, and G : R→ 2R
2

is defined as

G(λ) =

{
{(x, x2) : x ≥ 0}, if λ ≥ 0,

{(x, x) : x ≥ 8}, if λ < 0.

Let K = R2
+ and L = R2

+. Choose any map η : R× R→ R, ρ1 = −1, and ρ2 = 2. We also

choose a map θ : R× R→ R in such a way that, θ(λ, 0) =

{
0, if λ ≥ 0,

2, if λ < 0.

It is clear that for y∗ = z∗ = (1, 1), Eqs. (8.20) and (8.21) are satisfied. Therefore,
(λ′, (x′, y′)) = (0, (0, 0)) is a weak minimizer of the problem (P). �

9. Conclusions

In this paper, we introduce set-valued fractional programming problems, set-valued
D. C. optimization problems, set-valued semi-infinite programming problems, and set-valued
minimax programming problems. We establish the optimality conditions of various types of
set-valued optimization problems via ρ-cone convexity assumptions.
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