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In this paper, we study set-valued optimization problems, set-valued frac-
tional programming problems, set-valued D. C. optimization problems, set-valued semi-
infinite programming problems, and set-valued minimaz programming problems via gen-
eralized cone convezity assumptions. We establish the existing results of optimality con-
ditions of scalar and vector optimization problems in the setting of set-valued maps.
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1. Introduction

Set-valued optimization problem which is being a new branch of optimization problem
attracts the attention of researchers to an increasing extent in the last few years. Set-valued
optimization problem makes a bridge between different areas in optimization theory. It plays
an important role in multiobjective programming problems, functional analysis, statistics,
the theory of decision making, game theory, and approximation theory.

Antczak and Pitea [1] studied parametric approach to multitime multiobjective frac-
tional variational problems under (F, p)-convexity. Pitea and Postolache [23] developed dual-
ity theorems for a new class of multitime multiobjective variational problems in 2012. They
also [24,25] established the necessary and sufficient efficiency conditions for minimization of
vectors of curvilinear functionals on the second order jet bundle. Borwein [4] introduced the
notion of cone convexity for set-valued maps. Cone convexity has a vital role in developing
the existence theorem of efficient points of set-valued optimization problems. The concept
of contingent derivative of set-valued maps was introduced by Aubin [3]. It is an exten-
sion of the concept of Frechet differentiability to the set-valued case. Corley [6] established
the existence results and developed Lagrangian duality theory for set-valued maximization
problems via contingent derivative. Jahn and Rauh [21] introduced another notion of dif-
ferentiability of set-valued maps viz. the notion of contingent epiderivative, which is an
extension of the concept of directional derivative to the set-valued case. Sheng and Liu [26]
investigated the KKT conditions of set-valued optimization problems via generalized con-
tingent epiderivative and preinvexity assumptions. The second-order KKT necessary and
sufficient conditions of set-valued optimization problems have been established by Zhu et
al. [27] via the second-order contingent derivative.
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Optimization problems involving difference of convex mappings are called D. C. opti-
mization problems. The sufficient optimality conditions of generalized D. C. multiobjective
optimization problems have been studied by Guo et al. [19] via the notion of subdifferential.

Semi-infinite and minimax programming problems are some classes of optimization
problems. Mishra and Jaiswal [22] have established the sufficient optimality conditions and
Mond-Weir type duality theorems of nondifferentiable multiobjective semi-infinite program-
ming problems via generalized convexity assumptions.

Das and Nahak [7-18] introduced the notion of p-cone convexity of set-valued maps.
They establish the sufficient KKT conditions and develop the duality results for various types
of set-valued optimization problems under contingent epiderivative and p-cone convexity
assumptions.

In this paper, we study set-valued optimization problems, set-valued fractional pro-
gramming problems, set-valued D. C. optimization problems, set-valued semiinfinite pro-
gramming problems, and set-valued minimax programming problems via p-cone convexity
assumptions.

2. Definition and Preliminaries

Let Y be a real normed space and K be a nonempty subset of Y. Then K is called a
cone if Ay € K, for all y € K and A > 0. Furthermore, K is called non-trivial if K # {6y},
proper if K # Y, pointed if K N (—K) = {0y}, solid if int(K) # (), closed if K = K, and
convex if AK + (1 —A)K C K, for all A € [0,1], where int(K) and K denote the interior and
closure of K, respectively and fy is the zero element of Y.

Let K be a solid pointed convex cone in Y. There are two types of cone-orderings in
Y with respect to K. For any two elements y;,y2 € Y, we have

y1 <yaifyo —y1 € K
and
y1 < y2 if y2 —y1 € int(K).

The following notions of minimality are mainly used with respect to a solid pointed convex
cone K in a real normed space Y.

Definition 2.1. Let B be a nonempty subset of a real normed space Y. Then minimal and
weakly minimal points of B are defined as

(i) ¥’ € B is a minimal point of B if there is noy € B\ {y'}, such thaty <y'.

(ii) ¥’ € B is a weakly minimal point of B if there is no y € B, such that y < y'.

We recall the notions of contingent cone and second-order contingent set in a real
normed space.

Definition 2.2. [2,3] Let Y be a real normed space, ) # B C Y, andy' € B. The contingent
cone to B at y' is denoted by T'(B,y') and is defined as follows:

An element y € T(B,y') if there exist sequences {\,} in R, with A\, — 07 and {y,}
'Y, with y, — vy, such that

Y + Anyn € B,Vn € N,
or, there exist sequences {t,} in R, with t, > 0 and {y,,} in B, with y, — y', such that
tn(Yn — V') = y.

Definition 2.3. [2,8,5] Let Y be a real normed space,  # B C Y,y € B, andu € Y.
The second-order contingent set to B at y' in the direction u is denoted by T?(B,y',u) and
defined as
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An element y € T?(B,y',u) if there exist sequences {\,} in R, with A\, — 07 and
{yn} in Y, with y, — y, such that

1
Y+ Au+ §An2yn € B,Vn e N,

or, there exist sequences {t,}, {t,,} in R, with t,,t, >0, t, — oo, ¢, — o0, % — 2, and
{y,,} in B, with y,, — ', such that
tn(y'/n - y/) — u and t{n(tn(y;z - y/) - u) - Y.

Let X, Y be real normed spaces, 2¥ be the set of all subsets of Y, and K be a solid
pointed convex cone in Y. Let F': X — 2 be a set-valued map from X to Y, ie., F(z) C Y,
for all x € X. The effective domain, image, graph, and epigraph of F' are defined by

dom(F) = {z € X : F(z) # 0},

F(A) = U F(z), for any ) # A C X,
z€EA
gr(F) ={(z,y) € X xY 1y € F(2)},
and
epi(F) ={(z,y) e X xY:ye F(z)+ K}.

Let A be a nonempty subset of X, 2/ € A, F : X — 2¥ be a set-valued map, with
A C dom(F), and 3 € F(z'). Jahn and Rauh [21] introduced the notion of contingent
epiderivative of set-valued maps which plays a vital role in various aspects of set-valued
optimization problems.

Definition 2.4. [21] A single-valued map DyF(2',y’) : X — Y whose epigraph coincides
with the contingent cone to the epigraph of F at (2',y’), i.e.,

epi(D+F(2',y")) = T(epi(F), (2, y)),
is said to be the contingent epiderivative of F' at (z',y).

Jahn et al. [20] introduced the notion of second-order contingent epiderivative of set-
valued maps which also has a fundamental role in set-valued optimization problems.

Definition 2.5. [20] A single-valued map D%F(m’,y’,u,v) : X = Y whose epigraph co-
incides with the second-order contingent set to the epigraph of F at (z',y’) € gr(F) in a
direction (u,v) € X xY, i.e.,

epi(DIF (¢',y,u,v)) = T?(epi(F), («',y/), (u,0)),
is said to be the second-order contingent epiderivative of F at (x',y') in the direction (u,v).

We now turn our attention to the notion of cone convexity of set-valued maps, intro-
duced by Borwein [4].

Definition 2.6. [4] Let A be a nonempty convex subset of a real normed space X. A set-
valued map F : X — 2Y, with A C dom(F), is called K-convex on A if Vxi,20 € A and
A€ [0,1],

)\F(l‘l) + (1 - )\)F(IL‘Q) Q F()\Il + (1 — )\)IEQ) + K.
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3. Set-Valued Fractional Programming Problems

Let X be a real normed space and A be a nonempty subset of X. Let F': X — 2™,

G:X—>2R" andH: X — 2R be set-valued maps, with
A C dom(F) Ndom(G) Ndom(H).

Let F = (Fy, Py, ..., Fy), G = (G1,Ga,...,Gn), and H = (Hy, Ha, ..., Hy,), where the set-
valued maps F; : X — 28 G, : X — 28 i=1,2,..,m,and H,; : X — 2%, j =1,2,.... k, are
defined by

dom(F;) = dom(F'),dom(G;) = dom(G), and dom(H,) = dom(H),
r€Ay=(y1,Y2, s Ym) € Fz) = y; € Fi(x),Vi=1,2,...,m,
z=(z1,22,...,2m) € G(z) = 2z, € G;(x),Vi=1,2,...,m,
and
w = (w1, ws,...,w) € H(zx) = w; € Hj(z),Vj =1,2,..., k.

Assume that Fj(z) C Ry and Gi(z) C int(R4),Vi = 1,2,..,m and © € A. Let X =
(A1, Ag, ..y A7) € R Define elements £, X'z € R™ and a subset X'G/(z) of R™ by

y_ (¥ Y2  Un
z 21 20 Zm,

Nz = (Nz1, Nyza, s N 2m),
and
NG(z) ={Nz:z€G)}

For x € A, define a subset ggg of R™ by

F(w){z(yl Y2 Ym

2’17 Z2a"'a Zm) Y= (ylvaa ;ym) € F(iL’),

z = (21,22, 2m) € G(x)}

Consider a set-valued fractional programming problem (FP):

. F(zx)
minimize

€A G(z) (FP)
subject to  H(z) N (—RY) # 0.

The feasible set of the problem (FP) is given by
Spp={zx € A: H(z)N (—Ri) # 0}.

Definition 3.1. A point (2, ’Z’—:) € X x R™, with ' € Spp, ¥y € F(2'), and 2’ € G(2'), is
called a minimizer of the problem (FP) if for all (x,%) € X x R™, with x € Spp, y € F(x),
and z € G(z),

Lo L ¢ (~R7)\ {0}

Definition 3.2. A point (2, Z—:) € X x R™, with ' € Spp, ¥y € F(2'), and 2’ € G(a'),
is called a weak minimizer of the problem (FP) if for all (z,%) € X x R™, with x € Spp,
y € F(z), and z € G(z),

/

S # (Cim(RY).



Set-valued optimization problems under cone convexity 73

Definition 3.3. Let A be a nonempty convez subset of a real normed space X, e € int(K),
and F : X — 2Y be a set-valued map, with A C dom(F). Then F is said to be p-K -convex
with respect to e on A if there exists p € R, such that

AF(z1) + (1 = N F(x3) € F(hzy + (1 — N)a2) + pA(1 = )|z — 29]]%e + K,
Vry1,x2 € A and VA € [0, 1].

We construct an example of p-cone convex set-valued map, which is not cone convex.

Example 3.1. Consider a set-valued map F : [-1,1] CR — 2% defined by

F(t) = {(x—2t27m2—2t2):x20}7 if0<t <1,
{(z—20%2 -2 2 <0}, if —1<t<0.

We prove that F is not R2 -convex on [—1,1] but is (—2)-R? -convex with respect to e =
Igz = (1,1) on [—1,1]. O

Let N € R? and G : X — 2™ be a set-valued map. Define a set-valued map
(-NG): X — 28" by
(=NG)(x) = —NG(x),Vz € dom(G).
We establish the sufficient optimality conditions of the problem (FP) by using the
notion of contingent epiderivable and p-cone convexity assumptions.

Theorem 3.1. (Sufficient optimality conditions) Let A be a nonempty convex subset of
a real normed space X, x’' be an element of the feasible set Spp of the problem (FP),

y € F(z), 2/ € G(z), N € ggi:%, w' € H(x') N (=L), and p1,p2,ps € R. Assume that
F, =XN'G are p1-R7-convex, pa-R7'-convex, respectively, with respect to 1gm and H is ps-
R¥ -convex with respect to 1zx, on A. Let F, —X'G be contingent epiderivable at (z',y'),
(x/,=XN'z2"), respectively and H be contingent epiderivable at (x',w’). Suppose that there

exists (y*,2*) € R x RY | with y* # Ogm, and

(p1+ p2)(y", Irm) + p2(2", Ipr) > 0, (3.1)
such that
(", DyF (2", )(x — ) + Di (=N G)(2', =N'2")(z — 2')) (3)
+ (z*, D+H (2, w')(z — 2')) > 0,Vz € A,
Y =Nz = Opnm, (3.3)
and
(z*, ') =0. (3.4)

Then (a/, g—j) is a weak minimizer of the problem (FP).

4. Optimization Problems with Difference of Set-Valued Maps

Let X, Y, Z be real normed spaces and A be a nonempty convex subset of X. Let K
and L be solid pointed convex cones in Y and Z, respectively. Suppose that Fy : X — 2V,
F: X =2V, G : X — 2%, and Gy : X — 27 are set-valued maps with

A C dom(Fy) Ndom(Fy) Ndom(G1) Ndom(Gy).
Consider an optimization problem (DP) with the difference of set-valued maps:
minirrAlize Fi(x) — Fy(x)

faS (DP)
subject to  (G1(x) — Ga(z)) N (L) # 0.
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Here, the feasible set Spp of the problem (DP) is defined by
Spp = {SL' €EA: (Gl(.%') — GQ(SL‘)) N (—L) #* (Z)}
Definition 4.1. A point (2',y] —v5) € X XY, witha' € Spp, ¥} € Fi(2'), and y} € Fa(z'),
is called a minimizer of the problem (DP) if for all (x,y1 —y2) € X XY, with x € Spp,
y1 € Fi(x), and yo € Fr(x),
(y1 —y2) — (1 —v2) ¢ (=K) \ {0y}

Definition 4.2. A point (¢/,y; —vy5) € X XY, with x’' € Spp, yi € Fi(z'), and y}, € Fa('),
is called a weak minimizer of the problem (DP) if for all (x,y1 —y2) € X XY, with x € Spp,
y1 € Fi(x), and yo € Fy(x),
(1 —y2) — (4 — ¥2) ¢ (—int(K)).

Let y* € Y*, 2* € Z*, 2’ € A, yh € Fy(x'), 25 € Go(2'), Th € 0:Fa(2';yh) and Ty €

0sGa(a'; ). Define maps y*Ty + 2*Ts : X — R and y*Fy + 2*G1 : X — 2R by
(y*Th + 2*Ts)(z) = (y*, Ti(x)) + (", Ta(z)),x € X
and
(y*F1 4+ 2"G1)(z) = (y*, Fi(2)) + (2", G1(x)),x € dom(Fy) Ndom(Gy).

We establish the necessary KKT conditions of the set-valued D. C. optimization
problem (DP) by using p-cone convexity assumptions.
Theorem 4.1. Let A be a nonempty convex subset of a real normed space X, es € int(K),
ey € int(L), and p2, ph € R. Let (z',y} — yb), with ' € Spp, v} € F1(2'), and v} € Fy(x'),
be a weak minimizer of the problem (DP) and there exist 2} € G1(2') and 25 € Ga('), with

21— 25 € (—L).
Suppose that Fy : X — 2Y, G1 : X — 2% are K-convez, L-convex, respectively, on A. Also,
suppose that Fy : X — 2V Gy : X — 22 are strongly ps-K -conver, strongly ph-L-conve,
with respect to e, €h, respectively, on A. Assume that dsFy(z';yh) # 0 and 0:Ga(2'; 25) # 0.
Then there exists (Oy~,0z+) # (y*,2*) € KT x L, such that
y T+ 2 Ts € O(y* Fy + 2°G1) (s (y*, y1) + (27, 21)),
VT € 0,5 (25 ys) and Ty € 95Ga(2'; 25)
and
<Z*a Zi - Zé> =0.
We establish the sufficient KKT conditions of the set-valued D. C. optimization prob-

lem (DP) by using p-cone convexity assumptions.

Theorem 4.2. Let A be a nonempty convex subset of a real normed space X, pa, ph € R,
eo € int(K), and e} € int(L). Let ' € Spp, yi € Fi(2'), vy € Fa(a'), and there exist
2} € G1(2') and 25 € Go(2'), with
21— 25 € (—L).

Suppose that Fy : X — 2Y, Gy 1 X — 27 are py-K-convex, pl-L-convex, with respect
to eq, €h, respectively, on A. Assume that for any x € A, ya € Fa(x), and z2 € Ga(x),
OsFa(x;y2) # 0 and 0sGa(x; 22) # 0. If there exist y* € KT\ {0y-} and z* € L™, satisfying

p2(y”, e2) + p(2", €5) > 0, (4.5)
such that

YT+ 2T € O(y"Fy + 2°Gh) (2 (y™ 1) + (27, 21)),

4.6
VT1 € 0sF2(x;92), To € 0:Ga(w; 22), 2 € A, yo € Fo(x), and 23 € Ga(x) (4.6)
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and
(2%,2) — 23) = 0, (4.7)

then (x',y] — yb) is a weak minimizer of the problem (DP).

5. Set-Valued Semi-Infinite Programming Problems

We consider semi-infinite programming problems in the setting of set-valued maps.
Let U be a countably infinite subset of R?, ) # A C R™, and F = (Fy, Fy, ..., F,) : R® —
R" G R" x U — 2% be two set-valued maps with

A Cdom(F) and A x U C dom(QG).

Let By, Bs,...,B,, be n X n positive semi-definite (symmetric) real matrices. Consider a
set-valued semi-infinite programming problem (SP):

mir;iergize (Fy(z) + (2T Byx)?, Fy(z) + (7 Baz)?, ..., F(z) + (27 Bp)?) (SP)
subject to  G(z,u) N (—Ry) # 0,Vu € U.
The feasible set of the problem (SP) is defined by
Ssp={r e A:Gz,u)N(-Ry) #0D,VuecU}.

Definition 5.1. A point (2/,y') € R xR™, with ' € Sgp and y' = (Y}, 95, ..., yl,) € F(z'),
is called a minimizer of the problem (SP) if for all (x,y) € R™ x R™, with x € Sgp and
Yy = (y17y27 7ym) € F(l’),

(y1 + ($T3135)%,y2 + (xTBzx)%7 vy Ym + ($TBmiU)%)
— (g + (@TBia) 2,y + (@ T Baa’)2, oy, + (2T Ba')2) ¢ (—RT)\ {0}

Definition 5.2. A point (¢/,y’) € R” x R™, with 2’ € Sgp and y' = (Y}, Yh---, y.,) € F(z'),
is called a weak minimizer of the problem (SP) if for all (z,y) € R™ x R™, with x € Ssp
and y = (y1,Y2, -, ym) € F(z),

(v + (¢" Bio)* o + (¢7 Bow) oy + (a7 Bru) )
— (W + @ Bia)2 y + (@ Baw') oy, + (@ Bua')?) & (~int(RY)).
Let J be the index set, such that U = {u; : j € J}. Let 2’ € A. Denote a set J(z')
by
J(')={jeJ:0e G u;)}

Throughout this chapter, we assume that J(z') # 0. Let ; € R™, i = 1,2,...,m. Define
maps .”B;z; R - R,i=1,2,...,m, by

(T Biz%;)(x) = 27 BiT;,Vr € R™.
The gradient vector of .7 B;%;, denoted by V(.7 B;%;), is given by
V(TBz;) = BiT;.
Let 2/ € A and j € J(2'). Define a set-valued map G(.,u;) : R® — 2% by
G(.,u;)(z) = G(z,uy), Ve € dom(G).

We establish the sufficient KKT conditions of the set-valued semi-infinite programming
problem (SP) by using p-cone convexity assumptions.
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Theorem 5.1. (Sufficient optimality conditions) Let A be a nonempty convex subset of R™,
a' € Ssp, and y' = (Y1, Y5, Yy,) € F(2'). Let T; € R", i =1,2,....,m and 2" = (2}) e,
with 25 € G(z',u;) N (=Ry). Let p;, p}, p] € R, fori=1,2,...m and j € J(a'). Suppose
that Fy, TBiz;, i = 1,2,...,m, and G(.,u;), j € J(a'), are p;-Ry-convez, p;-R.-convex,
and p;’-RJr-convem set-valued maps, respectively, with respect to 1, on A. Assume that the
contingent epiderivatives D+Fi(z',y;) and DyG(.,u;)(2',2}) exist. If there exist yi > 0,
i=1,2,...,m, and z; >0, j € J(2'), with z; # 0, for finitely many j, and

Souilpi+o)+ Y. zp) >0, (5.8)
i=1 jET@)

satisfying the following conditions

(i (DiF@ )+ B+ Y DG ) 2) (@ —)

JjeJ (") (59)
>0,Vx € A,
zi2; =0,Yj € J(2'), (5.10)
7L BT < 1,i=1,2,...m, (5.11)
and
(x’TBias’)% =2TB7;,i=1,2,...m. (5.12)

Then (z',y') is a weak minimizer of the problem (SP).

6. Set-Valued Minimax Programming Problems

Definition 6.1. A set-valued map F : R" — 28" is called upper semicontinuous ifFT (V) =
{zx € R": F(x) CV} is open in R™ for any open set V in R™.

Definition 6.2. Let B be a nonempty subset of R™. Then B is called R -semicompact
if every open cover of complements of the form {(y; + RT")¢ : y; € B,i € I} has a finite
subcover.

Definition 6.3. A set-valued map F : R™ — 28" is called R -semicompact-valued if F'(x)
is R -semicompact, for all x € dom(F).

Corley [6] derived the existence results for maximization of upper semicontinuous and
cone semicompact-valued set-valued maps.

Theorem 6.1. [6] Let X,Y be real topological vector spaces, A be a nonempty compact
subset of X, and K be an acute, (i.e., K is pointed) convex cone in Y. Let F : X — 2V
be a K-semicompact-valued and upper semicontinuous set-valued map. Then there exists a
maximal point of the problem max |J F(z).
z€A

For simplicity, let us assume X =R™, Y =R, and K = R,.
Let A be a nonempty subset of R™ and B be a nonempty compact subset of R™. Let
P :R" x R™ — 2% and G : R — 28" be two set-valued maps with

A x B C dom(®) and A C dom(G).
Consider a set-valued minimax programming problem (MP):

minimize  max U b(z,y)
yeEB (MP)
subject to  G(x) N (—RE) # 0,
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where the set-valued map ®(z,.) : R™ — 2R is R, -semicompact-valued and upper semi-

continuous on B, for all z € A. Therefore, by Theorem 6.1, max |J ®(z,y) always exists,
yeB
for all z € A. As ®(z,y) C R, for each z € A there exists only one maximal point of the

problem max |J ®(x,y).
yeB
The feasible set of the problem (MP) is given by

Sup = {CE cA: G(SU) N (—Ri) #+ (Z)}
For x € A, define following sets by

I(x) ={j: 0€ Gj(z),1 <j <p},

J(x)={1,2,...p}\ I(z),
and

B(x) = {b € B: max U O(z,y) € P(x,b)}.
yeB

Under the assumptions, B(z) # 0, for all z € A.

Definition 6.4. Let 2’ € Sy p and 2’ = max |J ®(z’,y). Then (2,2') is called a minimizer

yeB
of the problem (MP) if for all x € Spp and z = max |J ®(x,y),
yeB
2 < z.

The sufficient KKT conditions of the set-valued minimax programming problem (MP)
are established by using p-cone convexity assumptions.

Theorem 6.2. (Sufficient optimality conditions) Let A be a nonempty convex subset of R™,
' € Syp, and 2 = max |J ®(a',y). Assume that there exist a positive integer k, zX > 0,

yeB
k
y; € B(2'), (1 <14 < k) with Zz;‘ # 0, and wi >0, w; € Gj(2') N (-Ry), (1 <j < p),
i=1
such that
k P
D 2Dy, 2 ) (@ — ) + Y wiDyGy(a w))(x —2') >0,
= = (6.13)
Vre A
and
w;‘w; =0,vVj=12,...,p. (6.14)

Let pi,py € R, fori = 1,2,..k and j = 1,2,...,p. If ®(,u:), (1 < i < k) and Gy,
(1 <j<p) are p;-R;-conver and p; R -convez, respectively, with respect to 1, on A, with

k 14
> zpi+ > wiph >0, (6.15)
i=1 j=1

then (a',2') is a minimizer of the problem (MP).
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7. Set-Valued Optimization Problems via Contingent Epiderivative

Let X, Y, Z be real normed spaces and A be a nonempty subset of X. Let K and
L be solid pointed convex cones of Y and Z, respectively. Suppose that F': X — 2¥ and
G : X — 27 are two set-valued maps, with

A C dom(F) Ndom(G).
Consider the set-valued optimization problem (P):
minimize  F(z)
TEA
subject to G(xz) N (=L) # 0.
The feasible set of the problem (P) is given by
Sp={xeA:G)n(-L) # 0}

We introduce the notions of p-(7, 8)-cone preinvexity and p-(n, 8)-cone invexity of set-valued
maps.

Definition 7.1. Let A be an invex subset of a real normed space X with respect to n :
AxA— X, ecint(K), and F : X — 2 be a set-valued map, with A C dom(F). Then F
is said to be p-(n,0)-K -preinvex with respect to e on A if there exist a map 6 : A x A — X
and p € R, such that
AF(z1) + (1 = N F(x3) C F(xo + An(21,22)) + pA(1 = N)||0(21, 22)||*e + K,
Vry,xe € A and VA € [0, 1].
Definition 7.2. Let A be a nonempty subset of a real normed space X, e € int(K), and
F: X —2Y be a set-valued map, with A C dom(F). Let 2’ € A and y' € F(z2'). Assume
that F is contingent epiderivable at (x',y’). Then F is said to be p-(n,0)-K-inver with
respect to e at (z',y') on A if there exist maps n,6 : Ax A — X and p € R, with
n(A,2") € dom(D+F(2',y")),
such that
F(x) —y C D+F(2',y)(n(x,2") + p||(z,2")||?e + K, Vz € A.
We give the following example of p-(7, @)-cone invex set-valued map for some suitable
p, n and 6, which is not an 7-invex set-valued map for any 7.

Example 7.1. Consider a set-valued map F : R — oR* defined by
F()\)— {(-75’\/5)15520}7 if A >0,
{(.’13, V_x) HES [_470}}7 Zf)\<0

Take K = R2. Here F is not n-invez at (0, (0,0)) on R. Choose any map n: R x R — R,
p=—1, and e = 1g=. We also choose a map 6 : R x R = R in such a way that, (A, 0) =

0, ifA>0,
2, ifr<0.
We prove that F is p-(n, 0)-R? -invex with respect to 1g2 at (0,(0,0)) on R. O

We establish the KKT sufficient optimality conditions of the problem (P) by using
contingent epiderivative and p-(7), 8)-cone preinvexity assumptions.

Theorem 7.1. (Sufficient optimality conditions) Let A be an invex subset of a real normed
space X with respect to a mapn: Ax A— X, 2" € Sp,y € F(2'), and 2’ € G(z') N (-L).
Let e € int(K) and €’ € int(L). Let p1,p2 € R and n,0 : A x A — X be two maps. Assume
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that F, G are p1-(n,0)-K-preinvez, ps-(n,0)-L-preinver with respect to e, €', respectively,
on A. Let F and G be contingent epiderivable at (x',y') and (', 2"), respectively, with

n(A4,z") C dom(D+F(2',y')) Ndom(D+G(2',2")).
If there exists (y*,2*) € KT x LT, with y* # 0y~ and

pi{y",e) + pa(z*,€’) >0, (7.16)
such that
(y", D+F(2',y)(n(z,2"))) + (2", D+G(2’, 2") (n(z,2"))) = 0,Vz € A (7.17)
and
(z*,2") = 0. (7.18)

Then (z',y') is a weak minimizer of the problem (P).
We illustrate the Theorem 7.1 by the following example.

Example 7.2. We consider a primal problem (P), where A=R, F : R — oR? g defined
like Example 7.1, and G : R — 2R s defined as

_ @ 2?) x>0}, if A>0,
G(A)_{{(a:,m):x>8}, if A <0.

Take K = Rﬁ_ and L = Rﬁ_. Choose any map 1 : R xR = R, p1 = —1, and py = 2. We
also choose a map 0 : R x R — R in such a way that,

2, ifA<O.

We prove that G is pa-(n,0)-R3 -invex with respect to Ig> at (1,(0,0)) on R. From Ezample
7.1, F is p1-(n,0)-R%-inver with respect to Ig> at (1,(0,0)) on R. It is clear that for
y* =2z*=(1,1), Egs. (7.17) and (7.18) are satisfied. Therefore, (N, (z',y")) = (1,(0,0)) is
a weak minimizer of the problem (P). O

8. Set-Valued Optimization Problems via Second-Order Contingent Epi-
derivative

We introduce second-order p-(1, 8)-cone invexity of set-valued maps via second-order
contingent epiderivative.

Definition 8.1. Let A be a nonempty subset of a real normed space X, e € int(K), and
F : X — 2V be a set-valued map, with A C dom(F). Let 2',u € A, y' € F(a'), and
v € F(u) + K. Assume that F is second-order contingent epiderivable at (x',y’) in the
direction (u—12',v —y'). Then F is said to be second-order p-(n,0)-K -invex with respect to
e at (2',y') in the direction (u — 2',v —y') on A if there exist maps n,0 : Ax A — X, and
p € R, with
N(A,2') C dom(DIF(@', g/ u—a',v — ),
such that
F(z) =y C DF(2,y',u— 2’ v —y)(n(z, ') + pll0(z,2")|%e + K,Vz € A.

We construct the following set-valued map F : R — 2R2, which is second-order p-
(n,0)-R3 -invex for some p, n and 6, but is not second-order 7-invex, for any 1.
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Example 8.1. Let a set-valued map F' : R — 2B pe defined by
poy_ (@ VD= 0) iFA>0,
{(x,v/—x) 2 € [-4,0]}, ifA<O.

Let K = R2. Here F is not second-order n-invez at (0,(0,0)) in the direction (—1,(0,0))
on R. Choose any map n: R xR — R and p = —1. We also choose a map 6 : R x R - R

0, ifA>0
in such a way that, 6(\,0) =< Zf -

2, if A<O.
We prove that F is second-order p-(n,0)-R? -invex with respect to 1g2 at (0,(0,0)) in the
direction (—1,(0,0)) on R. O

We establish the second-order KKT sufficient optimality conditions of the problem
(P) via second-order contingent epiderivative and second-order p-(n,8)-cone invexity as-
sumptions.

Theorem 8.1. (Sufficient optimality conditions) Let x' be a feasible point of the problem
(P),y' € F(a'), and 2’ € G(z')N(—L). Letu e A, v € F(u)+ K, w € Glu)+ L, e € int(K),
and €' € int(L). Let p1,ps ER andn,0: Ax A — X be two maps. Assume that F is second-
order p1-(n,0)-K -invex with respect to e at (x',y’) in the direction (v —z',v —y') and G is
second-order pa-(n,0)-L-invex with respect to €' at (z',z') in the direction (u — z',w — 2'),
on A. Suppose that there exists (y*,2*) € KT x Lt with y* # Oy, satisfying

pi(y”,e) + pa(z”,€’) >0, (8.19)
such that
(y*, DIF(z',y',u—a', v —y )n(z, ")) (8.20)
+ (2", D}G(2', 2 \u — 2/, w — 2" )n(x,2’)) > 0,Vz € A .
and
(z*,2') = 0. (8.21)

Then (2',y’) is a weak minimizer of the problem (P).
We illustrate the Theorem 8.1 by the following example.

Example 8.2. We consider a primal problem (P), where X = R, the set-valued map F :
R — 2B js giwen in FExample 8.1, and G : R — 2R g defined as

_ @ 2?) 2 >0}, if A>0,
G = {{(x,m) cx>8},  if A<0.

Let K = Ri and L = Ri. Choose any map n: R xR = R, p1 = —1, and ps = 2. We also

if A >
choose a map 0 : R x R — R in such a way that, 6(X,0) = 0, Zf 20,
2, ifA<O.
It is clear that for y* = 2z* = (1,1), Egs. (8.20) and (8.21) are satisfied. Therefore,
(N, (2',y")) = (0,(0,0)) is a weak minimizer of the problem (P). O

9. Conclusions

In this paper, we introduce set-valued fractional programming problems, set-valued
D. C. optimization problems, set-valued semi-infinite programming problems, and set-valued
minimax programming problems. We establish the optimality conditions of various types of
set-valued optimization problems via p-cone convexity assumptions.

Acknowledgement: The authors are very thankful to referees for their valuable
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