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ANALYTICAL CONSIDERATIONS AND NUMERICAL
SIMULATIONS FOR SURFACE PLASMON RESONANCE IN
FOUR LAYERS PLASMONIC STRUCTURES WHICH
CONTAIN HIGH REFRACTIVE INDEX WAVEGUIDE

Aurelian A. POPESCU', Laurentiu BASCHIR'®, Dan SAVASTRU', Mihai
STAFE®“, Georgiana C. VASILE*“, Sorin MICLOS', Constantin NEGUTU?,
Mona MIHAILESCU? Niculae N. PUSCAS?

The Insulator-Metal-Insulator-Insulator (IMII) plasmonic structures present
a great interest for the optical photonics devices. In this paper we present an
analyze for coupling of light into plasmonic structures which contains a dielectric
waveguide. We obtained the characteristic equation for the wave guides in the IMII
structure by solving the Helmholtz equations in four homogeneous media. The
characteristic equations for three and four layers have similar forms as established.
Subsequently, the numerical simulations for TM waveguide modes and the coupling
by a prism with the refractive index lower then waveguide were done. It was showed
that, the TM0 mode is confined to the metal interface and can’t be exited. Resonance
coupling into higher waveguide modes may be realized for some film thicknesses.

Keywords: plasmonic waveguides, dispersion equation, amorphous chalcogenide
films.

1. Introduction

Plasmonics forms a major part of the fascinating field of nanophotonics,
which explores how electromagnetic fields can be confined over dimensions of
the order of or smaller than the wavelength. It is based on interaction processes
between electromagnetic radiation and conduction electrons at metallic interfaces,
or in small metallic nanostructures, leading to an enhanced optical near field of
sub-wavelength dimension. Research in this area demonstrates how a distinct and
often unexpected behavior can occur if discontinuities or sub-wavelength
structure is imposed. Another beauty of this field is that it is firmly grounded on
classical physics. There is a very large interest for metal-insulator structures,
because they support surface plasmon-polariton resonance which may confine the
light near surface at shorter dimensions than the wavelength.
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The prism coupling [1] led very soon to the development of plasmonic
sensors [2-4], the results being particularly impressive in the case of the biological
selective sensors [5-7], the chalcogenide glasses being used for the determination
of blood group and others type of sensors [6-9]. Fundamentals of plasmons can be
acquired from Maier’s book [10]. Davis [11] proposed the matrix method. The
matrix method was used [12-14] by other to determine the resonance
characteristics of four layer structure with finite thickness dielectric film by
considering the metal film thick. Economou [15] and Burke et al. [16] derived and
analyzed the dispersion relation for different multilayers structures with a special
symmetry. Opolski [17] deals with investigations concerning numerical
simulations of the plasmon resonances in optical planar structures without finding
the analytical solutions. However this method can’t calculate the electromagnetic
field distribution in each layer.

The aim of our paper is to develop the characteristic equation in general
form for the four-layer structure first. And second, drawing the appropriate
numerical simulations for the structure comprising prism with low refractive
index (n=1.51) made from BK7 which may couple the light into higher
refractive index (n =2.45) films, As;S; for instance. The structure make sense as
allows the use of commercially available plates with 50 nm gold film designed for
applications in plasmonic biosensors.

2. The dispersion equation for the simplest plasmon-polariton
configuration

From the Maxwell’s equations and assuming a harmonic time dependence
of the form E(F,f)= E(F)-¢'® and homogencous media, the Helmholtz type
wave equation can be obtained for the electric field [8]:

& o’E (F.1)
? ot
where 8()6):11 is the dielectric constant which depends only on x - spatial

coordinate. For the magnetic field, the equation is similar.
Assuming the one-dimensional case and the waves propagating in the z
direction [10] we can write the following wave equation for TE modes:
e k
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where k, = w/c is the wave vector of the propagating wave in vacuum. The

V2E(F,1)- =0 (1)

2

complex parameter =k, is called the propagation constant of the traveling
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waves. The same equation can be written for the magnetic field. Being a vector
equation, a system of 3 equations must be solved in general case.

The general analysis of the solutions of equation (2.2) is done in [18] . The
concept consists in a definition of TM and TE modes in which the system may be
reduced to one single differential equation. Then, the wave equation for TM
modes will be:

o’H, .
= (k2e-p*)H, =0 3)

The simplest geometry which sustains surface plasmon polaritons (SPPs)
is that of a single flat interface between a dielectric and a metal. Then, the solution
of equation (2.3) leads to the dispersion equation which has the form:

plo)= A2 ©
c\ée +é

Here, &, are the dielectric constants of the adjacent media. To be mention that

this is the only case when the dispersion equation ﬁ(a)) can be obtained in the
explicit form [10], as g(a)) are usually known values.

In practical cases which use the excitation of surface plasmons by
attenuated total reflection’, the three layers configuration which contains a thin
metallic film is used. The dispersion equation corresponding to this case can be
written in the form [10]:

e_4k1a:k1/51+k2/82.k1/€1+k3/83 (5)
kijei—ky/ey kifer—k3/e3

In Eq. 5 the metal film thickness is denoted 2a and k; are the so called

“transversal” wave vectors:

ki =+ p%—kle; ,i=1234. (6)

A practical analysis of the Eq. (5) involves performing numerical
calculations for modified equation named “characteristic equation” which can be
deduced from eq. (5). Of course, once for the metal film & is complex number, all
k; have to be imaginaries, too. The aim is to find the propagation

constant 5 = Byeq; + ifimaginary Whose real part describes the phase velocity and

imaginary part describes the wave attenuation.

3. Four Layers Plasmonic Configuration - The Solution For The
Electromagnetic Field

Multilayers structures have additional functionalities related to the
confinement of the electromagnetic field. Among others, such structure provides
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the coupling of light into planar waveguides structures that can support both TM
and TE modes. The plasmonic waveguides contain at least one metallic medium
which has a complex dielectric constant. As a result, the propagation waveguide
constants are complex numbers. Finding the numerical solutions for the wave
equation within these structures become more cumbersome so that finding of a
suitable analytical form for the dispersion equation appears to be a necessity.

Fig. 1 presents a typical IMII (insulator- metal- insulator/ chalcogenide -
insulator) structure. Layer ‘1’ is a metallic film of thickness q, the layer ‘2’ is the
chalcogenide film of thickness d, whereas ‘3’ and ‘4’ are the semi-infinite
dielectric media.

-d

Fig. 1. Schematic picture of the 4-layers IMII structure that can support light confinement. The
two finite thickness media have the thickness a (metal) and d (chalcogenide).

We will seek for the solutions of Eq. (3) as a sum of exponential functions
for each medium which is considered homogeneous. By denoting the propagation
constant with £, which is the same in all media due to the boundary conditions,

the solutions of the wave equation for the TM modes (i.c. the magnetic /,, and

electric £, field components) can be written as follows:

Hy,= AetFEo7kax

' for x> a, (7)
E, =i k4el'BZe_k4x
wEYEL
Hy - B eiﬂz eklx n Ceiﬂze—klx
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3.1. Dispersion equation

Using the notation 7, =k;/¢&;, =1 /’”j’ kij =k;/k; and taking in the
account the continuity conditions for the TM modes we obtained the following
equations:

Ae k4% = i@ 4 ce7ha
Arge %4 = _preh 1 crehe

B+C=D+E . (11-16)
- Bl’l + Cl"l = —Dl’z + Ei”z
De f2d | gefad _ Fe_k3d

- Drze_kzd + Erzekzd = —Fr3e_k3d

The system of six equations can be solved in general form using the
determinants. However this way is rather voluminous. The following
observations quickly lead to results. From Eqgs. (11) and (12) one can obtain the
ratio B/C . Similarly, from Egs. (15) and (16) it results the ratio D/E :

From Eq. (13) it results £/C, whereas from Eq. (14) one can obtain E/C again.

The solution is obtained equating rightmost sides:

1+r1_r4 e—2k1'a 1_’/'1_7"4 e—2k1-a
ntn :(QJ, n+n (17)
mn+r m+r

1472773 j2kyd p) 1-2773 J2kyd

n—n n—-n
For TE modes we simply replace 7; by k;. In order to get the general case

we introduce the next notations:
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for T™M —-= forT™M for TM
€ &3 &4
P= , O= , R= (13)
1 forTE 1 forTE 1 forTE
Eq. (17) becomes:
+P'k1—R'k4e_2kl.a I_P'kl—R'k4e_2kl.a
P-ki+R-ky _(P-lqj. P-kj+R-ky (19)
1Kt O ks 2kyd ky | k2 +0k3 2k,a
ky =0 ks ky =0 k3

Terms containing 24 can be separated from those containing e 2kid | After

separation it finally results:

1o Ut Pk ) (P —RoK,) o
ezkzdz(k2+Q-k3J‘[k2—P-li (k,—P-k)-(P-k,+R-k,) ‘ 20)
-0k )k +Pk ) |, (k,—P-k)-(P-k, —R-k4)e,2kla
(k,+P-k)-(P-k +R-k,)

3.2 Fields distribution

We may find the amplitudes B-F of the magnetic/ electric fields within the
IMII structure by applying boundary conditions and considering the amplitude of
the incident field as unit ( A =1). Thus, for the TM modes we obtain:

e_k“ (x-a) x>a

H,(x)= %[(1—r41)€k1(x_a)+(1+V41)€_kl(x_a)] O=x=a 21
T Sv |\ o~k (x+d) ky(x+d)| @1
2 (1 ’”32)6 +(1+7’32)€ d<x<0

Erpe’

i Emy = (1=rgp)e” 1% + (14 1)t

with oTM = | —lod kyd -
(I-r3p)e 2" +(1+r3)e

Similarly, for the TE-modes we obtain:
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e—k4(x—a) x>a
S IR
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§TE6k3 (x+d) x=>—d

with &7 = (1= kgp)e ™M1 + (1 + kgp)e”
(1-k3p)e 2 +(1+ ksp)ef?

Since k; appearing in these relations are functions of propagation

constants S (see eq. (6)), we must first solve numerically the dispersion equation.

3.3. Characteristic equation

In order to obtain a more suitable form for numerical calculations of the
propagation constant, we may take into account that k, and 7 are complex

quantities. A good idea is therefore to replace k, and », with imaginary ones:
ky =i-k, andr, =i-7 . Taking into account that:
2 _ e2i'1€zd _ cos(kza’)+ i sin(kzd) _ 1+i- tan(kzd) 1+iet

= [ . = . 23
cos(kzd)—i'sm(kzd) l—z-tan(kzd) 1-i-t 23)
where t:tan(E2~d), and denoting s=me_2kﬂ and g= Q;k3 , €q.
P-k1+R'k4 kz
(19) becomes:
I+s [Pk l1-s (24)
a[1-ig .(1+i-t) i-ky _[1-ig .[1+i-t) ’
l+i-g) \1—i-t 1+i-g) \1-i-t
with f = P_—kl 1=s and u :t—_g. Eq. (24) can be written as:
ky )J1+s +
- (25)

1+1+z-u 1_1+z-u

1—i-u 1—-i-u
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-8
1+g

where is easily seen that f =wu. This means that f = and therefore

- + . - : .
t= tan(kzod )=Q Finally, the characteristic equation can be written as

follow:

arctan(f )+ arctan(g )+ m -
d = - (26)
k,

The characteristic equations for the four-layer structure have the same
form as the equation obtained earlier by Marcuse" for the three-layer lossless
structure. The difference consists of more general value for the coefficients f and
g. The simulations have been done in the field of complex numbers. Some
practical remarks are considered:

First: we normalized all the parameters dividing or multiplying them to

ko=2m/A. We obtained B=(B/kyf, a=kya and 5=kyd. Also, we
introduced the following notations:

1=VB-a
\/_

(27)
1IB &3
Uy = 1/B 84
Eq. (26) becomes:
arctan( f )+ arctan( )+ m-z (28)

up
where f and g can be determined as:

Poup |1- . . P-uy—R- _
f= TMTTS and g=Q “3 , with P ks BT
uy Jl+s up P-uj+R-uy

Second: solving Eq. (28) means finding zeroes of a complex function.
This can be achieved by using Newton algorithm, for instance. Attention should
be paid to the sense of the iterative process because, at large values of d,

JB = B/ky has a horizontal asymptote and the algorithm will fail. Also, the
starting guess for B should be a complex value, even if the imaginary part is very

small. Else the algorithm will work only in the real domain, rather finding
complex solutions.
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4. Numerical simulations for the 4 layer plasmonic structure with
As,S3; waveguide

The characteristic equation (26) was solved numerically in MATLAB to
find the propagation constant. The propagation constant was inserted in eq. (6) to
calculate k; and, subsequently, the electric and magnetic fields of the TM and TE
modes. The incident laser wavelength is 632.8 nm and the four layers of the IMII
structure are as follows (see Fig. 1): layer 4-BK7, layer -Au, layer 2-As,S; and
layer 3-Air. The thickness of the Au film is considered a =50nm and the
chalcogenide film thickness (d ) is varied between 200 and 1600 nm. In our
simulations we consider for chalcogenide film n, =2.45. The gold optical
constant is taken from Rakic [20]. We find for the wavelength 632.8 nm the
following refractive index value: N =0.196 —i3.256.

First, let us present the results regarding the TM modes. The real part of
the effective refractive index Ny = f/k, as a function of chalcogenide film

thickness d for the TM modes is presented in Fig. 2a.

TMO ;
TMt TM2: TM3 TM4:

TMO

Real(glku)
w
Imag(phk,)
5

0 02 04 06 08 1 12 14 186 0 02 04 06 08 1 12 14 186
Film thickness, d (um) Film thickness, d (um)

Fig. 2. The real part (a) and imaginary part (b) of the propagation constant for the TM modes. The
simulation parameters were: a =50 nm, A = 632.8 nm.

In the prism, the wave vector component parallel to the interface is
(kon, sin@) and must be equal to propagation constant £ . The maximum value is
obtained for 9=900, were 6 is the angle of incidence and n, =1.51. The
effective refractive index of the multilayer structure is containing in the range [1,
1.51] for some As,S3 film thicknesses and depends on the mode number. The
higher values of the effective refractive indices could not really be excited due to
synchronization conditions. The resonant angle 0 corresponds to the condition:
n,singd =N g .
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The following conclusions can be drawn proceeding from Fig. 2: a) the
mode TMO never can be excited with a prism made from BK7 glass as the
effective refractive index always is higher than two. b) For each, special selected
thickness, only one mode can be coupled. For example, for the film thickness of
600 nm, only the TM4 mode can be coupled. c) the TMO mode has the highest
attenuation coefficient. Fig. 3 presents the magnetic field within the four regions

of the structure for different TM modes, calculated using the above presented
formula.

Hv {a.u.)
N

2t

-1000 500

Fig. 3. The magnetic field distribution within the structure for different TM modes. The simulation
parameters are: d = 600 nm, a = 50 nm, A = 632.8 nm.

The light intensity distributions within layers are presented in Fig. 4.
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Fig. 4. The light intensity distribution within the As2S3 waveguide (left) and within the metal film
(right). The value x=0 corresponds to the metal-chalcogenide film interface.
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6. Conclusions

The characteristic equation for the case of four layers plasmonic structure
was derived by solving the equations for the electromagnetic field. The
characteristic equation is similar to the one designed for the three layers
configuration, the difference being only in the form of the involved parameters.
By solving numerically the characteristic equation we determined the effective
refractive index (f/kg), attenuation and field distributions as a function of

chalcogenide film thickness for BK7-Au-As,S;-Air IMII plasmonic structure. The
four layers structure becomes similar to three layers MII structure when
increasing the metallic layer thickness above 100 nm.

The plasmonic structure containing a finite thick metal film and a finite
thick dielectric film supports several waveguides modes. For some well-defined
thicknesses, the light can be coupled into plasmonic waveguide modes from a
BK7 prism (7 =1.51) with the refractive index lower than the refractive index of
As,S; chalcogenide film (n=2.45). The practical significance of provided
analyze is represented by the possibility of using commercially glass slides with
already deposited gold film. The attractivity of using chalcogenide As,S;
amorphous films is that they are light sensitive optical material which supports
photoinduced changes of the refractive index. The structure presents a high
interest for the development of the optical switches, 2D memories or sensing
elements that use optical active materials such as amorphous chalcogenides.
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