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DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH IDEAL
OF A PATH GRAPH

Silviu Bélinescu!, Mircea Cimpoeas>

Let Inm = (z122 - Tm, T2T3°  Tm41, ---» Tn—m+1- - Tn) be the m-path
ideal of the path graph of length n —1, in the ring S = K|z1,...,xn]. We give a precise
formula for the depth of S/I}, ,,,, where t > 1. Also, we prove that S/I}, ,,, and I}, ,,
satisfy the Stanley inequality.
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Introduction

Let K be a field and S = KJz1,...,z,] the polynomial ring over K. Let M be a
Z"-graded S-module. A Stanley decomposition of M is a direct sum D : M = @;_, m;K|[Z;]
as a Z"-graded K-vector space, where m; € M is homogeneous with respect to Z"-grading,
Z; C{x1,...,xp} such that m; K[Z;] = {um; : v € K[Z;]} C M is a free K[Z;]-submodule
of M. We define sdepth(D) = min;—,__, |Z;| and sdepth(M) = max{sdepth(D)| D is a
Stanley decomposition of M}. The number sdepth(M) is called the Stanley depth of M.

Herzog, Vladoiu and Zheng show in [8] that sdepth(M) can be computed in a finite
number of steps if M = I/J, where J C I C S are monomial ideals. In [12], Rinaldo give a
computer implementation for this algorithm, in the computer algebra system CoCoA [6]. We
say that a Z"-graded S-module M satisfies the Stanley inequality, if

sdepth(M) > depth(M).

In [1], J. Apel restated a conjecture firstly given by Stanley in [13], namely that any Z"-
graded S-module M satisfies the Stanley inequality.

This conjecture proves to be false, in general, for M = S/I and M = J/I, where
0# I C JC S are monomial ideals, see [7].
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Stanley depth is an important combinatorial invariant and we believe that it deserves
a thorough study. The explicit computation of the Stanley depth it is a difficult task, even
in very simple cases, like the maximal monomial ideal m = (z1,...,z,) of S. Therefore,
although the Stanley conjecture was disproved in the most general set up, it is interesting
to find large classes of ideals which satisfy the Stanley inequality. Also, we note that, in the
case of monomial ideals, Stanley’s conjecture, i.e.

sdepth(I) > depth(I),

remains open. For a friendly introduction in the thematic of Stanley depth, we refer the
reader [9].
For n > m > 1, the m-path ideal of the path graph of length n — 1 is:

In,m = (1’11‘2 o Tmy L2T3 0 TmeA1y --ey Tn—mtl T xn) cS.

In [4, Theorem 1.3] we proved that:

n+1 n+1
sdepth(S/In,m) = depth(S/lnm) =n+1— {m ¥ 1J N {m + J '

In [14], Stefan proved that:

sdepth(S/IfL’Q) = max{ {n +§ — 1-‘ 71} ;

where ¢ > 1.
In Theorem 2.6, we generalized both results above, proving that:

n-tt2-|2t2] o fat2] o <ndlom

sdepth(S/I}, ) > depth(S/I}, ) =
m—1, t>n+1-—-m

As a consequence, in Corollary 2.8, we give a formula for the projective dimension of S/ Iflym
Also, in Theorem 2.9, we prove that:

)_{n—t+3— L"*HQJ — [”*”2-‘, t<n+1-—-m

sdepth([}, ,,,) > depth(I}, m+1 mA1

n,m)

m, t>n+1-m
n—t+1 [L]1+1
d sdepth(I! ) < mi 1— | —— — |}
and sdepth(/y, ,,,) < min{n + {m—i—l J,n { }

Hence, Ifhm satisfies Stanley’s inequality, for any ¢ > 1.

1. Preliminaries
First, we recall the well known Depth Lemma, see for instance [15, Lemma 2.3.9].

Lemma 1.1. (Depth Lemma) If 0 - U — M — N — 0 is a short exact sequence of
modules over a local ring S, or a Noetherian graded ring with Sy local, then:

(1) depth M > min{depth N,depthU}.

(2) depthU > min{depth M,depth N + 1}.

(3) depth N > min{depthU — 1,depth M}.

In [11], Asia Rauf proved the analog of Lemma 1.1(1) for sdepth:

Lemma 1.2. I[f0 - U — M — N — 0 be a short exact sequence of Z"-graded S-modules,
then:
sdepth(M) > min{sdepth(U), sdepth(N)}.

We also recall the following well known results. See for instance [11, Corollary 1.3],
[3, Proposition 2.7], [2, Theorem 1.1], [8, Lemma 3.6] and [11, Corollary 3.3].
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Lemma 1.3. Let I C S be a monomial ideal and let uw € S a monomial which is not in I.
Then:

(1

(2
(3
(4

sdepth(S/(I : u)) > sdepth(S/I).
sdepth([I : u) > sdepth(I).
depth(S/( : u)) > depth(S/1).
If I = u(I : u), then:
(a) sdepth(S/(I : u)) = sdepth(S/I).
(b) depth(S/(I : u)) = depth(S/I).
(¢) sdepth(I : u) = sdepth([I).
(5) If u is reqular on S/1I, then:
(a) sdepth(S/(I,u)) = sdepth(S/I)— 1.
(b) depth(S/(I,u)) = depth(S/I) — 1.
(6) If S’ = S[xpy1], then:
(a) sdepthg (S'/IS’) = sdepthg(S/T) + 1.
(b) sdepthg, (IS”) = sdepthg(I) + 1.
(c) depthg, (S’/1S") = depthg(S/I) + 1.

Theorem 1.4. ([4, Theorem 1.3])
IfI,m=(x1 Tm, T2+ Tenst1, -« Tn—mt1 - Tpn) C S, then:

O —

n+1 n+1
sdepth(S/I,, m) = depth(S/Im) =n+1— {m—!— 1J - [m—!— 1-‘ '

2. Main results
Let 1 < m < n be two integers. As in the previous section, we consider the ideal:
Inm = (1 T, T2+ g1y ooy Tpemet1 - Tn) C 5.
First, we prove the following lemma:
Lemma 2.1. Let 1 <m < n andt > 2 be some integers. Then:
(Ifhm S Tp—ma1 L) = Ifl;,ll.

Proof. Since Zp—_m41 -2 € G(Im), the inclusion ”D” is clear. In order to prove the
converse inclusion, let u € (Ifhm ! Tyl Tp) be a monomial, ie. (Tp—ma1-Tp)u €
I}, - Tt follows that there exists w € G(I, ,,) such that w|(xn_mi1- - Tn)u.

We let k := max{j : z;|w}. If k < n—m then w|(zy_mi1-- - zn)u implies w|u, hence
well, CIL Ifk>n—m+1,since w € G(I}, ,,), then xy_p,41--- 24 w. Therefore
W = (Th—mt1 - 2p)w such that w' € G(IL}). Moreover, since w|(Zp_m+1---Tn)u, it
follows that w'|(zg41 - 2n)u and thus u € I 1 as required. O

Lemma 2.2. Let 1 <m <n,2<k<mandt>2 be some integers. Then:
((I»flym F k42 $n)7 Tn—m+41-"" l'nferrl) = (szk,mv Tn—m41-"" " xnfk+1)'

Proof. The inclusion ”D” is obvious. In order to prove the converse inclusion "C”, we
choose a monomial u € (I}, ,, : Tn—pt2- Tn). If Ty_my1 - Tp_gy1|u then there is nothing
to prove. Assume that z, a1 Tp_k+1 1 .

Since u € (I}, ,,, * Tn_gy2- - Tn), it follows that there exists w € G(I}, ,) such that
w|(zp—k+42 - xn)u. Note that w = wy---w; with w; € G(I,,) for all 1 < ¢ < ¢. Since
Tp—mtl " Tn—k+1 1 u, we can deduce that @,y - Tp—p1 fw; for all 1 < ¢ < ¢. Hence,
w; € G(In_g,m) for all i and therefore w € G(I},_,,,). Tt follows that w|u and therefore
uwell

k.ms S Tequired. O
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Proposition 2.3. With the above notation, we have:

n—t+2—t”;ﬁ2J —["m;ff-‘, t<n+1-—m

sdepth(S/I}, ), depth(S/I}, ) > .
m—1, t>n+1-m

Proof. We denote

n—t+2-— {";fﬂ - [”ﬂ;tjﬂ, t<n+1-m

p(n,m,t) = {

In order to prove that sdepth(S/I, ,,) > ¢(n,m,t), we use induction on n,m,t > 1.
If t =1, from Theorem 1.4 it follows that:

n+1 n+1
m—+1 m-+1

Sdopth(S/ ) =41 | | = tnm

hence we are done. Now, assume ¢ > 2. If n = m, then I, , = (21 - - - z,,) and, consequently,

I, = (zf---x}) is a principal ideal. Hence, from Lemma 1.3(5), we get:

sdepth(S/I,,,) = n — 1 = p(n,n, ),
and there is nothing to prove.

If m = 1, then I}, ; = (z1,...,2,)" = m’, where m = (x1,...,2,) is the graded
maximal monomial ideal of S. Hence, we have:

sdepth(S/I}, ;) = sdepth(S/m") = 0 = ¢(n, 1,1),

and there is nothing to prove. Thus, we may assume n > m > 2.
If n <2m — 1, then
Inm = Tnem+1 - Tmln,m, where

In,m = (.Tll‘g o Tn—ms X2 Tpn—mTm+1y -5 Tn—mIm+1" " Tn—1,Tm+1 """ 1771)

It follows that I}, ,, =l .- J:,tnffflm Therefore, we have that:

S S
T = = (1)
I m x:z—m—i-l T x;tnlrtl,m
On the other hand, we have:
S Klx1, . o, Tnemy Tt 1y - - -5 Tn)
’I}I - == ( FI}L - [.’I;nfer], e 7.'I,'m]. (2)
Also, by renumbering the variables, we note that:
K[xla sy Tp—my TmA1y - - - 71'77,] ~ K[Ily cee axQ(n—nb)] (3)
Ifm,m é(n—m),n—m

From (1), (2), (3), Lemma 1.3(4,6) and the induction hypothesis, it follows that:
sdepth(S/I}, ,,,) = sdepth(Sa(n—m)/ L}, ) +2m —n >

> p2(n—m),n—m,t)+2m —n = p(n,m,t), (4)

where we denoted Sy := K[x1,...,xg].
In the following, we assume n > 2m. We let Ly := If%m and, inductively, we consider
the monomial ideals:

Lj = (Lj—l :mn_m+j), U, .= (Lj—lyxn—m—i-j) for 1 S] S m. (5)



Depth and Stanley depth of powers of the path ideal of a path graph 69

We consider the short exact sequences:

0—— —— — — —0

O%E%ﬁ%ﬁ—)& (6)

From Lemma 2.1 it follows that L, = (I}, : Tn_ms1 - 2n) = I} Hence, by induction
hypothesis, it follows that:
sdepth(S/Lp,) = sdepth(S/(I}, ,, : Tn-m+1--Tn)) > @(n,m,t —1) > @(n,m,t).  (7)
Note that, from (7) and Lemma 1.3(1) it follows that:
sdepth(S/1I} ) < sdepth(S/I}}). (8)
Also, from (5), it follows that:

Uj = (Lj-1,Tn—m+j) = ((Iﬁ,m P Tpeml " Tn—mji—1)s Tn—m-+j)
= ((]rtmm Tn—m+j) | Tnomt1 " Tn—mj—1) =
= ((I’I%Lfm+j717m7 xn—m—i—j) " Tp—m41 -rn—m-&-j—l) =
= ((IZ—m+j—1,m P Tp—m+1 xn—m-&-j—l)v xn—m-‘rj)- (9)
In particular, Uy = (I}, .., Zn—m+1) = (I}, s Tn—m41), hence, by induction hypothesis
and Lemma 1.3, we have:

sdepth(S/U7) > p(n —m,m,t) + m — 1. (10)
From Euclid’s division lemma, there exists some integers g and r such that
n—t+2=(m+1)qg+r where 0 <r <m. (11)
It follows that:
n—t+2 n—t+2 r r 2q, r=20
{m—i—l J {m—i—l w a {m—li [m—kll {2q+1, r>1 (12)

Also:

n—m-—t+2 n—m-—t+2| |r=—m| |jr—m| _ 2g—1, r<m

{ m1 JJ mt1 1*2‘] MJ {mﬂJ{zq, ror s
From (12) and (13), it follows that o(n —m,m,t) + m — 1 > ¢(n,m,t). Hence, from (10),
it follow that:

Now, we fix 2 < j <m and we let w; '= Zp_om4j -+ Tn—m. We let A, := (U;,w;) and
Ajr = (Aj -1 Tpom—ry1) and Bjg:= (A -1, Tnm—ty1), for 1 <<m —j.
From (9) it follows that:
Aj,( = (Aj,O CTn—m " :Unfmfﬂkl) = ((U_j CTn—m " Infmfﬂkl); Tn—2m+j " :Unfmfl)
- ((Iytl_m.q-j_],m CTp—m—tl41 " xn—m+j—1)7 Tn—2m+j " Tn—m—~, xn—m-l—j)a (15)
for all 0 < ¢ < m —j. Applying Lemma 2.2 for n —m + j — 1 instead of n and k = j + ¢, it
follows that:

Aje= (Ifl—m—E—l,maxn—ZmH C Tp—m—t, Tn—m+j), forall 0 < £ <m —j. (16)
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We consider the short exact sequences:

O—>L—> S —>i—>0
Ujrwy)  Up Ajo
0—>i—>i—>i—>0

A]‘,l Aj70 Bj71

0— 5 — 5 — S — 0. (17)
Ajm—j  Ajm—j-1  Bjm—j

From (9) and Lemma 2.1, it follows that:

(Uj : wj) = ((I’rtlfm+j717m P Tn—2m4j xnfm+j71)vxnfm+J) (IfL 1m+] 1 mvfnferj)
(18)
Hence, by induction hypothesis, it follows that:

sdepth(S/(U; : w;)) > p(n—m+j—1,m,t—1)+m—j. (19)
By straightforward computations we note that:
pn—m+j—1mit—1)+m—j>pn—1,mt—1)=p(n,m,t), foral 1 <j<m. (20)
Therefore, from (19) and (20), we obtain:
sdepth(S/(U; : w;)) > ¢(n,m,t). (21)
From (16), it follows that
Bje=(Aj -1, Tn-m—t+1) = (IfL_m_e,m, Tn—m—t41, Tnom+j), forall 1 <€ <m—j. (22)

From (16), Lemma 1.3, the induction hypothesis and straightforward computations, it fol-
lows that:

sdepth(S/Ajm—;) = sdepth(S/( n—2m+;j—1 mvxn—2m+jaxn—m+j)) >
>pn—2m+j—1,m,t)+2m—j—12> ¢(n,m,t). (23)
Similarly, from (22) and Lemma 1.3 it follows that
sdepth(S/Bj¢) = p(n —m —L£,m,t) + m+L£> ¢(n,m,t), forall1 <L<m—j  (24)
Now, from (21), (23), (24) and the short exact sequences (17), we conclude that

sdepth(S/U;) > p(n,m,t), for all 2 < j < m. (25)

Also, from (7), (14), (25) and the short exact sequences (6), we conclude that
sdepth(S/I}, ,,) > @(n,m,t). (26)
The proof of the inequality depth(S/I},,,) > ¢(n,m,t) is similar, using Lemma 1.1(2)
instead of Lemma 1.2 and, also, the statements in Lemma 1.3 regarding depth. O
Let ¢, > 2 be two integers. In the ring Sy, := K[x1, o, ..., Ti1m], we consider

the monomial ideal:
Uyt = (zi, - x4, € Smge * 1; =2 j(mod m), 1 < j<m).

Lemma 2.4. With the above notations, we have that:

(1) depth(Sism/Ums) =m — 1.
2 -1 <sdepth(5t+m/Um ) <t+m—1- (E—‘

(2) m
(3) sdepth(Up ) <t+m — V’”]HJ,
(4) sdepth(Up) = t+m = (¢ +m—m[£]) | Bt | - m[£] - 1) | 5

wofs|e
=
| I
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Proof. (1) Assume that t + m = ma + b, where 1 < b < m. Then:
Unit =Vimi,a+1 NN Vibat1 M Vinpt1,a NN Vimia, (27)
where Vi, ik := (25, %j4m - - Tjp(k—1)m)- Note that, we have a partition:
GVimi,a+1) U UGV pat1) UG(Vinpt1,0) U UG(Vinma) = {1, 22, ..., Ttgm }-

Therefore, since Vj, j ;. is the maximal monomial ideal of K[G(V;, k)], from the definition
of Uy, it follows, using an inductive argument, that depth(S/U,, ) =m — 1.

(2) According to [3, Corollary 1.9(3)], since Uy, is the intersection of m ideals in
disjoint sets of variables, it follows that sdepth(S/U,,:) > m — 1. On the other hand,
according to [3, Theorem 1.3(2)], we have that:

t
sdepth(S/Upn¢) < sdepth(S/Vip1a41) =t+m—a—1=t+m—1— [-‘ .
m
(3) According to [10, Theorem 1.1] and (27), we have that:
1 L1+1
sdepth(U,, 1) <t+m — Vl;—J =t+m-— UmLJ .
(4) According to [10, Corollary 1.8] and (27), we have that:
a+1 a
> - - — —_— =
sdepth(Up,,t) >t +m —b { 5 J (m—1b) bJ
B t [L1+1 t [£]
Hence, we get the required result. O

Let g > 1,t,tm>20<r <mandn:=(m+1)g+t—1+r. We consider the
monomials:

w(m’t) = (mQ. ..xm+1)(x3...x7n+2) “ee (xt'.'xt-‘rnl—l) and

g—1
w(m, t,q) == w(m,t) - v(m,t,q), v(m,t,q) = H Titb(mA1)+1 " Trpl(m+1)+m—1-
=1

As usual, given a monomial v € S, the support of v, denoted by supp(v), is the set of
variables which divide v.

Lemma 2.5. With the above notations, we have that:

Unit+ Pt r<m
(I ., :wim,t,q) =< " m,t,q> , where
Um,t + Pm,t,q + (xnferl T xn)7 r=m
Pm,t,q = (xt+m+1a Tt42(m41) - - - a$t+(q—1)(m+1)) + ($t+2m+17 Tt43m42s - - - 7xt+q(m+l)—1)'

AlSO, P’m,t,q = ({mt+m+17 oo 7wn*7‘} \ supp(v(m, t: q))) and | supp(v(m, tv q))' = (m - 1)(q - 1) +r.
Proof. In order to prove the equality, we use double inclusion.
First, note that w(m, ) is a minimal monomial generator of I’ 1.
If¢g>2and 1< ¢<qg—1, then
Tt t(m+1)Ti4l(m+1)+1 " Ti4l(m+1)+m—1 | xt+l(m+1)v(mvta q) and (28)
Tt4e(m+1)+1 " Ti4L(m+1)+m—1Lt4+L(m+1)+m | xt+€(m+1)+mv(mat7Q)' (29)

As T4l (m+1) Tt4€(m+1)+1 " Li4L(m+1)+m—15 Tt4€(m+1)+1 " Lt4+L(m+1)+m—1Lt4+L(m+1)+m L€
in G(Inm), wim,t) € GUI},}) and w(m,t,q) = w(m,t)v(m,t,q), from (28) and (29) it
follows that:

xt—i—f(m-&—l)w(mv t, Q)v zt+€(m+1)+mw(ma t, q) € Irtl,m
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Hence, we obtain:
Ptg C (IL , w(m,t, q)). (30)

n,m

If r = m, since Tnym—1-- - Tn € G(Inm), w(m,t) € G(I}) and w(m, t)|w(m,t,q), then:

Tntm—1"" Tp € (Irtz,m : w(ma t7 (Z)) (31)
Given a proper monomial v € S, we denote
max(u) = max{i : x;|u}, min(u) = min{¢ : x;|u} and ||u|| = max(u) — min(u) + 1.

We choose u € G(Upy 1), 1.e. w = x4, - --x;,, with i; = j(mod m) and we note that ||u|| > m.
If ||u|| = m, then w is the product of m consecutive monomials, hence u € G(Iy, ,,). Therefore
u-w(m,t,q) € I, . Now, assume [[u|| > m. We have:

u - w(m, t) = (‘TQ e xm—i—l) te (xmin(u)—l e g3min(u)+’m—2)(ﬂgmin(u) e xmin(u)—i—m—l)'
(xmin(u)—Q—Q ce wmin(u)+m+1) te (-Tt T xt+m71) : (Emin(u)—&-mu/xmin(u)'

Note that w/(mv t) = w(m7 t)xmin(u) /‘Tmin(u)er € G(Iytz,_n{b) We let u' := xmin(u)eru/-rmin(u)-

It is easy to see that ||u/|| < ||u|| and u - w(m,t) = v - w'(m, ).

If [|u/]| = m then v’ € G(Ip,,) and, from above, it follows that u-w(m,t) € G(I}, ).

If |[«'|| > m then we repeat the same procedure and we obtain u” := 2 in(u/)+m %’ /Tmin(w)
with ||u”|| < ||v/|]. Since min(w') > min(u), we can write:

w-w(m,t) =u -w'(m,t) =u" - w'(m,t),

with w”(m,t) € G(IL}). If |[u"|] = m, then we are done. Otherwise, we repeat the
same procedure until we can find some £ > 2 such that u - w(m,t) = u® - w® (m,t), with
w®(m,t) € GUILL) and [ul?|| = m.

Finally, we get u - w(m, t,q) € I}, ,,, and we obtain:
Ut,m - (Ifz,m : W(m,t, Q)) (32)

From (30), (31) and (32) we complete the proof of ”C”. In order to prove the other inclusion,
let u € S be a monomial such that u-w(m,t,q) € I, ,,. We write u = u’-u" with v’ € Sy,
and v’ € K[Tt4mt1y---»Tn).

If w ¢ Py, 1,q then supp(w) N {Zt4m+1, Tetmt2, - - - Tn_r} C supp(v(m,t,q)). Also, if
r=mand u ¢ (Tp_mi1--Tpn), then {zn_mi1,..., 20} € supp(u).

Since Ty ymi1 ¢ supp(w), v -v(t,m,q) ¢ I}, ,, and u-w(m,t,q) € I,
ww(t,m) €I, .

Given a monomial v € Sy, U = T, Ta, * * - Ta,, Where d = deg(v), we let

deg,(v) = [{a; : a; = £(mod m)}|, for 1 < ¢ < m.

it follows that

It is easy to see that u € If,,, ., if and only if deg,(v) > ¢ for all 1 < £ < m. Indeed, any
minimal monomial generator of I, 1+, is the product of m consecutive variables.

We assume, by contradiction, that v’ ¢ U,, . It follows that there exists 1 < k <m
such that deg,(u') = 0. On the other hand, deg,(w(t,m)) =t —1, forall 1 < ¢ < m. It
follows that deg, (v/w(t,m)) =t —1 < t, hence v'w(t,m) ¢ I’ , ., a contradiction. O

,m)

Theorem 2.6. With the above notations, we have that:

(1) depth(S/I}

n’m,)
’ m— 1, t>n+1-—m
depth(S/1}, ,,).

(2) sdepth(S/I} ) < sdepth(S/Inm) =n+1— {%J - {%ﬁl—‘

-2 |2 - ], r<na-
- {n + m+1 m+1 =n+t " and Sdepth(S/Ifm,m

) >
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Proof. (1) We denote:

nter- ][], esnenom

p(n,m,t) = { )
m—1, t>n+1-m

From Proposition 2.3, it follows that depth(S/I} ,,) > ¢(n,m,t). Therefore, in order to
prove that depth(S/I}, ,,) = @(n,m,t) it suffice to show that depth(S/I},,,) < @(n,m,t).
In order to do this, we use induction on n, m and t.

The cases t = 1, n =m, m = 1 and n < 2m — 1 are proved easily, as in the proof
of Proposition 2.3. Now, assume n > 2m and ¢t > 2. If n < m +t — 1, then, by induction
hypothesis, Lemma 1.3(3) and Lemma 2.1, it follows that:

depth(S/IfL7m) < depth(S/(IfL’m STl - L)) = depth(S/IfL;,lL) <
<pmm,t—1)=m—1=¢(n,m,t).
Now, assume n > m +t — 1. By Euclid’s division, it follows that there exists ¢ > 1 and
0 < r < m, such that:
n=qgm+1)+t—1+r (33)
Asumme r < m. According to Lemma 2.5, we have that:
S/(Ifhm cw(n,m,t)) = (Kz1, ..., Tmtt)/Unt) @k (K[Tmtt41, - Zn)/Ptg)-
Hence, from Lemma 2.4(1) and Lemma 1.3, it follows that:
depth(S/I}, ) < depth(S/(I},  : w(n,m,t))) = (m — 1)+ (m —1)(g— 1) +r = (m — 1)g+r.
On the other hand, from (33), we have that:
n—t+2 n—t+2
m+ 1 J - { m+1 l -
=(m+1)g+1+r—q—(¢+1)=(m—-1)g+r,

o(n,m,t) =n—t+2 — {

hence depth(S/I},,,) < @(n,m,t). Similarly, if 7 = m, since Z,_pm41--- o, is regular in
KlZmttt1,- -, 2n]/Pm,t,q, then by Lemma 1.3(5) we get:

depth(S/1} ,,,) < depth(S/(1} ,, : w(n,m,t))) = (m — 1)g+r — 1 = p(n,m, ).

Therefore, depth(S/I}, ,,,) < ¢(n,m,t), for any n,m and t.
(2) Since (Ifhm : (@p—mt1 - Tp)'Y) = Iy 1, the required result follows from Lemma
1.3(1) and Theorem 1.4. See also (8). O

Remark 2.7. From Lemma 2.4(2), using a similar technique as in the proof of Theorem
2.6, we can deduce that sdepth(S/I}, ,,) < ¢(n,m,t)+t— [L].

Note that ¢(n,m,1) < p(n,m,t)+t— f%l, hence this upper bound does not improve
the one given in Theorem 2.6(2).

Corollary 2.8. The projective dimension of S/Iﬁhm is:

m—+1 m—+1

t_2+{n7t+2J+[n7t+2-‘, t<n+1l-m
n—m+1, t>n+l-m

pd(S/1}, ,,) = {

Proof. Tt follows immediately from Theorem 2.6 and Ausldnder-Buchsbaum’s Theorem; see
[15, Theorem 3.5.13]. O

Theorem 2.9. With the above notation, we have:
(1) sdepth(1}, ,,) > depth([}, ,,)

(2) sdepth(}f ) <min{n+1— 2] n— {@J 1.
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Proof. (1) From Theorem 2.6 we have that depth(I}, ) = ¢(n,m,t) + 1, where

n—t+2— {"ﬂ:ﬁzJ — [”ﬂ;ﬁj‘, t<n+1-—-m

)

p(n,m,t) = {

m, t>n+1—m
hence, in order to prove the first assertion of the theorem, we have to show that:
sdepth(1}, ,,,) > ¢(n,m,t) + 1 or sdepth(I}, ) > depth(I} ).

We use induction on n,m,t > 1.

If ¢ = 1 then sdepth(I,, ) > depth(I,, ,,,) follows from [5, Proposition 1.7].

Now, assume t > 2. If n = m then I,,, = (#1---x,) and I}, ,, = (2f---2}) is a
principal ideal. Hence:

sdepth(I} ,,) = n = depth(I}, ,,).
Also, if m =1 then I,,; = m = (1,...,2,) and we obviously have that:
sdepth(1}, ;) = sdepth(m’) > 1 = depth(m").

Thus, we may assume that n > m > 2. If n < 2m — 1, then

In,m = Tn—m+1""" men,ma where

In,m - (331.’172 o Tn—my L2 Tn—mTm+1s -+ s Tn—mLm+1 """ Tn—1,Tm+1 """ xn)

It follows that I},  =af .\ -l It . As in the proof of Proposition 2.3, we have that:

ITtL,m = I;(n—m),n—m[‘rn—m-‘rla ce ,In],
and, therefore, by induction hypothesis and Lemma 1.3, it follows that:
sdepth(1}, ,,,) > ¢(2(n —m),n —m,t) + 14 2m —n = @(n,m,t) + 1,

as required. In the following, we assume n > 2m.
We let Lo := I}, and L; := (Lj_1 : Tp_myy) for 1 < j < m. We have the
decompositions:
I =Lo=@n_mp1L1 ® Lo/xn—mi1Ln

Ly =xn—mi2lo ® L1 /Tn_mialo

L1 =Ly @ Lm—l/anm- (34)

From Lemma 2.1, we have that L,, = (Ifl’m C g1t L) =
hypothesis and Lemma 1.3, we obtain:

sdepth(zy, Ly,) = sdepth(Ly,) = sdepth(I.,}) > ¢(n,m,t —1) +1 > @(n,m,t) + 1. (35)

t—1 ; :
n.m and hence, by induction

According to (35) and the decompositions (34), in order to prove that
sdepth(1}, ,,,) > ¢(n,m,t) + 1,
it is enough to show that
sdepth(L;j_1/Zyp—m+;L;) > ¢(n,m,t)+1, forall 1 < j <m. (36)

Using the identity v(I : v) = (v) N I, where v € S is a monomial and I C S is a monomial
ideal, it follows that that:

t . .
L; 4 _ (In,m P Tn—m+1 " x’ﬂ*WH*J*l) ~
= 7 - =
Tn—m+jLj xn—m+j(ln,7n ! Tpomtl " Tnomtj)
t t
Tn—m+1""" xnf’mﬁ»jfl(ln,m CTn—m+1 $n7m+j71) ~ In,m n (Inf'mmkl e xnf’m«l»jfl) (37)

Tp—mt1 - Tn—mtj(Thm @ Tn—mt1 - Tnomy) I N (Tn—mt1 - Tn—mtj)
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We claim that:

Ifhm N (Tn_mi1 Tnmij1)

Tt n (x 7w +’) = (37n—2m+j"'xn7m+j—1)l»fl:}m+j,1,m[5Un7m+j+17~--axn]~ (38)
n,m n—m n—m-+j

Indeed, if u € G(Ifl}m) such that ©p,_mi1 - Tnomij—1|u and Tp_py1 - Tn_m4; 1 u, then
it is easy to note that u € G(Ifb_mﬂ»_lm) and Ty—2m+4j ** Tnom+j—1|u. We write
U= (Tp—2m+j " Tnemtj—1)W, where w € K[z1,...,Tnom+j—1]-

From Lemma 2.1, it follows that:

t . ) . _ rt—1
w e (In—erjfl,m FTn—2m+4j xn*m+J*1) - In—m-&-j—lﬁn'

In order to complete the proof of the claim (38), it is enough to notice that

u-u' € (I'fl,m N (Tn-mt1 " Tpomj—1)) \ (Ii,m N (@p—m+1" " Tnomtj)),
if and only if ' is a monomial with x,,_.,+; ¢ supp(u’).
Now, from (37), (38), Lemma 1.3 and the induction hypothesis, it follows that:

sdepth(L;_1/p—m4;L;) = sdepth([fljnﬂ_l’m) +m—j>
>pn—m+j—-1mt—1)+14+m—j>n—m+j—1—(t—-1)+2—
n—m+j—1t+2 n—m+j—t+2
B { m+1 J B { m+ 1
n—m-+j—1t+2 n—m+j5—t+2
m+1 J a { m—+1
hence, (36) holds. Thus, the first part of the proof is complete.
(2) According to Lemma 1.3 and [3, Theorem 1.3], we have that:

sdepth(1}, ,,,) < sdepth(I}, ,, : w(m,t,q)) < min{sdepth(Up, +S),sdepth(Pp 1495},

-‘+1+m—j=

nt+2{ —‘+12¢(n,m,t)+1,

where ¢ = | 241 |, The conclusion follows from the fact that P, ; 4 has 2(¢ — 1) generators,

if ¢ > 2, and Lemma 2.4(3).
O

3. Conclusions

We computed depth(S/IfL’m)7 t > 1, where I, ,, is the m-path ideal of a path graph
of lenght n — 1. Also, we showed that S/I}, ,, and I} , satisfy the Stanley inequality.

Aknowledgments

We gratefully acknowledge the use of the computer algebra system Cocoa ([6]) for our
experiments.

The second author was supported by a grant of the Ministry of Research, Innovation
and Digitization, CNCS - UEFISCDI, project number PN-ITI-P1-1.1-TE-2021-1633, within
PNCDI III.

REFERENCES

[1] J. Apel, On a conjecture of R. P. Stanley; Part II - Quotients Modulo Monomial Ideals, J. Algebr.
Comb. 17 (2003), 57-74.

[2] M. Cimpoeas, Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math.
7(4) (2009), 629-634.

[3] M. Cimpoeas, Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci. 2(1) (2012),
28-40.



76 Silviu Balanescu, Mircea Cimpoeasg
[4] M. Cimpoeas, Stanley depth of the path ideal associated to a line graph, Math. Rep. 19(69)(2) (2017),
157-164.
[6] M. Cimpoeas, A class of square-free monomial ideals associated to two integer sequences, Commun.
Algebra 46(3) (2018), 1179-1187.
[6] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at
http://cocoa.dima.unige.it
[7] A. M. Duval, B. Goeckneker, C. J. Klivans, J. L. Martine, A non-partitionable Cohen-Macaulay
simplicial complex, Adv. Math. 299 (2016), 381-395.
[8] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra
322(9) (2009), 3151-3169.
[9] J. Herzog, A survey on Stanley depth, In Monomial Ideals, Computations and Applications, Springer,
(2013), 3-45.
[10] M. Ishag, Values and bounds of sdepth, Carpathian J. Math. 27(2) (2011), 217-224.
[11] A. Rauf, Depth and sdepth of multigraded module, Commun. Algebra 38(2) (2010), 773-784.
[12] G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals, Matematiche 63(2) (2008),
243-256.
[13] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982), 175-193.
[14] A. Stefan, Stanley depth of powers of the path ideal, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh.
Univ. Buchar. vol 85, no 2 (2023), 69-76.
[15] R. H. Villarreal, Monomial algebras. Second edition, Monographs and Textbooks in Pure and Applied

Mathematics, Chapman & Hall, New York, 2018.



