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DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH IDEAL

OF A PATH GRAPH

Silviu Bălănescu1, Mircea Cimpoeaş2

Let In,m := (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1 · · ·xn) be the m-path

ideal of the path graph of length n− 1, in the ring S = K[x1, . . . , xn]. We give a precise
formula for the depth of S/Itn,m, where t ≥ 1. Also, we prove that S/Itn,m and Itn,m

satisfy the Stanley inequality.
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Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M be a
Zn-graded S-module. A Stanley decomposition of M is a direct sum D : M =

⊕r
i=1 miK[Zi]

as a Zn-graded K-vector space, where mi ∈ M is homogeneous with respect to Zn-grading,
Zi ⊂ {x1, . . . , xn} such that miK[Zi] = {umi : u ∈ K[Zi]} ⊂ M is a free K[Zi]-submodule
of M . We define sdepth(D) = mini=1,...,r |Zi| and sdepth(M) = max{sdepth(D)| D is a
Stanley decomposition of M}. The number sdepth(M) is called the Stanley depth of M .

Herzog, Vladoiu and Zheng show in [8] that sdepth(M) can be computed in a finite
number of steps if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In [12], Rinaldo give a
computer implementation for this algorithm, in the computer algebra system CoCoA [6]. We
say that a Zn-graded S-module M satisfies the Stanley inequality, if

sdepth(M) ≥ depth(M).

In [1], J. Apel restated a conjecture firstly given by Stanley in [13], namely that any Zn-
graded S-module M satisfies the Stanley inequality.

This conjecture proves to be false, in general, for M = S/I and M = J/I, where
0 ̸= I ⊂ J ⊂ S are monomial ideals, see [7].
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Stanley depth is an important combinatorial invariant and we believe that it deserves
a thorough study. The explicit computation of the Stanley depth it is a difficult task, even
in very simple cases, like the maximal monomial ideal m = (x1, . . . , xn) of S. Therefore,
although the Stanley conjecture was disproved in the most general set up, it is interesting
to find large classes of ideals which satisfy the Stanley inequality. Also, we note that, in the
case of monomial ideals, Stanley’s conjecture, i.e.

sdepth(I) ≥ depth(I),

remains open. For a friendly introduction in the thematic of Stanley depth, we refer the
reader [9].

For n ≥ m ≥ 1, the m-path ideal of the path graph of length n− 1 is:

In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S.

In [4, Theorem 1.3] we proved that:

sdepth(S/In,m) = depth(S/In,m) = n+ 1−
⌊
n+ 1

m+ 1

⌋
−
⌈
n+ 1

m+ 1

⌉
.

In [14], Ştefan proved that:

sdepth(S/Itn,2) = max

{ ⌈
n+ t− 1

3

⌉
, 1

}
,

where t ≥ 1.
In Theorem 2.6, we generalized both results above, proving that:

sdepth(S/Itn,m) ≥ depth(S/Itn,m) =

{
n− t+ 2−

⌊
n−t+2
m+1

⌋
−

⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m− 1, t > n+ 1−m
.

As a consequence, in Corollary 2.8, we give a formula for the projective dimension of S/Itn,m.
Also, in Theorem 2.9, we prove that:

sdepth(Itn,m) ≥ depth(Itn,m) =

{
n− t+ 3−

⌊
n−t+2
m+1

⌋
−
⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m, t > n+ 1−m

and sdepth(Itn,m) ≤ min{n+ 1−
⌊
n− t+ 1

m+ 1

⌋
, n−

⌊⌈ t
m⌉+ 1

2

⌋
}.

Hence, Itn,m satisfies Stanley’s inequality, for any t ≥ 1.

1. Preliminaries

First, we recall the well known Depth Lemma, see for instance [15, Lemma 2.3.9].

Lemma 1.1. (Depth Lemma) If 0 → U → M → N → 0 is a short exact sequence of
modules over a local ring S, or a Noetherian graded ring with S0 local, then:

(1) depthM ≥ min{depthN, depthU}.
(2) depthU ≥ min{depthM,depthN + 1}.
(3) depthN ≥ min{depthU − 1,depthM}.

In [11], Asia Rauf proved the analog of Lemma 1.1(1) for sdepth:

Lemma 1.2. If 0 → U → M → N → 0 be a short exact sequence of Zn-graded S-modules,
then:

sdepth(M) ≥ min{sdepth(U), sdepth(N)}.

We also recall the following well known results. See for instance [11, Corollary 1.3],
[3, Proposition 2.7], [2, Theorem 1.1], [8, Lemma 3.6] and [11, Corollary 3.3].
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Lemma 1.3. Let I ⊂ S be a monomial ideal and let u ∈ S a monomial which is not in I.
Then:

(1) sdepth(S/(I : u)) ≥ sdepth(S/I).
(2) sdepth(I : u) ≥ sdepth(I).
(3) depth(S/(I : u)) ≥ depth(S/I).
(4) If I = u(I : u), then:

(a) sdepth(S/(I : u)) = sdepth(S/I).
(b) depth(S/(I : u)) = depth(S/I).
(c) sdepth(I : u) = sdepth(I).

(5) If u is regular on S/I, then:
(a) sdepth(S/(I, u)) = sdepth(S/I)− 1.
(b) depth(S/(I, u)) = depth(S/I)− 1.

(6) If S′ = S[xn+1], then:
(a) sdepthS′(S′/IS′) = sdepthS(S/I) + 1.
(b) sdepthS′(IS′) = sdepthS(I) + 1.
(c) depthS′(S′/IS′) = depthS(S/I) + 1.

Theorem 1.4. ([4, Theorem 1.3])
If In,m = (x1 · · ·xm, x2 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S, then:

sdepth(S/In,m) = depth(S/In,m) = n+ 1−
⌊
n+ 1

m+ 1

⌋
−
⌈
n+ 1

m+ 1

⌉
.

2. Main results

Let 1 ≤ m ≤ n be two integers. As in the previous section, we consider the ideal:

In,m = (x1 · · ·xm, x2 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S.

First, we prove the following lemma:

Lemma 2.1. Let 1 ≤ m ≤ n and t ≥ 2 be some integers. Then:

(Itn,m : xn−m+1 · · ·xn) = It−1
n,m.

Proof. Since xn−m+1 · · ·xn ∈ G(In,m), the inclusion ”⊇” is clear. In order to prove the
converse inclusion, let u ∈ (Itn,m : xn−m+1 · · ·xn) be a monomial, i.e. (xn−m+1 · · ·xn)u ∈
Itn,m. It follows that there exists w ∈ G(Itn,m) such that w|(xn−m+1 · · ·xn)u.

We let k := max{j : xj |w}. If k ≤ n−m then w|(xn−m+1 · · ·xn)u implies w|u, hence
u ∈ Itn,m ⊆ It−1

n,m. If k ≥ n − m + 1, since w ∈ G(Itn,m), then xk−m+1 · · ·xk|w. Therefore

w = (xk−m+1 · · ·xk)w
′ such that w′ ∈ G(It−1

n,m). Moreover, since w|(xn−m+1 · · ·xn)u, it

follows that w′|(xk+1 · · ·xn)u and thus u ∈ It−1
n,m, as required. □

Lemma 2.2. Let 1 ≤ m ≤ n, 2 ≤ k ≤ m and t ≥ 2 be some integers. Then:

((Itn,m : xn−k+2 · · ·xn), xn−m+1 · · ·xn−k+1) = (Itn−k,m, xn−m+1 · · ·xn−k+1).

Proof. The inclusion ”⊇” is obvious. In order to prove the converse inclusion ”⊆”, we
choose a monomial u ∈ (Itn,m : xn−k+2 · · ·xn). If xn−m+1 · · ·xn−k+1|u then there is nothing
to prove. Assume that xn−m+1 · · ·xn−k+1 ∤ u.

Since u ∈ (Itn,m : xn−k+2 · · ·xn), it follows that there exists w ∈ G(Itn,m) such that
w|(xn−k+2 · · ·xn)u. Note that w = w1 · · ·wt with wi ∈ G(In,m) for all 1 ≤ i ≤ t. Since
xn−m+1 · · ·xn−k+1 ∤ u, we can deduce that xn−m+1 · · ·xn−k+1 ∤ wi for all 1 ≤ i ≤ t. Hence,
wi ∈ G(In−k,m) for all i and therefore w ∈ G(Itn−k,m). It follows that w|u and therefore

u ∈ Itn−k,m, as required. □
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Proposition 2.3. With the above notation, we have:

sdepth(S/Itn,m), depth(S/Itn,m) ≥

{
n− t+ 2−

⌊
n−t+2
m+1

⌋
−

⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m− 1, t > n+ 1−m
.

Proof. We denote

φ(n,m, t) :=

{
n− t+ 2−

⌊
n−t+2
m+1

⌋
−
⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m− 1, t > n+ 1−m
.

In order to prove that sdepth(S/Itn,m) ≥ φ(n,m, t), we use induction on n,m, t ≥ 1.
If t = 1, from Theorem 1.4 it follows that:

sdepth(S/In,m) = n+ 1−
⌊
n+ 1

m+ 1

⌋
−
⌈
n+ 1

m+ 1

⌉
= φ(n,m, 1),

hence we are done. Now, assume t ≥ 2. If n = m, then In,n = (x1 · · ·xn) and, consequently,
Itn,n = (xt

1 · · ·xt
n) is a principal ideal. Hence, from Lemma 1.3(5), we get:

sdepth(S/Itn,n) = n− 1 = φ(n, n, t),

and there is nothing to prove.
If m = 1, then Itn,1 = (x1, . . . , xn)

t = mt, where m = (x1, . . . , xn) is the graded
maximal monomial ideal of S. Hence, we have:

sdepth(S/Itn,1) = sdepth(S/mt) = 0 = φ(n, 1, t),

and there is nothing to prove. Thus, we may assume n > m ≥ 2.
If n ≤ 2m− 1, then

In,m = xn−m+1 · · ·xmĨn,m, where

Ĩn,m = (x1x2 · · ·xn−m, x2 · · ·xn−mxm+1, . . . , xn−mxm+1 · · ·xn−1, xm+1 · · ·xn).

It follows that Itn,m = xt
n−m+1 · · ·xt

mĨtn,m. Therefore, we have that:

S

Itn,m
=

S

xt
n−m+1 · · ·xt

mĨtn,m
. (1)

On the other hand, we have:

S

Ĩtn,m
=

(
K[x1, . . . , xn−m, xm+1, . . . , xn]

Ĩtn,m

)
[xn−m+1, . . . , xm]. (2)

Also, by renumbering the variables, we note that:

K[x1, . . . , xn−m, xm+1, . . . , xn]

Ĩtn,m

∼=
K[x1, . . . , x2(n−m)]

It2(n−m),n−m

. (3)

From (1), (2), (3), Lemma 1.3(4,6) and the induction hypothesis, it follows that:

sdepth(S/Itn,m) = sdepth(S2(n−m)/I
t
n−m,m) + 2m− n ≥

≥ φ(2(n−m), n−m, t) + 2m− n = φ(n,m, t), (4)

where we denoted Sk := K[x1, . . . , xk].
In the following, we assume n ≥ 2m. We let L0 := Itn,m and, inductively, we consider

the monomial ideals:

Lj := (Lj−1 : xn−m+j), Uj := (Lj−1, xn−m+j) for 1 ≤ j ≤ m. (5)
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We consider the short exact sequences:

0 −→ S

L1
−→ S

L0
−→ S

U1
−→ 0

0 −→ S

L2
−→ S

L1
−→ S

U2
−→ 0

...

0 → S

Lm
→ S

Lm−1
→ S

Um
→ 0. (6)

From Lemma 2.1 it follows that Lm = (Itn,m : xn−m+1 · · ·xn) = It−1
n,m. Hence, by induction

hypothesis, it follows that:

sdepth(S/Lm) = sdepth(S/(Itn,m : xn−m+1 · · ·xn)) ≥ φ(n,m, t− 1) ≥ φ(n,m, t). (7)

Note that, from (7) and Lemma 1.3(1) it follows that:

sdepth(S/Itn,m) ≤ sdepth(S/It−1
n,m). (8)

Also, from (5), it follows that:

Uj = (Lj−1, xn−m+j) = ((Itn,m : xn−m+1 · · ·xn−m+j−1), xn−m+j) =

= ((Itn,m, xn−m+j) : xn−m+1 · · ·xn−m+j−1) =

= ((Itn−m+j−1,m, xn−m+j) : xn−m+1 · · ·xn−m+j−1) =

= ((Itn−m+j−1,m : xn−m+1 · · ·xn−m+j−1), xn−m+j). (9)

In particular, U1 = (Itn,m, xn−m+1) = (Itn−m,m, xn−m+1), hence, by induction hypothesis
and Lemma 1.3, we have:

sdepth(S/U1) ≥ φ(n−m,m, t) +m− 1. (10)

From Euclid’s division lemma, there exists some integers q and r such that

n− t+ 2 = (m+ 1)q + r, where 0 ≤ r ≤ m. (11)

It follows that:⌊
n− t+ 2

m+ 1

⌋
+

⌈
n− t+ 2

m+ 1

⌉
= 2q +

⌊
r

m+ 1

⌋
+

⌈
r

m+ 1

⌉
=

{
2q, r = 0

2q + 1, r ≥ 1
. (12)

Also:⌊
n−m− t+ 2

m+ 1

⌋
+

⌈
n−m− t+ 2

m+ 1

⌉
= 2q −

⌈
r −m

m+ 1

⌉
−

⌊
r −m

m+ 1

⌋
=

{
2q − 1, r < m

2q, r = 1
. (13)

From (12) and (13), it follows that φ(n −m,m, t) +m − 1 ≥ φ(n,m, t). Hence, from (10),
it follow that:

sdepth(S/U1) ≥ φ(n,m, t). (14)

Now, we fix 2 ≤ j ≤ m and we let wj := xn−2m+j · · ·xn−m. We let Aj,0 := (Uj , wj) and

Aj,ℓ := (Aj,ℓ−1 : xn−m−ℓ+1) and Bj,ℓ := (Aj,ℓ−1, xn−m−ℓ+1), for 1 ≤ ℓ ≤ m− j.

From (9) it follows that:

Aj,ℓ = (Aj,0 : xn−m · · ·xn−m−ℓ+1) = ((Uj : xn−m · · ·xn−m−ℓ+1), xn−2m+j · · ·xn−m−ℓ)

= ((Itn−m+j−1,m : xn−m−ℓ+1 · · ·xn−m+j−1), xn−2m+j · · ·xn−m−ℓ, xn−m+j), (15)

for all 0 ≤ ℓ ≤ m− j. Applying Lemma 2.2 for n−m+ j − 1 instead of n and k = j + ℓ, it
follows that:

Aj,ℓ = (Itn−m−ℓ−1,m, xn−2m+j · · ·xn−m−ℓ, xn−m+j), for all 0 ≤ ℓ ≤ m− j. (16)
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We consider the short exact sequences:

0 −→ S

(Uj : wj)
−→ S

Uj
−→ S

Aj,0
−→ 0

0 −→ S

Aj,1
−→ S

Aj,0
−→ S

Bj,1
−→ 0

...

0 → S

Aj,m−j
→ S

Aj,m−j−1
→ S

Bj,m−j
→ 0. (17)

From (9) and Lemma 2.1, it follows that:

(Uj : wj) = ((Itn−m+j−1,m : xn−2m+j · · ·xn−m+j−1), xn−m+j) = (It−1
n−m+j−1,m, xn−m+j)

(18)
Hence, by induction hypothesis, it follows that:

sdepth(S/(Uj : wj)) ≥ φ(n−m+ j − 1,m, t− 1) +m− j. (19)

By straightforward computations we note that:

φ(n−m+ j− 1,m, t− 1)+m− j ≥ φ(n− 1,m, t− 1) = φ(n,m, t), for all 1 ≤ j ≤ m. (20)

Therefore, from (19) and (20), we obtain:

sdepth(S/(Uj : wj)) ≥ φ(n,m, t). (21)

From (16), it follows that

Bj,ℓ = (Aj,ℓ−1, xn−m−ℓ+1) = (Itn−m−ℓ,m, xn−m−ℓ+1, xn−m+j), for all 1 ≤ ℓ ≤ m− j. (22)

From (16), Lemma 1.3, the induction hypothesis and straightforward computations, it fol-
lows that:

sdepth(S/Aj,m−j) = sdepth(S/(Itn−2m+j−1,m, xn−2m+j , xn−m+j)) ≥

≥ φ(n− 2m+ j − 1,m, t) + 2m− j − 1 ≥ φ(n,m, t). (23)

Similarly, from (22) and Lemma 1.3 it follows that

sdepth(S/Bj,ℓ) = φ(n−m− ℓ,m, t) +m+ ℓ ≥ φ(n,m, t), for all 1 ≤ ℓ ≤ m− j. (24)

Now, from (21), (23), (24) and the short exact sequences (17), we conclude that

sdepth(S/Uj) ≥ φ(n,m, t), for all 2 ≤ j ≤ m. (25)

Also, from (7), (14), (25) and the short exact sequences (6), we conclude that

sdepth(S/Itn,m) ≥ φ(n,m, t). (26)

The proof of the inequality depth(S/Itn,m) ≥ φ(n,m, t) is similar, using Lemma 1.1(2)
instead of Lemma 1.2 and, also, the statements in Lemma 1.3 regarding depth. □

Let t,m ≥ 2 be two integers. In the ring St+m := K[x1, x2, . . . , xt+m], we consider
the monomial ideal:

Um,t = (xi1 · · ·xim ∈ Sm+t : ij ∼= j(mod m), 1 ≤ j ≤ m).

Lemma 2.4. With the above notations, we have that:

(1) depth(St+m/Um,t) = m− 1.
(2) m− 1 ≤ sdepth(St+m/Um,t) ≤ t+m− 1−

⌈
t
m

⌉
.

(3) sdepth(Um,t) ≤ t+m−
⌊
⌈ t
m ⌉+1

2

⌋
.

(4) sdepth(Um,t) ≥ t+m− (t+m−m⌈ t
m⌉)

⌊
⌈ t
m ⌉+1

2

⌋
− (m⌈ t

m⌉ − t)
⌊
⌈ t
m ⌉
2

⌋
.
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Proof. (1) Assume that t+m = ma+ b, where 1 ≤ b ≤ m. Then:

Um,t = Vm,1,a+1 ∩ . . . ∩ Vm,b,a+1 ∩ Vm,b+1,a ∩ . . . ∩ Vm,m,a, (27)

where Vm,j,k := (xj , xj+m, . . . , xj+(k−1)m). Note that, we have a partition:

G(Vm,1,a+1) ∪ · · · ∪G(Vm,b,a+1) ∪G(Vm,b+1,a) ∪ · · · ∪G(Vm,m,a) = {x1, x2, . . . , xt+m}.
Therefore, since Vm,j,k is the maximal monomial ideal of K[G(Vm,j,k)], from the definition
of Um,t it follows, using an inductive argument, that depth(S/Um,t) = m− 1.

(2) According to [3, Corollary 1.9(3)], since Um,t is the intersection of m ideals in
disjoint sets of variables, it follows that sdepth(S/Um,t) ≥ m − 1. On the other hand,
according to [3, Theorem 1.3(2)], we have that:

sdepth(S/Um,t) ≤ sdepth(S/Vm,1,a+1) = t+m− a− 1 = t+m− 1−
⌈
t

m

⌉
.

(3) According to [10, Theorem 1.1] and (27), we have that:

sdepth(Um,t) ≤ t+m−
⌊
a+ 1

2

⌋
= t+m−

⌊⌈ t
m⌉+ 1

2

⌋
.

(4) According to [10, Corollary 1.8] and (27), we have that:

sdepth(Um,t) ≥ t+m− b

⌊
a+ 1

2

⌋
− (m− b)

⌊a
2

⌋
=

= t+m− (t+m−m

⌈
t

m

⌉
)

⌊⌈ t
m⌉+ 1

2

⌋
− (m

⌈
t

m

⌉
− t)

⌊⌈ t
m⌉
2

⌋
.

Hence, we get the required result. □

Let q ≥ 1, t,m ≥ 2, 0 ≤ r ≤ m and n := (m + 1)q + t − 1 + r. We consider the
monomials:

w(m, t) := (x2 · · ·xm+1)(x3 · · ·xm+2) · · · (xt · · ·xt+m−1) and

w(m, t, q) := w(m, t) · v(m, t, q), v(m, t, q) :=

q−1∏
ℓ=1

xt+ℓ(m+1)+1 · · ·xt+ℓ(m+1)+m−1.

As usual, given a monomial v ∈ S, the support of v, denoted by supp(v), is the set of
variables which divide v.

Lemma 2.5. With the above notations, we have that:

(Itn,m : w(m, t, q)) =

{
Um,t + Pm,t,q, r < m

Um,t + Pm,t,q + (xn−m+1 · · ·xn), r = m
, where

Pm,t,q := (xt+m+1, xt+2(m+1), . . . , xt+(q−1)(m+1)) + (xt+2m+1, xt+3m+2, . . . , xt+q(m+1)−1).

Also, Pm,t,q = ({xt+m+1, . . . , xn−r} \ supp(v(m, t, q))) and | supp(v(m, t, q))| = (m− 1)(q− 1) + r.

Proof. In order to prove the equality, we use double inclusion.
First, note that w(m, t) is a minimal monomial generator of It−1

n,m.
If q ≥ 2 and 1 ≤ ℓ ≤ q − 1, then

xt+ℓ(m+1)xt+ℓ(m+1)+1 · · ·xt+ℓ(m+1)+m−1 | xt+ℓ(m+1)v(m, t, q) and (28)

xt+ℓ(m+1)+1 · · ·xt+ℓ(m+1)+m−1xt+ℓ(m+1)+m | xt+ℓ(m+1)+mv(m, t, q). (29)

As xt+ℓ(m+1)xt+ℓ(m+1)+1 · · ·xt+ℓ(m+1)+m−1, xt+ℓ(m+1)+1 · · ·xt+ℓ(m+1)+m−1xt+ℓ(m+1)+m are

in G(In,m), w(m, t) ∈ G(It−1
n,m) and w(m, t, q) = w(m, t)v(m, t, q), from (28) and (29) it

follows that:
xt+ℓ(m+1)w(m, t, q), xt+ℓ(m+1)+mw(m, t, q) ∈ Itn,m.
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Hence, we obtain:

Pm,t,q ⊂ (Itn,m : w(m, t, q)). (30)

If r = m, since xn+m−1 · · ·xn ∈ G(In,m), w(m, t) ∈ G(It−1
n,m) and w(m, t)|w(m, t, q), then:

xn+m−1 · · ·xn ∈ (Itn,m : w(m, t, q)). (31)

Given a proper monomial u ∈ S, we denote

max(u) = max{i : xi|u}, min(u) = min{i : xi|u} and ||u|| = max(u)−min(u) + 1.

We choose u ∈ G(Um,t), i.e. u = xi1 · · ·xim with ij ∼= j( mod m) and we note that ||u|| ≥ m.
If ||u|| = m, then u is the product ofm consecutive monomials, hence u ∈ G(In,m). Therefore
u · w(m, t, q) ∈ Itn,m. Now, assume ||u|| > m. We have:

u · w(m, t) = (x2 · · ·xm+1) · · · (xmin(u)−1 · · ·xmin(u)+m−2)(xmin(u) · · ·xmin(u)+m−1)·
(xmin(u)+2 · · ·xmin(u)+m+1) · · · (xt · · ·xt+m−1) · xmin(u)+mu/xmin(u).

Note that w′(m, t) := w(m, t)xmin(u)/xmin(u)+m ∈ G(It−1
n,m). We let u′ := xmin(u)+mu/xmin(u).

It is easy to see that ||u′|| < ||u|| and u · w(m, t) = u′ · w′(m, t).
If ||u′|| = m then u′ ∈ G(In,m) and, from above, it follows that u ·w(m, t) ∈ G(Itn,m).
If ||u′|| > m then we repeat the same procedure and we obtain u′′ := xmin(u′)+mu′/xmin(u′),

with ||u′′|| < ||u′||. Since min(u′) > min(u), we can write:

u · w(m, t) = u′ · w′(m, t) = u′′ · w′′(m, t),

with w′′(m, t) ∈ G(It−1
n,m). If ||u′′|| = m, then we are done. Otherwise, we repeat the

same procedure until we can find some ℓ ≥ 2 such that u · w(m, t) = u(ℓ) · w(ℓ)(m, t), with
w(ℓ)(m, t) ∈ G(It−1

n,m) and |u(ℓ)|| = m.

Finally, we get u · w(m, t, q) ∈ Itn,m and we obtain:

Ut,m ⊂ (Itn,m : w(m, t, q)). (32)

From (30), (31) and (32) we complete the proof of ”⊆”. In order to prove the other inclusion,
let u ∈ S be a monomial such that u ·w(m, t, q) ∈ Itn,m. We write u = u′ ·u′′ with u′ ∈ St+m

and u′′ ∈ K[xt+m+1, . . . , xn].
If u /∈ Pm,t,q then supp(u) ∩ {xt+m+1, xt+m+2, . . . , xn−r} ⊆ supp(v(m, t, q)). Also, if

r = m and u /∈ (xn−m+1 · · ·xn), then {xn−m+1, . . . , xn} ⊈ supp(u).
Since xt+m+1 /∈ supp(u), u′′ ·v(t,m, q) /∈ Itn,m and u ·w(m, t, q) ∈ Itn,m, it follows that

u′w(t,m) ∈ Itn,m.
Given a monomial v ∈ St+m, v = xa1xa2 · · ·xad

, where d = deg(v), we let

degℓ(v) = |{ai : ai ≡ ℓ(mod m)}|, for 1 ≤ ℓ ≤ m.

It is easy to see that u ∈ Itt+m,m if and only if degℓ(v) ≥ t for all 1 ≤ ℓ ≤ m. Indeed, any
minimal monomial generator of Im+t,m is the product of m consecutive variables.

We assume, by contradiction, that u′ /∈ Um,t. It follows that there exists 1 ≤ k ≤ m
such that degk(u

′) = 0. On the other hand, degℓ(w(t,m)) = t − 1, for all 1 ≤ ℓ ≤ m. It
follows that degk(u

′w(t,m)) = t− 1 < t, hence u′w(t,m) /∈ Itn,m, a contradiction. □

Theorem 2.6. With the above notations, we have that:

(1) depth(S/Itn,m) =

{
n− t+ 2−

⌊
n−t+2
m+1

⌋
−
⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m− 1, t > n+ 1−m
and sdepth(S/Itn,m) ≥

depth(S/Itn,m).

(2) sdepth(S/Itn,m) ≤ sdepth(S/In,m) = n+ 1−
⌊

n+1
m+1

⌋
−
⌈

n+1
m+1

⌉
.
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Proof. (1) We denote:

φ(n,m, t) :=

{
n− t+ 2−

⌊
n−t+2
m+1

⌋
−
⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m− 1, t > n+ 1−m
.

From Proposition 2.3, it follows that depth(S/Itn,m) ≥ φ(n,m, t). Therefore, in order to

prove that depth(S/Itn,m) = φ(n,m, t) it suffice to show that depth(S/Itn,m) ≤ φ(n,m, t).
In order to do this, we use induction on n,m and t.

The cases t = 1, n = m, m = 1 and n ≤ 2m − 1 are proved easily, as in the proof
of Proposition 2.3. Now, assume n ≥ 2m and t ≥ 2. If n ≤ m + t − 1, then, by induction
hypothesis, Lemma 1.3(3) and Lemma 2.1, it follows that:

depth(S/Itn,m) ≤ depth(S/(Itn,m : xn−m+1 . . . xn)) = depth(S/It−1
n,m) ≤

≤ φ(n,m, t− 1) = m− 1 = φ(n,m, t).

Now, assume n ≥ m + t − 1. By Euclid’s division, it follows that there exists q ≥ 1 and
0 ≤ r ≤ m, such that:

n = q(m+ 1) + t− 1 + r. (33)

Asumme r < m. According to Lemma 2.5, we have that:

S/(Itn,m : w(n,m, t)) = (K[x1, . . . , xm+t]/Um,t)⊗K (K[xm+t+1, . . . , xn]/Pm,t,q).

Hence, from Lemma 2.4(1) and Lemma 1.3, it follows that:

depth(S/Itn,m) ≤ depth(S/(Itn,m : w(n,m, t))) = (m− 1) + (m− 1)(q − 1) + r = (m− 1)q + r.

On the other hand, from (33), we have that:

φ(n,m, t) =n− t+ 2−
⌊
n− t+ 2

m+ 1

⌋
−
⌈
n− t+ 2

m+ 1

⌉
=

= (m+ 1)q + 1 + r − q − (q + 1) = (m− 1)q + r,

hence depth(S/Itn,m) ≤ φ(n,m, t). Similarly, if r = m, since xn−m+1 · · ·xn is regular in
K[xm+t+1, . . . , xn]/Pm,t,q, then by Lemma 1.3(5) we get:

depth(S/Itn,m) ≤ depth(S/(Itn,m : w(n,m, t))) = (m− 1)q + r − 1 = φ(n,m, t).

Therefore, depth(S/Itn,m) ≤ φ(n,m, t), for any n,m and t.

(2) Since (Itn,m : (xn−m+1 · · ·xn)
t−1) = In,m, the required result follows from Lemma

1.3(1) and Theorem 1.4. See also (8). □

Remark 2.7. From Lemma 2.4(2), using a similar technique as in the proof of Theorem
2.6, we can deduce that sdepth(S/Itn,m) ≤ φ(n,m, t) + t−

⌈
t
m

⌉
.

Note that φ(n,m, 1) ≤ φ(n,m, t)+ t−⌈ t
m⌉, hence this upper bound does not improve

the one given in Theorem 2.6(2).

Corollary 2.8. The projective dimension of S/Itn,m is:

pd(S/Itn,m) =

{
t− 2 +

⌊
n−t+2
m+1

⌋
+
⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

n−m+ 1, t > n+ 1−m
.

Proof. It follows immediately from Theorem 2.6 and Ausländer-Buchsbaum’s Theorem; see
[15, Theorem 3.5.13]. □

Theorem 2.9. With the above notation, we have:

(1) sdepth(Itn,m) ≥ depth(Itn,m)

(2) sdepth(Itn,m) ≤ min{n+ 1− ⌊n−t+1
m+1 ⌋, n−

⌊
⌈ t
m ⌉+1

2

⌋
}.
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Proof. (1) From Theorem 2.6 we have that depth(Itn,m) = φ(n,m, t) + 1, where

φ(n,m, t) =

{
n− t+ 2−

⌊
n−t+2
m+1

⌋
−
⌈
n−t+2
m+1

⌉
, t ≤ n+ 1−m

m, t > n+ 1−m
,

hence, in order to prove the first assertion of the theorem, we have to show that:

sdepth(Itn,m) ≥ φ(n,m, t) + 1 or sdepth(Itn,m) ≥ depth(Itn,m).

We use induction on n,m, t ≥ 1.
If t = 1 then sdepth(In,m) ≥ depth(In,m) follows from [5, Proposition 1.7].
Now, assume t ≥ 2. If n = m then In,n = (x1 · · ·xn) and Itn,n = (xt

1 · · ·xt
n) is a

principal ideal. Hence:

sdepth(Itn,n) = n = depth(Itn,n).

Also, if m = 1 then In,1 = m = (x1, . . . , xn) and we obviously have that:

sdepth(Itn,1) = sdepth(mt) ≥ 1 = depth(mt).

Thus, we may assume that n > m ≥ 2. If n ≤ 2m− 1, then

In,m = xn−m+1 · · ·xmĨn,m, where

Ĩn,m = (x1x2 · · ·xn−m, x2 · · ·xn−mxm+1, . . . , xn−mxm+1 · · ·xn−1, xm+1 · · ·xn).

It follows that Itn,m = xt
n−m+1 · · ·xt

mĨtn,m. As in the proof of Proposition 2.3, we have that:

Itn,m
∼= It2(n−m),n−m[xn−m+1, . . . , xn],

and, therefore, by induction hypothesis and Lemma 1.3, it follows that:

sdepth(Itn,m) ≥ φ(2(n−m), n−m, t) + 1 + 2m− n = φ(n,m, t) + 1,

as required. In the following, we assume n ≥ 2m.
We let L0 := Itn,m and Lj := (Lj−1 : xn−m+j) for 1 ≤ j ≤ m. We have the

decompositions:

Itn,m = L0 = xn−m+1L1 ⊕ L0/xn−m+1L1

L1 = xn−m+2L2 ⊕ L1/xn−m+2L2

...

Lm−1 = xnLm ⊕ Lm−1/xnLm. (34)

From Lemma 2.1, we have that Lm = (Itn,m : xn−m+1 · · ·xn) = It−1
n,m and hence, by induction

hypothesis and Lemma 1.3, we obtain:

sdepth(xnLm) = sdepth(Lm) = sdepth(It−1
n,m) ≥ φ(n,m, t− 1) + 1 ≥ φ(n,m, t) + 1. (35)

According to (35) and the decompositions (34), in order to prove that

sdepth(Itn,m) ≥ φ(n,m, t) + 1,

it is enough to show that

sdepth(Lj−1/xn−m+jLj) ≥ φ(n,m, t) + 1, for all 1 ≤ j ≤ m. (36)

Using the identity v(I : v) = (v) ∩ I, where v ∈ S is a monomial and I ⊂ S is a monomial
ideal, it follows that that:

Lj−1

xn−m+jLj
=

(Itn,m : xn−m+1 · · ·xn−m+j−1)

xn−m+j(Itn,m : xn−m+1 · · ·xn−m+j)
∼=

xn−m+1 · · ·xn−m+j−1(I
t
n,m : xn−m+1 · · ·xn−m+j−1)

xn−m+1 · · ·xn−m+j(Itn,m : xn−m+1 · · ·xn−m+j)
∼=

Itn,m ∩ (xn−m+1 · · ·xn−m+j−1)

Itn,m ∩ (xn−m+1 · · ·xn−m+j)
. (37)
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We claim that:

Itn,m ∩ (xn−m+1 · · ·xn−m+j−1)

Itn,m ∩ (xn−m+1 · · ·xn−m+j)
∼= (xn−2m+j · · ·xn−m+j−1)I

t−1
n−m+j−1,m[xn−m+j+1, . . . , xn]. (38)

Indeed, if u ∈ G(Itn,m) such that xn−m+1 · · ·xn−m+j−1|u and xn−m+1 · · ·xn−m+j ∤ u, then
it is easy to note that u ∈ G(Itn−m+j−1,m) and xn−2m+j · · ·xn−m+j−1|u. We write

u = (xn−2m+j · · ·xn−m+j−1)w, where w ∈ K[x1, . . . , xn−m+j−1].

From Lemma 2.1, it follows that:

w ∈ (Itn−m+j−1,m : xn−2m+j · · ·xn−m+j−1) = It−1
n−m+j−1,m.

In order to complete the proof of the claim (38), it is enough to notice that

u · u′ ∈ (Itn,m ∩ (xn−m+1 · · ·xn−m+j−1)) \ (Itn,m ∩ (xn−m+1 · · ·xn−m+j)),

if and only if u′ is a monomial with xn−m+j /∈ supp(u′).
Now, from (37), (38), Lemma 1.3 and the induction hypothesis, it follows that:

sdepth(Lj−1/xn−m+jLj) = sdepth(It−1
n−m+j−1,m) +m− j ≥

≥ φ(n−m+ j − 1,m, t− 1) + 1 +m− j ≥ n−m+ j − 1− (t− 1) + 2−

−
⌊
n−m+ j − t+ 2

m+ 1

⌋
−
⌈
n−m+ j − t+ 2

m+ 1

⌉
+ 1 +m− j =

n− t+ 2−
⌊
n−m+ j − t+ 2

m+ 1

⌋
−
⌈
n−m+ j − t+ 2

m+ 1

⌉
+ 1 ≥ φ(n,m, t) + 1,

hence, (36) holds. Thus, the first part of the proof is complete.
(2) According to Lemma 1.3 and [3, Theorem 1.3], we have that:

sdepth(Itn,m) ≤ sdepth(Itn,m : w(m, t, q)) ≤ min{sdepth(Um,tS), sdepth(Pm,t,qS)},

where q = ⌊n−t+1
m+1 ⌋. The conclusion follows from the fact that Pn,t,q has 2(q−1) generators,

if q ≥ 2, and Lemma 2.4(3).
□

3. Conclusions

We computed depth(S/Itn,m), t ≥ 1, where In,m is the m-path ideal of a path graph

of lenght n− 1. Also, we showed that S/Itn,m and Itn,m satisfy the Stanley inequality.
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[4] M. Cimpoeaş, Stanley depth of the path ideal associated to a line graph, Math. Rep. 19(69)(2) (2017),

157–164.
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