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COMPARATIVE EVALUATION OF EVOLUTIONARY
LEARNING FITNESS FUNCTIONS IN MODEL FITTING FOR
HUMAN HEART RATE DURING TREADMILL EXERCISE

Andreea ION?, Adrian PATRASCU?, Monica PATRASCU34

With the prevalence of new wearable devices and personal sensing, model
fitting from real-world human-generated data has become a topic of interest in the
fields of bioengineering, sports science, and medical engineering. In this study we
analyze a fitting procedure based on evolutionary learning for human heart rate
during treadmill exercise. We propose a new fitness function for the genetic algorithm
based on the Pearson correlation coefficient and the coefficient of determination. This
study utilizes real-world experimental data collected for linearity analysis, baseline
model fitting, and validation, and includes statistical analysis of validation data.
Results show that compared with a classical fitness function based on the root mean
of square error, the proposed function is suitable for model fitting.

Keywords: model fitting, evolutionary learning, human heart rate, fitness
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1. Introduction

Model fitting from real-world data is a crucial approach in the fields of
sports and medicine that involves calibrating mathematical models to empirical data
gathered from the performance of athletes, training regimens, and physiological
responses. This process aids in optimizing training programs, injury prevention, and
performance enhancement [1]. Similarly, in medicine, model fitting using real-
world patient data informs the understanding of physiological processes, disease
progression, and treatment responses, ultimately leading to personalized healthcare
interventions and improved patient outcomes [2].

The increase in wearable technology is currently enabling new methods of
symptom assessment through digital phenotyping, which is defined as the on-line
quantification of physiological responses using sensors and mobile devices [3].
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This trend increased the need for both computationally fast models obtained from
raw data suitable for implementation on wearables (e.g., smartwatches), as well as
fast, reliable fitting methods to be applied in on-line contexts (e.g., during exercise).

For machine learning, this is a compelling challenge supported by recent
interests of reducing dataset sizes required for learning. This research direction is
called data-centric Al and advocates for data quality over quantity [4]. Ultimately,
this aligns with the new ubiquitous computing individualized model fitting needs.

Few studies regarding data-driven analysis and modeling of human heart
rate (HR) response to physical exercise have been carried out in recent years. In [5,
6] the authors modeled the HR response during exercise and recovery situations.
The models contain feed-forward and feedback components and are trustworthy for
short duration exercises. A non-switching, non-linear anti-windup integral control
for the long duration heart rate response to treadmill exercise was developed in [7].
In [8], the authors show that HR will continue to increase during prolonged
exercise, due to causes such as increased body temperature, dehydration,
accumulation of metabolites.

The identification and control of Hammerstein systems with the purpose of
achieving a desired HR profile by tracking performances for an automated treadmill
system is realized in [9], where the authors found a first order process for the HR
model. A nonlinear system that models the HR response during and after treadmill
walking exercise is developed in [10], as an interconnected system which consists
of components that describe the central and peripheral local responses to exercise
and their interactions. The model parameters were identified experimentally from
subjects walking on treadmill at different speeds. Some studies focus on the
dynamics of the HR response during exercises [11], for instance in [12] the model
is formed of two coupled ordinary differential equations, for the HR Kinetics in
response to exercise. More recently, first and second order linear models have been
explored [13].

Because human HR response to exercise is highly heterogenous, widely
varying across categories (age, health status, neurological disorders, nutrition, time
of day, circadian rhythm, physical fitness levels, lifestyle, etc.) [14], model fitting
over real-world data is a problem that must result in individualized models. In this
study, we explore HR model fitting with evolutionary learning, more specifically
genetic algorithms [15]. These meta-heuristic optimization methods have been used
in data-driven modelling with promising results [16].

For genetic algorithms, the fitness function describes the problem to be
solved, i.e., the criterion to be optimized. During the artificial evolution process,
the potential solutions to the problem are tested against the fitness function and a
level of their fit to solve the problem is calculated. For modelling, the fitness
function returns a measure of how well the model output matches the real-world
collected data. In [17], we presented several fitness functions as performance
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indexes for real-coded genetic algorithms, which ascertain the level of fit based on
the approximation error between the model output and the real-world data.

The aim of this study is to determine whether fitness functions based on the
root mean of square error, the Pearson coefficient of correlation, and the coefficient
of determination are feasible to use for model fitting of HR response.

The rest of the paper is organized as follows: Section 2 describes the
method, Section 3 the results and discussion, and finally Section 4 the conclusions.

2. Method

Evolutionary learning model fitting. The basic principle of model fitting
with evolutionary learning (Fig. 1) requires computing an approximation error ¢
between heart rate as experimental data yexp and model output ym for the model
excited with the same treadmill speed as input u. The learning procedure (a genetic
algorithm) optimizes criterion J to find a fit model M. The output of the genetic
algorithm is a vector of model parameters Mp that are coded into chromosomes as
potential solutions of the fitting problem.
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Fig. 1. Model fitting with evolutionary learning on experimental real-world data.

In this study, we employ a real-coded genetic algorithm that fits the data to
a first order linear model given by:

K
Ts+1'

M(s) = 1)

where K is the model gain (adimensional) and T is the time constant (measured in
seconds). Thus, the chromosome is given by:

[k TI )
The evolution mechanisms are: uniform mutation, which replaces a

randomly selected gene with a random value within the specified gene boundaries;
arithmetic crossover, which generates two children based on a linear combination
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of two parents as described in [18]; normalized ranking selection, introduced in
[19], which is based on the probability of selecting an individual based on a ranked
list. The termination is at either 100 generations or performance of J = 0.0005.

In this study, we propose a criterion Jpr based on the Pearson correlation
coefficient p and the coefficient of determination R? [20, 21]:

n o .2
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where n is the number of data samples, € = y,,, — ¥ is the approximation error,
and ¥,,,, is the mean of the experimental data. Both p and R?* measure the predictive
power of the model and are defined over [-1, 1], where positive values are for
increasingly better fits (O is worst and 1 is best), while the negative values are for
opposing signal variations. The proposed fitness function becomes:

. _ P
{mkm]PR(k) e @)
0<pR*<1
We then use a fitness function criterion Jrmse based on the classic root mean
of square error (RMSE), defined as:

: . /1
mkln]RMSE(k) = min = k=1 Ek - ®)

We also test the fitness functions given by (4) and (5) against two fitness
functions with a criterions equal to either p or R? and the limit conditions:
min Jp(k) = minp min J5(k) = minR?
{ kP k and { kR k . (6)
0<pR*<1 0<pR*<1

The search space of the model parameters has pre-defined boundaries given
by: K€ [Kmin: Kmax] and T € [Tmin» Tmax]-

Experimental setup and data acquisition. The experiment consisted of a
series of HR measurements using a portable heart rate sensor during running on a
treadmill. The subject was a fit male adult (35 years) that has at least 12 hours of
training during his weekly schedule. For this experiment we used a Kettler Boston
XL treadmill (Fig. 2) for controlling the running speed and a Polar Wearlink
Bluetooth heart rate monitor to record their output (Fig. 2). The signal from the HR
monitor was fed into a Labview VI that records the heart rate and then saved as an
Excel Worksheet file. The treadmill can generate speeds between 0 and 16 km/h,



Comparative evaluation of evolutionary learning fitness functions in model fitting for human... 73

while the sensor measures HR between 20 and 250 beats per minute (bpm).

Fig. 2. Equipment for data acquisition: treadmill (left) and sensor (right).

Two data collection experiments were performed: for linearity analysis and
for dynamic model fitting.

Experiment 1: linearity analysis. The protocol for this experiment used a
gradual increase in treadmill speed: 15 minutes warm-up; 7 minutes at 4 km/h; 7
minutes at 6 km/h; 5 minutes at 8 km/h; 5 minutes at 10 km/h; 5 minutes at 12 km/h;
5 minutes at 14 km/h; 15 minutes cool-down.

Experiment 2: model fitting. The protocol for this experiment was split into
two stages spanning over 8 weeks, to allow for variations in the response of the
exercise. First, a baseline measurement was collected at week 1. During week 8, six
measurements were collected once a day. The measurement protocol is: 15 minutes
warm-up; 5 minutes at 6 km/h; 5 minutes at 12 km/h; 10 minutes cool-down.

Analysis. Data from Experiment 1 informs the linearity analysis, through
which we test the time invariance of the HR response for speeds in the [4, 14] km/h
interval. Thus, we can determine the running speeds for which model M described
in (1) will be valid. Data for Experiment 2 informs the model fitting with
evolutionary learning. To obtain an adimensional model gain K, we first normalize
input and output data to [0, 1]: a) conversion to percentages, b) vertical shift to
initialize the response in 0, and c) scaling by step size. The normalization procedure
is standard for data-driven dynamic model identification [17].

In our study, we conducted an analysis of variance (ANOVA) test to analyze
the differences among the four fitness functions. To account for the increased risk
of errors resulting from multiple comparisons, we applied a post-hoc Bonferroni
test. This test adjusts the significance level for each individual comparison, ensuring
a more rigorous threshold and reducing the likelihood of false positives.

All fitting, optimization, analyses, and visualizations are obtained using
Matlab 16 and SPSS 17.0b. Results are considered significant for p < 0.05.

Implementation. The evolutionary learning procedure is available as a case
study included in the MATLAB/Simulink GAOT-ECM (Genetic Algorithm
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Optimization Toolbox: Extension for Control and Modeling) software package,
which is available for download at [22] and includes test data. A detailed
description of the toolbox extension is given in [17]. The toolbox is based on the
GAOT implementation by [23]. The example for this study includes:
1. Level 1: inexperienced users can customize the demonstration script
configuration using the "HRidentification.m" file:
e name of a Simulink implementation (*.mdl file) of the model to be
fitted; GAOT-ECM provides several model structures.
e name of a *.mat file that is used in identification process, containing:
o initial and general boundaries for each model parameter.
o an array containing the input and output experimental data.
o name of the fitness function (*.m file).
o name of performance criterion (from [17]).
2. Level 2: allows more advanced configuration settings in the main
function "GAOT ECM Modelldentification.m™ [23]:
e evalFN: name of the *.m file that represents the fitness function.
e termFNOptimalValue: scalar representing a termination constraint
(satisfactory fitness chosen by user).
e initBounds, varBounds: arrays containing the initial and general
search domains for each parameter (one line per parameter).
e populationSize: scalar number of individuals per generation.
3. Level 3: configurations of the GA itself in file "GAOT ECM
ModelldentificationGA.m": number of generation, accepted tolerance,
selection methods, crossover and mutation operators [23].

Note: the GAOT-ECM package provides several configuration options for
model identification. Depending on the model structure, the effects of these
parameters can vary or be inconsistent over several runs of the algorithm.

Ethics approval is in accordance with ethical guidelines under Romanian
Law No. 206 27/05/2004. The data collection took place at and was approved by
the departmental review board of the Center for Interdisciplinary Research in
Physical Education and Sport, at Babes-Bolyai University, Cluj-Napoca, Romania.
The study participant gave written consent for participation and publication.

3. Results and discussion

Linearity analysis. The data from Experiment 1 is illustrated in Fig. 3 (left).
The linearity interval is between [6-14] km/h, obtained by least-squares first-order
polynomial fitting over sets of the data points (pairs of heart rate and input speed)
and selecting the interval with best fit.

Model fitting. The baseline measurement of Experiment 2 (not normalized)
is presented in Fig. 3 (right). The heart rate response to a step input from 6 to 12
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km/h treadmill speed has a shape suitable for fitting over a first order linear model
as described in (1).
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Fig. 3. Experiment 1 data (left) and Experiment 2 baseline data (right)

The results of the evolutionary learning for the four fitness functions are
presented in Table 1 and Fig. 4. The genetic algorithm procedure was run 10 times
for each fitting. All Pearson correlation calculations had p <« 0.001 and all runs
terminated at the 100 generations conditions. The mean elapsed time for each run
was between 2 and 3 seconds (on a system equipped with an Intel Core i5 CPU
@2.60 GHz and 16 GB of installed memory), which means that the evolutionary
learning procedure, with proper code optimization, would be able to run on portable
devices, such as smartwatches. This also means that individualized models can be
fitted with low computing time expenses.

Results show that the performances of the proposed p/R? fitness function are
comparable with the classic RMSE criterion, with small parameter variance and
comparable, very high predictive power (both p and R? higher than 95%). The
fitness function based on p alone produced the worst fit; this is because the Pearson
correlation coefficient is a good indicator of shape, but not of scale. The fitness
function based on the coefficient of determination produced satisfactory results, but
the with low correlation and large parameter variation.

Table 1
Mean model parameters and fitting performances.
Fitness K Ts] RMSE Pearson Coefficient of | Elapsed
function | [Kmin; Kmax] [Trmin; Tmax] coefficient p |determination R?| time [s]
0.594 24.12
2
1. p/R [0.586: 0.603] | [24.28: 28.01] 0.022 0.973 0.988 2.270
0.592 24.68
2. RMSE [0.585: 0.598] | [23.26: 25.66] 0.021 0.974 0.990 2.138
0.518 1.71
3.p [0.484: 0.566]| [1.04: 2.92] 0.124 0.144 0.473 2.649
0.6 42.41
2
4.R [0.439: 0.824] | [4.78; 67.42] 0.133 0.011 0.911 2.557
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Fig. 4. Results of the evolutionary model fitting on Experiment 2 baseline data

We use the remaining six measurements of Experiment 2 for validation.
Table 2 shows the performances of the four models against these measurements as
means for RMSE, Pearson correlation coefficient p and coefficient of determination
R2. Fig. 5 presents the response of the four models fitted on the baseline data

overlaid onto each of the six measurements.

Table 2
Validation results means and standard deviations (SD) over six measurements.
Fitness K Ts] RMSE Pearson coeff. p Coeff. det. R?
function Mean (£SD) Mean (£SD) Mean (xSD)
1. p/R? 0.594 24.12 0.047 (x0.019) 0.990 (+0.005) 0.901 (+0.060)
2. RMSE 0.592 24.68 0.050 (+0.017) 0.988 (+0.006) 0.888 (+0.067)
3.p 0.518 1.71 0.151 (£0.015) 0.456 (£0.039) 0.062 (+£0.111)
4. R? 0.6 42.41 0.056 (£0.044) 0.984 (+£0.009) 0.854 (£0.204)
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Fig. 5. Responses of the four fitted models against the six validation measurements

A one-way ANOVA between experiments was conducted to compare the
model fitting outcomes calculated for the validation data (RMSE, coefficient of
determination R? and Pearson correlation coefficient p) for the four heart rate
models obtained with the four fitness functions: p/R?, p, RMSE and R2. We found
a significant statistical difference (p < 0.05) for all three conditions: RMSE [F(3,
20) = 3.19, p « 0.001], coefficient of determination R? [F(3, 20) = 109.35, p <
0.001] and Pearson correlation coefficient p [F(3, 20) = 1963.82, p «< 0.001].

Table 3
Results of the post-hoc Bonferroni test for the ANOVA test
Depe_ndent Pair _Mean Standard p-value
Variable Difference Error
p/R? vs. RMSE -0.00322 0.01150 1
RMSE p/R? vs. p -0.10416" 0.01150 « 0.001
p/R?vs. R? -0.00858 0.01150 1
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RMSE vs. p -0.10094" 0.01150 « 0.001
RMSE vs. R? -0.00536 0.01150 1
p vs. R? 0.09558" 0.01150 « 0.001
p/R? vs. RMSE 0.01257 0.05545 1
p/R? vs. p 0.83873" 0.05545 « 0.001
Coefficient of p/R? vs. R? 0.04655 0.05545 1
determination R? RMSE vs. p 0.82616 0.05545 « 0.001
RMSE vs. R? 0.03398 0.05545 1
pvs. R? -0.79218" 0.05545 « 0.001
p/R? vs. RMSE 0.00216 0.00847 1
p/R? vs. p 0.53355" 0.00847 « 0.001
Pearson correlation p/R? vs. R? 0.00557 0.00847 1
coefficient p RMSE vs. p 0.53139" 0.00847 « 0.001
RMSE vs. R? 0.00341 0.00847 1
pvs. R? -0.52798" 0.00847 « 0.001

Upon conducting post-hoc comparisons using the Bonferroni test (Table 3),
we found that among the three outcomes (RMSE, coefficient of determination R?
and Pearson correlation coefficient p), the third fitness function (p) demonstrated
significant statistical differences. Conversely, no significant statistical differences
were observed when comparing any combination of the remaining three fitness
functions outcomes. These results highlight that the fitness function based on the
Pearson coefficient alone does not provide consistent results, in the context of the
evaluated outcomes, while emphasizing the consistency of the other three fitness
functions in their statistical performance. A non-significant outcome from the
Bonferroni test indicates that the performance of each fitness function in the
comparison pair is practically indistinguishable. Accordingly, these favorable
results support the adoption of our proposed fitness function (p/R?) for model fitting
of human heart rate during treadmill exercise.

4. Conclusions

In this paper we study human heart rate model fitting with genetic
algorithms, in which we defined fitness functions based on the root mean of square
error, the Pearson correlation coefficient, and the coefficient of determination. The
purpose is to determine if these fitness functions are feasible to use for model fitting
of heart rate response during treadmill exercise. The implemented genetic algorithm
fits the data to a first order linear model. An example of model fitting with various
fitness functions is available as part of the GAOT-ECM toolbox.
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The proposed fitness functions are (1) minimization of the ratio p/R?
between the Pearson correlation coefficient p and the coefficient of determination
R? (2) minimization of the classic root mean of square error (RMSE); (3)
minimization of the Pearson correlation coefficient p, and (4) minimization of the
coefficient of determination R2.

We performed two data collection experiments, for linearity analysis and
for dynamic model fitting. Results show that the performances of the proposed
fitness function based on p/R? are comparable with the classic RMSE criterion. The
fitness function based on p alone produced the worst fit, while the one based on R?
produced satisfactory results, but with lower correlation.
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