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FLOW AROUND A 2D-CYLINDER: INFLUENCE OF BLUFF-
BODIES IN THE WAKE  

Robert MITRUȚ1, Diana Maria BUCUR2*, Georgiana DUNCA3,  
Michel J. CERVANTES4 

The current paper presents the linear stability analysis (LSA) applied on the 
flow around a 2D bluff-body of circular shape at Reynolds number of 80. The LSA is 
applied to study the evolution of a small perturbation inserted into the flow. The 
spatial structures of the most unstable eigenmode are used to compute the wavemaker, 
i.e., the location that is the most responsive to an external force, which can act to 
modify the stability of the flow. Additional bluff-bodies are inserted among the main 
circular bluff-body in the designated zone to modify the flow dynamics and observe 
their shape and size influence on the flow stability. 
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1. Introduction 

During the last decades, preservation and protection of the environment 
became a top priority among governmental agendas. The energy sector had to 
develop more environmental-friendly strategies to limit the production capacity of 
polluting factories, encourage the use of green energy sources, etc. [1]. Despite the 
large amount of research, only a few green, renewable energy sources, namely wind 
and solar, managed to prove a high capacity of production. However, these sources 
present an intermittent character that affects the stability of the power grid. In this 
context hydropower is nowadays used to assure a proper balance between market 
demand and supply due to its fast response time. This backup capacity involves 
using the hydraulic turbines in conditions far from best efficiency point (BEP) 
which leads to vibrations, efficiency decrease and, in the long term, machinery and 
even structure fatigue under part load operations [2]. All these unwanted 
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phenomena are the result of a detrimental flow structure, vortex breakdown (VB), 
which develops in the draft tube due to the loss of flow stability [3]. It is useful to 
develop numerical methods and mitigation strategies using simplified test cases [4], 
[5], because of the geometry and flow complexity in hydraulic turbines where VB 
appears. 

The VB phenomenon was first studied by Peckham and Atkinson 
considering the air flow over a delta wing [6]. Using an experimental setup formed 
of a pipe with a diverging section and a bell-mouth shaped inlet including guide 
vanes, T. Sarpkaya reproduced different types of VB using water as flow fluid. He 
concluded that the VB type is influenced by the swirl number, defined as the 
circumferential momentum divided by the axial momentum, and the Reynolds 
number [7]. Wang and Rusak defined a critical swirl number which can be obtained 
by approaching an eigenvalue problem and corresponds to the exchange of stability 
point [8]. They concluded that the VB breakdown is due to the stability loss of the 
swirling flow. M. Kurosaka et. al reproduced different VB types using a similar 
apparatus to the one used by T. Sarpkaya but having a straight pipe. They also 
obtained different types of VB by imposing external disturbances to the flow [3]. 
Experimental methods were applied on simplified geometries of draft tubes to 
decrease the residual swirls such as air injection and stabilizer fins mounted on the 
walls [9], [10]. Resiga et. al successfully mitigated the pressure fluctuations using 
a water jet injected through the runner hub and used a mathematical model to 
compute the axial and tangential velocity profile which may be used in early 
optimization stages [11], [12]. 

Moreover, the flow through the turbines can be attributed to the open flow 
class, where the fluid particles are in a state of constant entry and exit of the 
experimental domain [2]. M. Kurosaka et. al and O. Reynolds remarked that this 
type of flows is constantly subject to infinitesimal external perturbations which in 
certain conditions can destabilize the flow [3], [13]. 

The evolution of an external infinitesimal disturbance that enters a system 
found in an equilibrium state can be analyzed in two manners, using a local LSA or 
a global LSA. The local LSA is suitable for weak non-parallel flows, i.e., the flow 
direction remains constant along the length of the flow domain. This approach 
requires a modest computing effort as it partitions the physical domain to evaluate 
its stability. The global LSA is suitable for strongly nonparallel flows, with the key 
assumption that the basic state is a truly parallel flow [14]. This assumption was 
extended to unsteady, i.e., time dependent, laminar flow by using the time averaged 
flow, i.e., the mean flow. This approach was successfully used in applications such 
as two-dimensional vortex shedding in the bluff bodies of circular shape wake or 
three-dimensional spiral vortex breakdown flows [15], [16]. 

An extended work to the stability analysis, namely the sensitivity analysis 
has recently been used to localize the flow regions most receptive to an external 
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force. Therefore, the flow properties corresponding to stability can be modified by 
a small perturbation applied to the main flow such as physical object, boundary 
conditions, advection rate or localized forces more efficiently. Experimental and 
numerical work has been carried out in order to determine the effect of a small 
control body of cylindric shape behind the main bluff body. It was shown that a 
suitably placed control cylinder may decrease the vortex shedding frequency [17]. 
Giannetti and Luchini [18] and O. Marquet [19] developed a systematic approach 
to diminish this frequency using a local force proportional to the disturbance 
amplitude, representing a source in the stability equations.  

In the present paper, numerical simulations of an incompressible laminar 
flow around bluff-body of circular shape are performed at Re = 80. The flow 
dynamics are analyzed from both steady and unsteady state solutions. The steady 
state solution is found solving dimensionless Navier-Stokes equations in a time-
independent manner, i.e., the term containing the partial derivative in respect with 
time is removed. The steady flow solution is used for initialization of the unsteady 
flow simulation to assure a faster convergence of the results. The mean flow, i.e., 
time averaged flow extracted from the unsteady solution and the steady flow 
solutions are further used to perform the stability analysis. The obtained results 
provide relevant information to develop techniques (active and passive) to control 
and manipulate the flow more effectively [20].  

2. Problem formulation 

The dynamics of an incompressible laminar unsteady flow is described by 
the following dimensionless Navier-Stokes equations: 

 
1 2Re

0
U t U U p U

U

−∂ ∂ + ⋅∇ = −∇ + ∇

∇⋅ =

 (1) 

where U=(u,v,w) is the velocity field, Re is the Reynolds number and p is the 
pressure. To obtain the dimensionless form of equations (1), for the length, velocity, 
and pressure are used as reference the diameter of the 2D-cylinder, D, the flow 
velocity U∞ and the density of the fluid.  

In the linear stability theory, the total field is obtained by summing the base 
flow and a small perturbation: 
 '; 'b bU U U p p pε ε= + = +  (2) 

where U’=(u’,v’,w’) and p’ are the perturbation terms while 1ε   denotes an 
infinitesimal magnitude. The linearized Navier-Stokes equations are determined by 
introducing the equations (2) into (1): 
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The investigation procedure of a perturbation behavior, based on the set of 
equations (3) and considering that the perturbation can be decomposed into a spatial 
structure that grows or decays exponentially in space and time, is presented in detail 
in [21]. 

To identify the location where the instabilities arise, the following quantity 
is determined: 

 
*

, *
q qS
q q
⊗

=  (4) 

where q  and *q  represent the spatial structure, also known as the direct field, and 
the adjoint field. 

This location, referred to as a wavemaker, could be used to introduce a small 
control bluff-body to modify the flow structure and damp the instabilities [18], [19], 
[22]. 

3. Geometry and boundary conditions 

The geometry used in the current research consists of a 2D rectangular 
domain containing a 2D cylinder, as shown in Fig. 1. The diameter is D = 1. The 
bluff-body is placed at 40D downstream of the domain’s inlet and at 80D upstream 
the outlet. The width of the domain is 80D.  

The cartesian system origin is set at the circular shape center, at 
( , ) (0,0)x y = . The x-axis corresponds to the main flow direction (streamwise), 
while the y-axis is perpendicular to x-axis. 

Fig. 1. Computational domain geometry 
 

To compute the base flow, a value of 1 is set for the dimensionless velocity 
1U∞ =  on the inlet of the domain Γinlet, i.e., ( , ) (1,0)u v = . A free-outlet boundary 

condition is set, Γoutlet. The bluff-body is considered fixed with no-slip wall 
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boundary condition, ( , ) (0,0)u v = on Γcircle. To avoid any confinement effects 
which could affect the flow around the bluff-body, the upper and lower limits of the 
domain, Γupper and Γlower are set as slip walls, / 0; 0u y v∂ ∂ = = . 

For the eigenvalue problem, the perturbation terms are set to a null value on 
the inlet and wall, i.e., 0u v w= = = on Γinlet and Γcircle. 

The analyzing domain is discretized using the AdaptMesh procedure 
available through FreeFEM++. When conducting numerical simulations, the mesh 
has a crucial aspect in providing relevant results. However, a consensus should be 
reached between mesh quality and dimensions reported to the results and 
computational time. A mesh too coarse could lead to a low computational time at 
the cost of unrealistic results while on the other hand, a mesh too fine could provide 
good results at the cost of an increased computational time. In the present research, 
the interest zone is in the bluff-body wake where small vortices shed periodically 
after a certain time. Thus, the mesh is adapted to the Hessian of the streamwise 
velocity resulting in a refined discretization following the vortex shedding path as 
it is shown in Fig. 2: 
 2 2 2 2 2 2( / , / , / )D u u x u x y u y= ∂ ∂ ∂ ∂ ∂ ∂ ∂  (5) 

The entire procedure is detailed in [21]. 
 

Fig. 2. Spatial discretization of the computational domain using tetrahedral elements: left – entire 
domain, right – close-up detail [21] 

4. Results and discussions 

A monitoring point is used to acquire the streamwise velocity at each 
iteration to extract relevant information about the vortex shedding occurrence. The 
mean flow is determined by time-averaging the flow over a period of 20 fully cycles 
of developed vortex shedding. 
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The global LSA is carried on the steady and mean flow fields to observe the 
evolution and the onset of the infinitesimal disturbances. Further, several bluff-
bodies of circular and elliptical shapes are physically modelled into the domain with 
the purpose of decreasing the disturbances growth rate and stabilizing the flow.  

In the following, the steady and unsteady flow solutions as well as 
comparison with the available data in the literature are presented. The section 
dedicated to the global LSA is divided into four subparagraphs. First and second 
subparagraphs presents the spatial structures of the most unstable eigenmodes 
(direct and adjoint) related to the leading eigenvalues. The third subparagraph 
shows the wavemaker region, i.e., the most receptive zones to a base flow 
modification. Finally, the influence of circular and elliptical shaped bluff-bodies 
strategically placed in the zones indicated by the wavemaker is presented. 

 4.1. Steady State Flow Solution – no control bluff-bodies 

The steady state flow equations are solved in FreeFEM++ with the classic 
Newton method for solving partial derivative equations, which considers an initial 
value for the flow parameters and iterates the results until a certain residual value 
is reached [23]. For the current case the minimum residuals are set to 10-6 for all 
flow parameters as it is considered enough by several researchers to prevail relevant 
results and the simulation converged in about 7 iterations [24]. A recirculation zone 
indicated by a negative sign of the streamwise velocity is observed behind the circle. 
In the detail shown in Fig. 3, the flow values are set to a maximum of zero, so the 
recirculation zone is highlighted. The total recirculation length, Lx, is about ~4.9D. 
Similar values are also reported in the literature [18]. 

 

 
Fig. 3. Streamwise velocity - steady state 

 

Lx 
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 4.2. Unsteady State Flow Solution – no control bluff-bodies 

The unsteady state simulations are carried out with a time step of 0.05t∆ =  
and running for 6000 iterations. A monitoring point (MP) is placed at the location 
( , ) (2.5,0.5)x y =  which is slightly off-axis. After ~30 time steps, a transition from 
a columnar to a slightly oscillating flow is observed. After ~75 time steps, small 
vortices are observed the wake of the 2D cylinder. At non-dimensional time units 
The transition to a periodical vortex shedding is completed at ~115 time steps, see 
Fig. 4. 

 
Fig. 4. Streamwise velocity in function of time at MP(2.5,0.5) 

 
Using Fig. 4, 20 periods of developed vortex shedding are used to time-

average the flow. Also, a Fast Fourier Transform is applied in the same conditions 
revealing a vortex shedding frequency of f=0.148, see Fig. 5.  

 
Fig. 5. Vortex shedding frequency at Re = 80 
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4.3. Linear Global Stability Analysis (Global LSA) 

The global LSA is first carried on considering the steady state and the mean 
flow fields. In each case the spatial structures of the most unstable modes (direct 
and adjoint) are computed using the procedure detailed in [21]. The leading 
eigenvalue related to the most unstable mode is used to determine if the flow is 
linearly stable or unstable based on the growth rate sign. The imaginary part of the 
eigenvalue returned by the FreeFEM++ software is the angular frequency. Hence 
all the results shown further must be divided by 2π to obtain the correct values of 
the characteristic frequencies. The eigenvalue problems are solved using the shift-
invert Arnoldi method which require a reference value [23], [25]. 

4.3.1. Steady state flow  

The leading eigenvalue of the global LSA in the steady state flow is found 
to be ωsteady=0.093+i0.742. Similar values are reported in the literature as it is 
shown in table 1 [15]. 

Table 1 
Global LSA of the steady state flow 

 Current paper Literature [15] 
Re Growth rate Frequency Growth rate Frequency 
80 0.093 0.118 0.096 0.120 

 
The global LSA of the steady state flow cannot handle the nonlinearities of 

the vortex shedding and it does not succeed to capture the instabilities frequency as 
it also reported in [15]. The spatial structures that have the most unstable eigenmode 
are shown in Fig. 6. 

 
Fig. 6. Real part of the streamwise component for Steady state case: a) Direct eigenmode, 

and b) Adjoint eigenmode  
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It is observed that the direct eigenmode develops in the bluff-body wake 
while the adjoint eigenmode is concentrated in its close vicinity and tends to 
propagate upstream too. Interpreted separately, the direct and adjoint eigenmodes 
do not provide relevant data about the onset of the instabilities. Hence, the idea of 
using the dot product shown in equation (7) is to overlap the spatial structures of 
the direct and adjoint eigenmodes to obtain the maximum receptive zone to a base 
flow modification. 

4.3.2. Mean unsteady flow  

The leading eigenvalue of the global LSA of the mean flow is found to be 
ωmean=-0.009+i0.944. In this case, the dimensionless frequency is found to be 
~0.150 which is roughly 1.35% overestimated compared to the vortex shedding 
frequency from the numerical simulations presented in Section 4.2. The real part of 
the eigenvalue, representing the growth rate is almost zero, leading to the idea that 
when the mean flow is associated to a steady solution it is marginally stable [15]. 
The comparison to the literature results is presented in table 2. 

Table 2 
Global LSA of the mean flow 

 Current paper Literature [15] 
Re Growth rate Frequency Growth rate Frequency 
80 -0.009 0.15 0 0.155 

 
The spatial structures of the instabilities look similar to the ones from the 

global LSA of the steady state flow. Still, a difference appears especially in the 
amplitudes of the results as observed in Fig. 7. 

 
Fig. 7. Real part of the streamwise component for Mean flow case:  a) Direct eigenmode,  

and b) Adjoint eigenmode;  
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4.3.3. Sensitivity analysis  
The sensitivity map shown in Fig. 8 reveals the regions where the flow 

presents the maximum receptivity to a force that can be applied to attenuate the 
instabilities. 

 
Fig. 8. Sensitivity map based on the steady state flow 

 
Two symmetrical lobes are observed in Fig. 8 in the wake of the circle close 

to the recirculation zone. Outside of the two lobes area the sensitivity amplitude is 
almost zero. Hence, the direct and adjoint global LSA represents a powerful tool on 
understanding the dynamics of the instabilities when they are studied together 
instead of being analyzed separately. Similar sensitivity maps are presented in the 
literature [18]. 

4.3.4. Control based on the Steady state flow 
Once the most powerful feedback zones are determined, an external force 

may be inserted into the governing equations to modify the flow dynamics and 
implicitly stabilize it. In the current paper the flow dynamics are modified by 
inserting different bluff-bodies in the wake of the region. Firstly, two small circles 
of a diameter d=0.1D are physically modelled at the locations: (xc1,yc1=3.1,0.5), 
respectively (xc2,yc2=3.1,-0.5). Secondly, two elliptical shapes are placed with their 
centre in the same locations. The elliptical shapes present an aspect-ratio of the 
major-to-minor axis of 3, where the major axis has a length of 3D and the minor 
axis has a length of 1D.  

The exact positions of the bluff-bodies are illustrated in Fig. 9 a) and b) for 
the small control circles, respectively the elliptical shaped ones. 
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Fig. 9. Control bluff-bodies positions 

 
As mentioned earlier, the eigenvalue problems are calculated using the shift-

invert Arnoldi methods [25], [26]. This method requires a reference value for the 
eigenvalue so the solver seeks and returns the closest results at a given margin of 
error. Therefore, the leading eigenvalue being unknown in these cases, the most 
unstable eigenvalue from the previous case is used as a reference (see Section 
4.3.1). 

 
Fig. 10. Eigenvalues spectrum – two small control circles 

The global LSA of the steady flow with two small control circles reveals a leading 
eigenvalue of ωcc=0.072+i0.72. The placement of two small control circles 
manages to decrease the most unstable eigenmode growth rate by ~29.17%. 

Stable 
Unstable 
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Fig. 11. Eigenvalues spectrum – two control elliptical bodies 

 
Moreover, the global LSA around the steady flow with two elliptical shapes 

in the wake of the circle returns only eigenvalues with negative growth rates, hence 
the flow is linearly stabilized. 

5. Conclusions 
The vortex shedding dynamics behind bluff-body of circular shape at Re = 

80 are analyzed through a global LSA. Firstly, the steady state, i.e., time-
independent, solution is obtained with the Newton iterative method. The results are 
validated with the available data in the literature using one of the most studied 
quantities of the flow around a circle, the recirculation length. The recirculation 
length is found to be ~4.9D as it is reported in [18]. The flow field from the steady 
state solution is considered as the initial condition for the unsteady case, i.e., the 
time dependent solution. A monitoring point is added in the circle wake just off-
axis to acquire the axial velocity at each time step. The transition to a slightly 
oscillating flow is observed after ~30 non-dimensional time units. Small vortices 
are observed to burst in the wake of the circle after ~75 non-dimensional time units. 
The transition to the vortex shedding is completed and becomes periodical after 
~115 non-dimensional time units. An interval of 20 fully developed cycles of vortex 
shedding is used to time average the flow. A Fast Fourier Transform (FFT) is 
performed on the same interval. The vortex shedding frequency is found to be f = 
0.148.  

The global LSA of the steady state flow reveals a leading unstable 
eigenvalue ωsteady=0.093+i0.742 compared to ωsteadyLiterature=0.096+i0.754 reported 
in literature [15]. The imaginary parts represent an angular frequency which must 
be divided by 2π to get the dimensionless frequency. Thus, the frequency of the 
instability is approximately 0.118, while a frequency of 0.12 is reported in [15]. In 

Unstable 

Stable 
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both cases it is observed that the frequency of the instability is underestimated 
compared to the vortex shedding frequency. It is concluded that the global LSA of 
the steady flow cannot handle the nonlinearities of the vortex shedding and it fails 
to predict the frequency of the instability. 

The global LSA of the mean flow reveals a leading unstable eigenvalue 
ωmean=-0.009+i0.944. While the dimensionless frequency is found to be ~0.150 
which is roughly 3.22% underestimated compared to the literature, the growth rate 
is close to 0. In this case, when the mean flow is used as a steady solution for the 
global LSA, it is marginally stable. 

The sensitivity analysis of the steady flow reveals two axisymmetric lobes 
in the wake of the circle. Firstly, two small control circles with a diameter of 
d=0.1D each are placed in the most receptive zones indicated by the lobes. The 
global LSA of the steady flow with two small control circle reveals that the most 
unstable mode growth rate is reduced by ~29.17%. Secondly, two elliptical shaped 
bluff-bodies are places with their center in the same positions indicated by the 
sensitivity analysis. The global LSA of the steady flow with elliptical bluff-bodies 
returns only eigenvalues with negative signs meaning that the flow is linearly stable. 

The passive control technique with different bluff-bodies is used in a simple 
flow configuration to determine the influence on the flow dynamics and its stability. 
These techniques can be further developed and used in more complex geometries 
such as the flow inside the hydraulic turbines to stabilize the flow and extend the 
operational domain of these machines at a maximum efficiency with minimal 
cavitation. 
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