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THE EXISTENCE OF GLOBAL ATTRACTOR FOR A SIXTH-ORDER

PHASE-FIELD EQUATION IN Hk SPACE

Xi Bao1, Ning Duan2, Xiaopeng Zhao3

In this paper, by using the regularity estimates for the semigroups, iteration
technique and the classical existence theorem of global attractors, we studied the existence
of global attractor for a sixth-order phase-field equation in the fractional power spaces
Hk(Ω), where 0 ≤ k < ∞.

Keywords: phase-field equation, iteration technique, global attractor, regularity esti-
mates.

1. Introduction

In [11], the authors proposed a higher order nonlinear Willmore regularization in
the Ginzburg-Landau free energy, which takes into account strongly anisotropic crystal and
epitaxial growth during the growth and coarsening of thin films. The modified Ginzburg-
Landau free energy is in the following form:

ψMGL =

∫
Ω

[γ(ν)
1

ϵ
(
ϵ2

2
|∇ρ|2 + F (ρ)) +

β

2

1

ϵ3
ω2]dx, (1)

where ρ is the order parameter, Ω is the domain occupied by the material(we assume that
it is a bounded and regular domain of Rn, n=1, 2 or 3), γ(ν) is a function describing the
anisotropy effects, ν = ∇ρ/|∇ρ| (in what follows, ν also denotes the unit outer normal to
the boundary Γ of Ω), ϵ is a small parameter about the measure of the interface transition

layer thickness, ω = f(ρ)−∆ρ, f = F
′
is nonlinear Willmore regularization.

Consider mass conservation, i.e. ∂ρ/∂t = −divh, where h is the mass flux which is
related to the chemical potential µ by the constitutive relation h = −M∇µ, and that the
chemical potential is a variational derivative of ψMGL with respect to ρ, we end up with the
following sixth-order anisotripic phase-field equation

∂ρ

∂t
=

1

ϵ
∇ · (M∇µ),

µ =
1

ϵ
(γf(ρ)− ϵ2∇ ·m) +

β

ϵ2
(f

′
(ρ)ω − ϵ2∆ω),

m = γ(ν)∇ρ+ |∇ρ|P∇νγ(ν),

ω =
1

ϵ
(f(ρ)− ϵ2∆ρ),

(2)

whereM is the mobility, m describes the anisotropic gradient, P = I−ν⊗ν is the projection
matrix, I is the identity matrix, ∇ν represents the gradient with respect to the components
of the normal vector, respectively.
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Latterly, Miranville [6] supposed γ(ν) = 1, β = 1, ϵ = 1 and the equation is isotropic,
provided the following modification of the Ginzburg-Landau free energy

ψMGL =

∫
Ω

(
1

2
|∇ρ|2 + F (ρ) +

1

2
ω2)dx, (3)

and the following sixth-order phase-field equation
∂ρ

∂t
= ∇ · (M∇µ),

µ = f(ρ)−∆ρ+ ωf
′
(ρ)−∆ω,

ω = f(ρ)−∆ρ,

(4)

The author also supposed that the nonlinear function f(ρ) is of class C2 and

f(0) = 0, f ′(s) ≥ −c0, c0 ≥ 0, s ∈ R,
f(s)s ≥ c1F (s)− c2 ≥ −c′2, c1 > 0, c2, c

′
2 ≥ 0, s ∈ R,

F (s) =

∫ s

0

f(τ)dτ,

sf(s)f ′(s)− f2(s) ≥ c3f
2(s)− c4, c3 > 0, c4 ≥ 0, s ∈ R,

|f ′(s)| ≤ ϵ|f(s)|+ c5, ϵ > 0, c5 ≥ 0, s ∈ R,
sf ′′(s) ≥ 0, s ∈ R,

(5)

studied the asymptotic behavior, in terms of finite-dimensional attractors, for the initial-
boundary value problems of equation (4) together with the mobility M ≡ 1.

Remark 1.1. Eq.(4) can be rewritten, equivalently, as

∂ρ

∂t
= ∆3ρ−∆2ρ−∆2f(ρ)−∆(f ′(ρ)∆ρ) + ∆(f ′(ρ)f(ρ)) + ∆f(ρ), t > 0, x ∈ Ω, (6)

In this paper, by using the regularity estimates for the semigroups, iteration technique
and the classical existence theorem of global attractors, we consider the long time behavior
of solutions for the initial-boundary value problem for Eq.(6). On the basis of physical
considerations, as usual Eq.(6) is supplemented with the following boundary value conditions

∂ρ

∂ν
|∂Ω =

∂∆ρ

∂ν
|∂Ω =

∂∆2ρ

∂ν
|∂Ω = 0, (7)

and the initial condition
ρ(x, 0) = ρ0(x), x ∈ Ω. (8)

Remark 1.2. The dynamic properties of diffusion equation and diffusion system such as
the global asymptotical behaviors of solutions and global attractors are important for the
study of diffusion model, which ensure the stability of diffusion phenomena and provide the
mathematical foundation for the study of diffusion dynamics. There are many studies on the
existence of global attractors for the diffusion equations on bounded domains and unbounded
domains, see for example [1, 2, 3, 4, 7, 10].

This article is organized as follows. In section 2, we give some preparations for our
consideration and the main theorem of this article. In section 3, we prove the existence of
global attractors for problem (6)-(8) in the Sobolev space Hk(Ω) with any k ≥ 0.

2. Preliminary

First of all, we give the following lemma on global existence and uniqueness of solution
to problem (6)-(8).

Lemma 2.1. Assume ρ0 ∈ H3(Ω) and the nonlinear function f(s) satisfies (5). Then,
problem (6)-(8) has a unique (weak) solution ρ such that

ρ ∈ L∞(0, T ;H 1
2
) ∩ L2(0, T ;H6(Ω)), ∀T > 0.
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The proof of existence is based on the classical Galerkin method and the a priori
estimates (see [6]). Thanks to the above existence lemma, we know that there exists a
continuous operator semigroup {S(t)}t≥0 in H3 satisfying

S(t)ρ0 = ρ(t, ρ0), t ≥ 0.

Futhermore, by the classical existence theorem of global attractors (see [10]) and on a priori
estimates, we give the following lemma on the existence of the global attractor of problem
(6)-(8) in H3(Ω), which can be found in Miranville [6].

Lemma 2.2. [6] Assume ρ0 ∈ H3(Ω) and the nonlinear function f(s) satisfies (5). Then,
the solution of problem (6)-(8) has a global attractor in H3.

Now, in order to consider the global attractors for Eq.(6) in theHk space, we introduce
the define as follows

H =

{
ρ ∈ L2(Ω),

∂ρ

∂ν
|∂Ω = 0

}
,

H 1
2
=

{
ρ ∈ H3(Ω)

∩
H,

∂ρ

∂ν
|∂Ω =

∂∆ρ

∂ν
|∂Ω = 0

}
,

H1 =

{
ρ ∈ H6(Ω)

∩
H,

∂ρ

∂ν
|∂Ω =

∂∆ρ

∂ν
|∂Ω =

∂∆2ρ

∂ν
|∂Ω = 0

}
.

(9)

In this article, we let G(ρ) = −∆2ρ − ∆2f(ρ) − ∆(f ′(ρ)∆ρ) + ∆(f ′(ρ)f(ρ)) + ∆f(ρ) be
a nonlinear function and assume that the linear operator L = ∆3 : H1 → H in (9) is a
sectorial operator, which generates an analytic semigroup etL, and L induces the fractional
power operators and fractional order spaces as follows

Lα = (−L)α : Hα → H, α ∈ R, (10)

where Hα = D(Lα) is the domain of Lα. By the semigroup theory of linear operators,
Hβ ⊂ Hα is a compact inclusion for any β > α.

For sectorial operators, we have the following lemma.

Lemma 2.3. [8, 9] Assume that L is a sectorial operator which generates an analytic semi-
group T (t) = etL. If all eigenvalues λ of L satisfy Reλ < −λ0 for some real number λ0 > 0,
then for Lα(L = −L) we have

(i)T (t) : H → Hα is bounded for all α ∈ R and t > 0;
(ii)T (t)Lαx = LT (t)x, ∀x ∈ Hα;
(iii)For each t > 0, LαT (t) : H → H is bounded, and

∥LαT (t)∥ ≤ Cαt
−αe−δt,

where δ > 0 and Cα > 0 is a constant depending only on α;
(iv)The Hα-norm can be defined by ∥x∥Hα = ∥Lαx∥H .

Finally, we give the main theorem of this article, which provides the existence of
global attractors of Eq.(6) in any kth space Hk.

Theorem 2.1. Assume ρ0 ∈ Hk(Ω) (k ∈ R+) and the nonlinear function f(s) satisfies (5),
then the solution ρ of problem (6)-(8) possesses a global attractor A in the space Hk(Ω)
which attracts all the bounded set of Hk in the Hk-norm.

Remark 2.1. Recently, Miranville[6] studied the global dynamics of the initial-boundary
value problem of sixth order phase-field equation. The author supposed that the initial data
ρ0 ∈ H3(Ω), established the existence and uniqueness of global weak solutions and proved
the existence of bounded absorbing set. Hence, the H3-global attractor had been obtained
straightforward. In this manuscript, based on Miranville’s results, we are just going to study
the existence of global attractor in fractional space Hk(Ω), where k ∈ [0,∞). The main tools
we used is the properties of sectorial operator and the iteration technique while Miranville’s
main tools are energy inequality and a priori estimates. The result of Theorem 2.1 can be
viewed as an improvement of Miranvill’ work[6].
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3. Proof of Theorem 2.1

On the basis of Ma and Wang [5], it’s well known that the solution ρ(t, ρ0) of problem
(6)-(8) can be expressed as

ρ(t, ρ0) = etLρ0 +

∫ t

0

e(t−τ)LG(ρ)dτ. (11)

where L = ∆3 and G(ρ) = ∆g(ρ) = −∆2ρ−∆2f(ρ)−∆(f ′(ρ)∆ρ)+∆(f ′(ρ)f(ρ))+∆f(ρ).
Then, (11) means

ρ(t, ρ0) = etLρ0 +

∫ t

0

e(t−τ)L∆g(ρ)dτ = etLρ0 +

∫ t

0

(−L) 1
3 e(t−τ)Lg(ρ)dτ. (12)

In order to prove Theorem 2.1, we first prove the following lemma.

Lemma 3.1. For any bounded set U ∈ Hα, there exists a constant C > 0 such that

∥ρ(t, ρ0)∥Hα ≤ C, ∀t ≥ 0, ρ0 ∈ U ⊂ Hα, α > 0. (13)

Proof. For α = 1
2 , this follows from Lemma 2.2, i.e. for any bounded set U ⊂ H 1

2
, there

exists a constant C, C > 0 such that

∥ρ(t, ρ0)∥H 1
2
≤ C, ∀t ≥ 0, ρ0 ∈ U ⊂ H 1

2
, (14)

Then we only need to prove (13) for any α ≥ 1
2 .

Step 1. We prove that for any bounded set U ⊂ Hα ( 12 ≤ α < 2
3 ), there exists a

constant C > 0 such that

∥ρ(t, ρ0)∥Hα ≤ C, ∀t ≥ 0, ρ0 ∈ U,
1

2
≤ α <

2

3
. (15)

We claim that g : H 1
2
→ H is bounded, by Sobolev embedding theorem, we have

H 1
2
↪→ H2(Ω), H 1

2
↪→W 1,4(Ω), H 1

2
↪→ L∞(Ω).

Then,we obtain

∥g(ρ)∥2H =

∫
Ω

| −∆ρ−∆f(ρ)− f ′(ρ)∆ρ+ f ′(ρ)f(ρ) + f(ρ)|2dx

≤C
∫
Ω

(|∆ρ|2 + |∆f(ρ)|2 + |f ′(ρ)∆ρ|2 + |f ′(ρ)f(ρ)|2 + |f(ρ)|2)dx

≤C(∥∆ρ∥2 + ∥f
′′
(ρ)|∇ρ|2∥2 + ∥f ′(ρ)∆ρ∥2

+ ∥f ′(ρ)∆ρ∥2 + ∥f ′(ρ)f(ρ)∥2 + ∥f(ρ)∥2)

≤C(∥ρ∥2H2 + ∥f
′′
(ρ)∥2L∞∥ρ∥4W 1,4 + ∥f ′(ρ)∥2L∞∥ρ∥2H2

+ ∥f ′(ρ)f(ρ)∥2L∞ + ∥f(ρ)∥2L∞)

≤C(∥ρ∥2H2 + ∥ρ∥4W 1,4 + C) ≤ C(∥ρ∥2H 1
2

+ ∥ρ∥4H 1
2

+ C)

(16)
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which means that g : H 1
2
→ H is bounded. By (12), (14) and (16) we find that

∥ρ(t, ρ0)∥Hα =∥etLρ0 +
∫ t

0

(−L) 1
3 e(t−τ)Lg(ρ)dτ∥Hα

≤C∥ρ0∥Hα +

∫ t

0

∥(−L) 1
3+αe(t−τ)Lg(ρ)∥Hdτ

≤C∥ρ0∥Hα +

∫ t

0

∥(−L) 1
3+αe(t−τ)L∥ · ∥g(ρ)∥Hdτ

≤C∥ρ0∥Hα + C

∫ t

0

(t− τ)−βe−δ(t−τ)dτ

≤C∥ρ0∥Hα + C

∫ t

0

τ−βe−δτdτ

≤C, ∀t ≥ 0, ρ0 ∈ U ⊂ Hα,

(17)

where β = 1
3 + α, (0 < β < 1). Hence, (15) is valid.

Step 2. We prove that for any bounded set U ⊂ Hα ( 23 ≤ α < 5
6 ), there exists a

constant C > 0 such that

∥ρ(t, ρ0)∥Hα ≤ C, ∀t ≥ 0, ρ0 ∈ U,
2

3
≤ α <

5

6
. (18)

We claim that g : Hα → H 1
6
is bounded, by Sobolev embedding theorem,we have

Hα ↪→ H3(Ω), Hα ↪→W 1,6(Ω), Hα ↪→W 1,4(Ω),

Hα ↪→W 2,4(Ω), Hα ↪→ H(Ω), Hα ↪→ L∞(Ω)

where 1
2 ≤ α < 2

3 .
Then,we obtain

∥g(ρ)∥2H 1
6

=

∫
Ω

| − ∇∆ρ−∇∆f(ρ)−∇(f ′(ρ)∆ρ) +∇(f ′(ρ)f(ρ)) +∇f(ρ)|2dx

≤C
∫
Ω

(|∇∆ρ|2 + |∇∆f(ρ)|2 + |∇(f ′(ρ)∆ρ)|2 + |∇(f ′(ρ)f(ρ))|2

+ |∇f(ρ)|2)dx

≤C(∥ρ∥2H3 + ∥f
′′′
(ρ)|∇ρ|3∥2 + ∥f

′′
(ρ)∇ρ∆ρ∥2 + ∥f ′(ρ)∇∆ρ∥2

+ ∥f
′′
(ρ)∇ρ∆ρ∥2 + ∥f ′(ρ)∇∆ρ∥2 + ∥f

′′
(ρ)f(ρ)∇ρ∥2

+ ∥|f ′(ρ)|2∇ρ∥2 + ∥|f ′(ρ)|2∇ρ∥2)

≤C(∥ρ∥2H3 + ∥f
′′′
(ρ)∥2L∞∥ρ∥6W 1,6 + ∥f

′′
(ρ)∥4L∞∥ρ∥4W 1,4

+ ∥ρ∥4W 2,4 + ∥f ′(ρ)∥2L∞∥ρ∥2H3 + ∥f
′′
(ρ)f(ρ)∥2L∞∥ρ∥2H

+ ∥f ′(ρ)∥4L∞∥ρ∥2H + ∥f ′(ρ)∥2L∞∥ρ∥2H)

≤C(∥ρ∥2Hα
+ ∥ρ∥6Hα

+ ∥ρ∥4Hα
)

(19)
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which means that g : Hα → H 1
6
is bounded. On the basis of step 1 and (19), we deduce

that

∥ρ(t, ρ0)∥Hα =∥etLρ0 +
∫ t

0

(−L) 1
3 e(t−τ)Lg(ρ)dτ∥Hα

≤C∥ρ0∥Hα +

∫ t

0

∥(−L) 1
6+αe(t−τ)Lg(ρ)∥H 1

6
dτ

≤C∥ρ0∥Hα +

∫ t

0

∥(−L) 1
6+αe(t−τ)L∥ · ∥g(ρ)∥H 1

6
dτ

≤C∥ρ0∥Hα + C

∫ t

0

(t− τ)−βe−δ(t−τ)dτ

≤C∥ρ0∥Hα + C

∫ t

0

τ−βe−δτdτ ≤ C, ∀t ≥ 0, ρ0 ∈ U ⊂ Hα,

(20)

where β = 1
6 + α, (0 < β < 1). Hence, (18) is valid.

Step 3. We prove that for any bounded set U ⊂ Hα ( 56 ≤ α < 1), there exists a
constant C > 0 such that

∥ρ(t, ρ0)∥Hα ≤ C, ∀t ≥ 0, ρ0 ∈ U,
5

6
≤ α < 1. (21)

We claim that g : Hα → H 1
3
is bounded, by Sobolev embedding theorem, we have

Hα ↪→ H4(Ω), Hα ↪→W 1,8(Ω), Hα ↪→W 2,4(Ω), Hα ↪→W 1,4(Ω), Hα ↪→W 3,4(Ω),

Hα ↪→ H2(Ω), Hα ↪→ L∞(Ω)

where 2
3 ≤ α < 5

6 .
Then,we obtain

∥g(ρ)∥2H 1
3

=

∫
Ω

| −∆2ρ−∆2f(ρ)−∆(f ′(ρ)∆ρ) + ∆(f ′(ρ)f(ρ)) + ∆f(ρ)|2dx

≤C
∫
Ω

(|∆2ρ|2 + |∆2f(ρ)|2 + |∆(f ′(ρ)∆ρ)|2 + |∆(f ′(ρ)f(ρ))|2 + |∆f(ρ)|2)dx

≤C(∥ρ∥2H4 + ∥f (4)(ρ)|∇ρ|4∥2 + ∥f
′′′
(ρ)|∇ρ|2∆ρ∥2 + ∥f

′′
(ρ)|∆ρ|2∥2

+ ∥f
′′
(ρ)∇ρ∇∆ρ∥2 + ∥f ′(ρ)∆2ρ∥2 + ∥f

′′′
(ρ)|∇ρ|2∆ρ∥2 + ∥f

′′
(ρ)|∆ρ|2∥2

+ ∥f
′′
(ρ)∇ρ∇∆ρ∥2 + ∥f ′(ρ)∆2ρ∥2 + ∥f

′′′
(ρ)f(ρ)|∇ρ|2∥2 + ∥f

′′
(ρ)f(ρ)∆ρ∥2

+ ∥f
′′
(ρ)f ′(ρ)|∇ρ|2∥2 + ∥|f ′(ρ)|2∆ρ∥2 + ∥f

′′
(ρ)|∇ρ|2∥2 + ∥f ′(ρ)∆ρ∥2)

≤C(∥ρ∥2H4 + ∥f (4)(ρ)|∇ρ|4∥2 + ∥f
′′′
(ρ)|∇ρ|2∥4 + ∥∆ρ∥4 + ∥f

′′
(ρ)|∆ρ|2∥2

+ ∥f
′′
(ρ)∇ρ∥4 + ∥∇∆ρ∥4 + ∥f ′(ρ)∆2ρ∥2 + ∥f

′′′
(ρ)f(ρ)|∇ρ|2∥2 + ∥f

′′
(ρ)f(ρ)∆ρ∥2

+ ∥f
′′
(ρ)f ′(ρ)|∇ρ|2∥2 + ∥|f ′(ρ)|2∆ρ∥2 + ∥f

′′
(ρ)|∇ρ|2∥2 + ∥f ′(ρ)∆ρ∥2)

≤C(∥ρ∥2H4 + ∥f (4)(ρ)∥2L∞∥ρ∥8W 1,8 + ∥f
′′′
(ρ)∥4L∞∥ρ∥8W 1,8 + ∥ρ∥4W 2,4

+ ∥f
′′
(ρ)∥2L∞∥ρ∥4W 2,4 + ∥f

′′
(ρ)∥4L∞∥ρ∥4W 1,4 + ∥ρ∥4W 3,4 + ∥f ′(ρ)∥2L∞∥ρ∥2H4

+ ∥f
′′′
(ρ)f(ρ)∥2L∞∥ρ∥4W 1,4 + ∥f

′′
(ρ)f(ρ)∥2L∞∥ρ∥2H2 + ∥f

′′
(ρ)f ′(ρ)∥2L∞∥ρ∥4W 1,4

+ ∥f ′(ρ)∥4L∞∥ρ∥2H2 + ∥f
′′
(ρ)∥2L∞∥ρ∥4W 1,4 + ∥f ′(ρ)∥2L∞∥ρ∥2H2)

≤C(∥ρ∥2Hα
+ ∥ρ∥8Hα

+ ∥ρ∥4Hα
)

(22)
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which means that g : Hα → H 1
3
is bounded. On the basis of step 2 and (22), we deduce

that

∥ρ(t, ρ0)∥Hα =∥etLρ0 +
∫ t

0

(−L) 1
3 e(t−τ)Lg(ρ)dτ∥Hα

≤C∥ρ0∥Hα +

∫ t

0

∥(−L)αe(t−τ)Lg(ρ)∥H 1
3
dτ

≤C∥ρ0∥Hα +

∫ t

0

∥(−L)αe(t−τ)L∥ · ∥g(ρ)∥H 1
3
dτ

≤C∥ρ0∥Hα + C

∫ t

0

τ−αe−δτdτ ≤ C, ∀t ≥ 0, ρ0 ∈ U ⊂ Hα,

(23)

Hence, (21) is valid.
In the same fashion as in the proof of (21), by iteration we can prove that for any

bounded set U ⊂ Hα(α > 0) there exists a constant C > 0 such that

∥ρ(t, ρ0)∥Hα ≤ C, ∀t ≥ 0, ρ0 ∈ U ⊂ Hα, α ≥ 0.

That is, for all α ≥ 0 the semigroup S(t) generated by problem (6)-(8) is uniformly compact
in Hα. The Lemma 3.1 is proved. �

Lemma 3.2. For any α ≥ 0, problem (6)-(8) has a bounded absorbing set in Hα. That is,
for any bounded set U ∈ Hα, there exists T > 0 and a constant C > 0 independent of ρ0,
such that

∥ρ(t, ρ0)∥Hα ≤ C, ∀t ≥ T, ρ0 ∈ U ⊂ Hα. (24)

Proof. For α = 1
2 , this follows from Lemma 2.2. Then, we prove (24) for any α > 1

2 . we
proceed in the following steps.

Step 1. We prove that for any 1
2 ≤ α < 2

3 , the problem (6)-(8) has a bounded
absorbing set in Hα.

By (12),we have

ρ(t, ρ0) = etLρ0 +

∫ t

T

(−L) 1
3 e(t−T )Lg(ρ)dτ. (25)

Assume B is the bounded absorbing set of the problem (6)-(8) and B satisfies B ⊂ H 1
2
.

In addition, we also assume the time t0 > 0 such that ρ(t, ρ0) ∈ B, ∀t ≥ t0, ρ0 ∈ U ⊂
Hα, α ≥ 1

2 . Note that ∥etL∥ ≤ Ce−λ3
1t, where λ1 > 0 is the first eigenvalue of the equation

−∆ρ =λρ,

∂ρ

∂n
=0.

(26)

Then for any given T > 0 and ρ0 ∈ U ⊂ Hα(α ≥ 1
2 ), we can obtain

lim
t→∞

∥e(t−T )Lρ(T, ρ0)∥Hα = 0. (27)

Adding (16) and (25) together, we have

∥ρ(t, ρ0)∥Hα ≤∥e(t−t0)Lρ(t0, ρ0)∥Hα +

∫ t

t0

∥(−L) 1
3+αe(t−T )L∥ · ∥g(ρ)∥Hdτ

≤∥e(t−t0)Lρ(t0, ρ0)∥Hα + C

∫ t

t0

∥(−L) 1
3+αe(t−T )L∥dτ

≤∥e(t−t0)Lρ(t0, ρ0)∥Hα + C

∫ T−t0

0

τ−
1
3−αe−δτdτ

≤∥e(t−t0)Lρ(t0, ρ0)∥Hα + C,

(28)



68 Xi Bao, Ning Duan, Xiaopeng Zhao

where C > 0 is a constant independent of ρ0, Then by (27) and (28), we have that (24) hold
for all 1

2 ≤ α < 2
3 .

Step 2. We prove that for any 2
3 ≤ α < 5

6 , the problem (6)-(8) has a bounded
absorbing set in Hα.

Adding (19) and (25) together, we have

∥ρ(t, ρ0)∥Hα ≤∥e(t−t0)Lρ(t0, ρ0)∥Hα +

∫ t

t0

∥(−L) 1
6+αe(t−T )L∥ · ∥g(ρ)∥H 1

6

dτ

≤∥e(t−t0)Lρ(t0, ρ0)∥Hα + C

∫ t

t0

∥(−L) 1
6+αe(t−T )L∥dτ

≤∥e(t−t0)Lρ(t0, ρ0)∥Hα + C

∫ T−t0

0

τ−
1
6−αe−δτdτ

≤∥e(t−t0)Lρ(t0, ρ0)∥Hα + C,

(29)

where C > 0 is a constant independent of ρ0, Then by (27) and (29), we have that (24) hold
for all 2

3 ≤ α < 5
6 .

Step 3. We can use the same method as the above step to prove that for any 5
6 ≤ α < 1,

the problem (6)-(8) has a bounded absorbing set in Hα. By the iteration method, we can
obtain that (24) holds for all α ≥ 1

2 . �
Now,we give the proof of Theorem 2.1.

Proof. Combining Lemma 3.1 with Lemma 3.2, we completed the proof of Theorem 2.1. �
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