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A COMPARATIVE STUDY OF SUPPORT VECTOR
MACHINE AND RISK DETERMINISTIC APPROACH ON A
PHOTOVOLTAIC SYSTEM

Stefania-Cristiana COLBU?, Daniel-Marian BANCILA?, Alina PETRESCU-
NITA3, Dumitru POPESCU #, Severus-Constantin OLTEANU °

The present paper introduces a comparative analysis of the management of a
stochastic optimization problem using both a risk deterministic approach and a
support vector machine strategy. This optimization problem is formulated in
consideration of the influence produced by environmental factors, such as irradiance
and temperature, on a photovoltaic panel. The problem will be solved by applying
both methods to determine the Maximum Power Point (MPP), thereby to enhance the
power generation efficiency. The primary objective is to conduct an analysis
comparing the two approaches, with the aim of recommending the most suitable
approach for Maximum Power Point Tracking (MPPT).

Keywords: support vector machine for regression, risk optimization, machine
learning, photovoltaics

1. Introduction

The journey for efficient and robust PV systems has become a focal point
in the field of renewable energy research. These systems, which convert solar
irradiance directly into electricity, are at the heart of a sustainable energy future.
However, the performance and reliability of PV systems are influenced by
numerous factors, demanding sophisticated modeling and prediction techniques.

In the pursuit of optimizing the performance of PV panels, the management
of stochastic optimization problems has become a pivotal focus of research and
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development. In this context, the present paper delves into a comparative analysis
that explores two distinct methodologies: a risk deterministic approach and a
support vector machine strategy. These methodologies are applied to tackle an
optimization problem intricately linked to the environmental dynamics surrounding
PV systems, notably irradiance.

The core objective of this comparative analysis is to discern the most
effective approach for enhancing the power generation efficiency of PV panels.
Central to this endeavor is the determination of the MPP, a critical parameter
influencing the global performance of PV systems. These two innovative
techniques will be presented in the current paper, while the other common methods
used in the literature for computing the MPP were described in the case study [1].

Ultimately, the findings of this study are poised to contribute towards
advancing the state-of-the-art methodologies for optimizing the performance of
solar energy systems, thereby facilitating the transition towards a more sustainable
and efficient energy landscape. The issues and challenges concerning the methods
used for solar photovoltaic energy optimization were also addressed in [2].

Various optimization techniques have been explored to enhance the
performance of MPPT algorithms, among which Support Vector Machine (SVM)
optimization has emerged as a promising approach. This approach was presented
for photovoltaic system monitoring in [3], together with a fault detection technique.

SVM optimization techniques offer advantages such as robustness,
flexibility, and adaptability, making them suitable for optimizing MPPT algorithms
for PV panels. By effectively capturing the nonlinearities and dynamics of the PV
system, SVM optimization techniques enable the development of robust MPPT
algorithms, capable of achieving superior performance in terms of efficiency,
accuracy, and stability, as shown in [4,5].

The SVM was introduced as a supervised machine learning algorithm,
which examinates data for classification and regression. Practically, based on the
predictors, consisting in historical input data set, and on responses, containing
previous output data set, the response for the new input data is predicted [6]. Whilst,
the Risk Deterministic Approach introduce a dual deterministic problem which will
be solved using mathematical techniques as it was introduced in [7]. Through this
comparative study, we plan to evaluate the advantages and drawbacks of each
approach in modeling and predicting the performance of PV systems. The outcomes
of this research will bring relevant insights for both practitioners and researchers in
the field, which supply the development of efficient and reliable PV systems.

2. Stochastic Optimization Problem

A stochastic optimization problem (SO) involves an objective function
and/or constraints dependent on random variables or uncertainty. This kind of SO
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arises in a multitude of domains, including engineering, automotive, construction,
and biomedical applications. Stochastic optimization methods are used to minimize
or maximize the benefits of a statistic or mathematical function when having to deal
with one or more input parameters dependent on random variables.
A standard definition of a SO is proposed in the following relation [8,9]:
max{J(xn) =c' (o) xn}
e {A(a)) X, <b(w) )
X, =0
stating that J is the objective function, ce1™ are the coefficients of the function,
x, represents a nonlinear vector, o is considered the random variable, x 0™ and
Ael ™™ with nr<nc.
Asserting that {A(e),b(e),c(»)} defines a set of stochastic variables
corresponding to each random variable @ <Q, Q being the space of the random

variables [9]. The SO in (1) is considered also nonlinear [7,8].
Taking into account all the values x, eD,, where D, is considered the

admissible domain of the variables from (1), the relation [8,9]:

max{J(xn) =c' (a))xn} (2)

Xne€Dy

has lost the concept of optimization due to the fact that x, is an aleatory variable

that is not subject to the order relationship. Analogous reasoning applies to the
constraints that infer the domain D, .

Consider that for every e, the following problem can be solved by
applying the provided constraints but transformed into egality type [8,9]:
max{J(x,) =c’ (o)X, }
a.c.{A(a))X):n:ob(w) @)
For the problem described in (3), the optimal solution x;(») and
3 (x,(0))=c" (0)x (@) the optimal values of the criterion function can be
considered. We can conclude that x;(») and J°(x,(e)) are random variables. In
other words, J*(xn(w)) cannot be precisely computed, but it can be formulated

statistically. To solve (3), two strategies can be applied: to compute the repartition
function of J7(x,(w)) or to solve the problem by transform it into a deterministic

one.
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3. Risk optimization problem — Formulation

For the purpose of the current paper, the SO will be solved by redesigning
the optimization in order to transform it into a deterministic risk problem.

In the current conditions, the optimization problem defined in (3) can be
reformulated as a deterministic minimum risk problem [8].

min{c, }
w8 2] ©
xeD,

Minimizing «, for which J(x)=c'(w)x, is lower than an imposed J, (e.g. the
average value). «, is considered the risk of computing J(x,)< J,.

For the minimum risk problem defined in (4) an equivalent problem can be
restated if we accept the following hypothesis:
e The vector containing random values, c(w) follows the normal non-

degenerate distribution and the x vector of the mean values 4 and
$ covariance matrix of 9, values can be attached:

Hi = E(Ci)!:u:(/ui)
9 = E[(Ci —u)(c, _"‘j)T] 9=(9)

e The optimization problem is linear [8,9,10]:
3, (%)= max{4'x, (6)

Xn€Dy
for which x is the only solution. In other words, J,(x,) will attain the maximum
in J, = u'x;. Therefore, J; <J, will be chosen.

The already described problem can be redesigned based on probabilities,
considering that there is no way to compute the distribution function [8,10]:

a, :P(CTXn <‘]i):P{C X, — 1 X, ‘]i_:u Xn]:¢(‘]i_# Xn} (7)

\/xlgxn ) \/xlgxn \/xl X,
2

e 2dt is the Laplace function defined in [8].

()

1 Xn

, where ¢(xn)_\/§£

The simplified arising from (7) leads to a new optimization challenge,

considering the monotonic increase of the Laplace function and the requirement
that matrix ¢ is positively defined [8].

.
N 7Ap SEN B
min { = (6)
xneDa{ ,Xl'lgxn }
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Nonlinear programming conventional gradient approaches, that include
selecting x_ as the best solution, can be used to address this kind of problems [8].

4. Support Vector Machine for Regression — Mathematical Model

SVM for regression (SVR) is a mathematical model that aims to acquire
knowledge of a regression function that maps input predictor variables to output
values. In other words, the SVR model formulates an optimization problem to
identify the hyperplane that maximizes the margin among the predicted values and
the real values [11]. It can be also considered a SO, if the input and output variables
are influenced by random variables. The start equation for the SVM regression
model can be defined as [11]:

y(X) =W x+w, (7
, Where y(x) symbolizes the predicted output, w is the weight vector, x express the
input vector, and w, act as the bias coefficient. The bias term w, and the weight

vector w are adjusted during the training process to identify the optimal hyperplane
that maximizes the margin between the predicted and obtained values.
The optimization problem for SVM regression can be formulated as [12]:

min wf’ +C 34
Vi~ (WX +wo ) < e+ & (W +b) -y <e+& (8)
£>0
, where |w|’is the squared norm of the weight vector, C is the regularization
parameter, & represents the slack variable for the i -th training sample, vy, is the

actual output linked to its training sample, x, denotes the input vector linked to the

i -th training sample, and & is the error tolerance. This problem can be computed
by applying techniques similar to the quadratic programming or the convex
optimization, in order to identify the optimal values for w and w, minimizing the
objective function and in the same time satisfying the restrictions.

The kernel function matrix is used in the SVM regression model to map the
input variables from their original space to a higher-dimensional feature space,
allowing for non-linear regression [13,14]. And it can be defined as:

K(x,%) ... K(x,x,)
K= : : 9)
K(%%) - K(%,X,)

, Where K(x,x;) is the kernel function that computes the similarity between the i -

th training sample and j -th training sample.
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The final SVM regression model [12] that will be used during the training
stage can be reformulated as:

y(x):Z(/l,K(xi,x))+wo (10)
, Where 4 represents the Lagrange multiplier associated with the i -th training
sample, and x; stands for the support vector.

For the current strategy, the prediction can be also evaluated based on the
risk associated with the defined model, computed to reveal the variability in the
SVR predictions.

Assuming that during the test stage, the vy, (x) values are predicted, the

standard deviation o, and the mean value 4. associated with the residuals
res, = Y. (X)—y; are computed:

My = E(Tes,)
(11)

The risk associated with the SVR prediction can be proposed to be
calculated as:

o = 2100 (12)

t

where 4 =E(y,) and y, will be the vector of the considered test values.

The SVR associated risk does not directly indicate whether the predictions
are below or above the considered true values. Instead, it provides insight into the
uncertainty associated with the model’s prediction. For example, if it is high, then
the predicted values may deviate substantially from the true values.

4. Case studies
4.1. Simulation definition

In this study, will be presented two distinct case studies related to
photovoltaic (PV) power estimation. First, will be explored a Gaussian stochastic
supervisor approach by addressing the minimum risk problem in the vicinity of the
maximum point of the harvested PV power. This approach is then compared with
the results of a second case study, which proposes power estimation using a Support
Vector Machine (SVM) regression model. Both approaches rely on simulations
based on power generation data of the PV panel established on the GECAD
laboratory platform [15,16] collected with a sampling period T, =5min. The

GECAD system, established in Porto (Portugal) in 2012, initially featured a
Kyocera KC200GH-2P 200W panel [17] integrated in a specific SMART-GRID
system. For detailed technical specifications of the Kyocera panel, refer to [18].



A comparative study of support vector machine and risk deterministic approach ona PV... 73

The proposed dataset consists in 930 measurements for solar irradiance,
voltage and power from 6 days in July 2013 to introduce the minimum risk
optimization problem to be solved and to train SVR models. The simulations will
be conducted on a system operating on Windows 11, equipped with an Intel Core
i5-11300H CPU and 16GB of RAM.

4.2. Minimum Risk Optimization Problem approach (MROP)
Considering the characteristics of a PV panel, P(U), expressing the

electrical power’s linkage to the generated voltage. The illustration which is
grounded on real data [16,17], is visually displayed in Fig. 1. A first approach will
be focused on computing a Gaussian stochastic supervisor based on addressing the
minimum risk problem in the vicinity of the maximum point of the produced PV
power in MATLAB R2021b.

Starting from a region as shown in Fig. 2, the interdependency PU) can be

found using a quadratic interpolation polynomial. This approximation can be done
by applying the direct Coggins search method [10]. In the context of this approach
for the problem in (1), it was associated J(x,) representing the photovoltaic
generated power, x, pointing the voltage and « the solar irradiance being
considered Gaussian stochastic variable. The deterministic equivalent problem (4)
can be specified for (1) by taking into account the hypotheses in (5) and it has the
solution x;and the maximum associated value of the criterion function J;, = x"x.

Based on this result, we choose J; <J,.

The Power evolution over 6 days time horizon
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Fig. 1. The Power evolution over

the specific 6 days chosen for the case studies
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In the problem initially defined, six power characteristics that depend on
voltage were considered, together with the impact of the solar irradiance « . For the
problem in (1), we defined (Ab)—(a,b) based on the datasheet characteristics of

the panel [18]:
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.
a =[1 -1] 13
b' =[24.15 —-21.06] ()

The ¢ vector approximates by the quadratic interpolation polynomials the
representations in Fig. 3. The components of the random vector adhere to the

w
Power-Voltage Characteristic P(U) {(.' = l[l][lﬁ,]' =35 f‘l Date: 1.07.2013
v

w
Power-Voltage Characteristic P(U)|G = llimS.I =35°C'| Date: 11.07.2013
n:

W
Power-Voltage Characteristic [’\l':[(.‘: 1000—. T =35 ('] Date: 5.07.2013
m2

200 166
— —
195 T - N
’ N 164
; . S
190 // ™ // AN
185 /- A\ 162 / N
y A\ / N
180 / AN /
/ \ 180 / N
2 75 / \ £ ! '
a o AN
170 \ 158 A
\ \
165 N 3
\ 156 \

160 : A

AN 154
155 |
150 152

218 218 22 222 224 226 228 23 232 234 21 212 214 216 218 22 222 224 26 28 28
u(v) u(v)

W
Power-Voliage Characteristic P(U)|G = lll(l)S.I =35°C'| Date: 17.07.2013
n

172 T T r - 185
e — ~
1701 / S e .
/4 180 Vs \
/ / \
168 A / \
/ 1751 / AN
/ /
/ 3 /
166 /4,- o A
L / \
y 170 \
164 / \
/
/ 165 \
162 /
/ \\‘
/ \
160 160
22 22 24 26 28 23 232 234 215 2 25 23 235 24
uv) u(v)

w
Power-Voltage Characteristic P( l,’\[(; = llimﬁ.j = 35°C'| Date: 23.07.2013
m

W
Power-Voltage Characteristic P( lfl[(; = lnmﬁj = 35°C'| Date: 29.07.2013
n

178 200
g N 190+ s
176 S AN S .
\ L v
S/ AN 180 / {
174 1 va N 170 - A
/ N\ /
/ \ 160 /
172 \ /
/ g
= 1501 /
o /
170k \ /
o \ 140 /
/
168 X 130 /
\ /
1201 'a
166 /
1o/
164 100
21.5 2 25 23 25 2 245 218 219 22 221 222 223 224 225 226 227
u(v) u(v)

Fig.3. The relation between power and voltage with data from six days(July 1, 2013; July 5, 2013; July 11, 2013;

July 17, 2013, July 23, 2013; July 29, 2013), containing values measured in the solar noon
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approach based on J(x,)0 c,x; +c,x,+c, approximation. Furthermore, c has a
normal repartition of the average value y=[—67.1012 3.0085-10° —3.3543-104],and
0 -0.0007-10°  0.0074-10°

of the ¢ covariance matrix, $=|-0.0007-10° 0.0297-10° —0.3325-10°|.
-0.0074-10° -0.3325-10° 3.7223.10°

The average defined problem from (6) yields an admissible optimal solution
determined by applying the Cauchy Method:
X =22.43V
{Jﬂ(x;) =179.4W

By imposing, J, =169W , the new equivalent problem in (6) is defined as:

(14)

~67.1012x? +3.0085-10% x_ —3.3543-10% ~169
2 (15)

n

[xﬁ X, 1]9 X,
1

max

21.06 < x, <24.15

The solution to the problem, x’ =22.21v relating to the voltage that is linked
with the point of optimal utilization, was determined based on Rosen’s Gradient
Method [8] and the predicted result on the entire dataset was obtained in

€m0 = 1-195€C, With an associated memory usage of 3.20GB and a CPU usage of

5%.

169+ 67.1012x? —3.0085-103 . +3.3543-10%

=0.1798 (16)

2
Xn

[xj X, 1].9 X,
1

Moreover, the minimum risk «, attaches a confidence level of 82.02% to the
criterion value J;, =176.5W , greater than the imposed value J, =169w .
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4.3. SVR Modeling approach (SVRM)

The second case study was build based on the Support Vector Machine for
Regression Modeling scheme. The target was to develop a model that considers the
variations in voltage and solar irradiance, enabling accurate predictions of the
maximum output power. The evolution of the environmental stochastic factor will
introduce this issue as a stochastic problem to be solved. The SVR implemented in
Python 3.10.7 using the scikit-learn library version 1.1.3 is described in Fig. 4.
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Fig. 4. SVR Modeling Strategy

The algorithm was structured in three primary stages: training, validation,
and testing. The initial data, obtained for those 6 days in July, were standardized
and split into 60% training values, 20% validation values, and 20% test data.

During the training stage, five models depending on
C =[0.05;0.11;10.05;44.88;104] regularization parameter were computed as it was

defined in (8), by choosing a gaussian kernel depending on the Radial Basis
Functions (RBF), also considering features the voltage together with the solar
irradiance and the label known as generated power. The C selected values were
narrowed down to the specified set due to exhaustive searches using an extensive
grid. This analysis revealed that the implementation consumed substantial
computational resources (e.g. 15.7GB), yet the resulting improvements were not

statistically significant.
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In the second phase, the root-mean-square error (RMSE) associated to the
defined models was computed by comparing y, = P (where P is the measured value

of P) from the validation set of data with the predicted y(x)=P, (where p, is the
predicted value of P).
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where ., IS the size of validation dataset. For each of the five regressors, the

identified values for power depending on voltage can be discovered in the
illustrations from Fig. 5. These charts represent the results of the predictions done
[blue] during the validation stage compared to the measured power values [red]. As
it can be seen, the values predicted are close to the real ones, consequently a
quantitative assessment needs to be applied, to decide which of the regressors shall
be used as a PV model.

Consistency of the predicted results was assessed against the actual data
assuming that models have RMSE <0.15. After evaluating the variation in RMSE
and examining the chart representations. SVRModel4 emerged as the optimal
choice. This model effectively captured the data’s evolution without undue
superimposition. Notably, SVRModel4 exhibited a favorable balance between
accuracy and complexity, outperforming the SVRModel5.

Table 1

RMSE - Trained SVR Models [on standardized data]

Model C RMSE
SVRModell 0.05 0.179
SVRModel2 0.11 0.161
SVRModel3 10.05 0.194
SVRModel4 44.88 0.138
SVRModel5 104 0.319

The best model was applied in the last test stage to predict P, power using

data totally unexplored. The predicted values were then compared to the
standardized measured ones by computing RMSE =0.137, the residual error res,,
represented in Fig. 6 and the SVRModel4 associated risk r,, =18.22% .

For the training of these five models and for the prediction phase, the output
was achieved in approximatively e =161sec, by using 9.1GB of memory and

20% out of the available CPU capacity.

Test - Residual error depending on Voltage

21 22 23 24 25 26 27
u(v)

Fig. 6. Residual errors depending on voltage
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5. Discussion

In addition to the previous research works, the presented comparative study
offers 2 approaches to estimate the MPP by predicting the power values as
suboptimal solutions for the SO. Firstly, the MROP approach relied on a specific
polynomial model for power depending on voltage, evolving under solar irradiation
impact, as described in the literature [8, 9]. It incorporated restrictions based on the
PV electrical characteristics, particularly defining the nominal voltage domain.
Secondly, the SVRM strategy trained 5 models using a RBF kernel. Unlike MROP,
SVRM was agnostic to panel characteristics and did not require special restrictions.
Instead, it standardized the data to mitigate the differences between features and
label ranges by capturing the nonlinearities and dynamics of the PV, confirming the
conclusions drawn from the literature [4,5].

6. Conclusions

In the context of optimization, both approaches aimed to find solutions for
a specific SO. The problem was defined for a photovoltaic panel influenced in
generation by the environmental stochastic data conditions. For both approaches,
the same dataset was used considering the power’s evolution based on voltage,
which were concurrently influenced by solar irradiance. Regarding elapsed time,
the presented results are quite close, e, =1.19sec and e, =1.61sec, but these

VRM
values depend on the dataset size and the grid used for regularization factor search.
Additionally, computational effort was reduced for the SVRM after selecting some
regularization factors based on an initial grid search. If the first search were also
considered, computation time would significantly increase. Both strategies assessed
risk-associated values. For MROP, the o, =17.98% attached to the J, =176.5W

implies that the obtained power value exceeded the imposed mean value. For
SVRM, the r,, =18.22% attached to the SVRModel4 indicates that power values

are estimated around the real measured values, without explicitly determining if
they are above or below those values.

The MROP approach is advisable when the electrical characteristics of the
panel are well known, and computational memory resources are limited — e.g.
around 4GB. Conversely, the SVRM is preferable when only measured data are

accessible, and sufficient computational resources — e.g. around 10GB - are
available to handle a specific grid search for the regression factor. As a general
guideline, achieving accurate MPP estimations in both approaches necessitates a
substantial volume of data and, consequently, significant computational resources,
but both of these validated results can be deployed on a real photovoltaic plant.
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