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A COMPARATIVE STUDY OF SUPPORT VECTOR 

MACHINE AND RISK DETERMINISTIC APPROACH ON A 

PHOTOVOLTAIC SYSTEM 

Ștefania-Cristiana COLBU1, Daniel-Marian BĂNCILĂ2, Alina PETRESCU-

NIȚĂ3, Dumitru POPESCU 4, Severus-Constantin OLTEANU 5 

The present paper introduces a comparative analysis of the management of a 

stochastic optimization problem using both a risk deterministic approach and a 

support vector machine strategy. This optimization problem is formulated in 

consideration of the influence produced by environmental factors, such as irradiance 

and temperature, on a photovoltaic panel. The problem will be solved by applying 

both methods to determine the Maximum Power Point (MPP), thereby to enhance the 

power generation efficiency. The primary objective is to conduct an analysis 

comparing the two approaches, with the aim of recommending the most suitable 

approach for Maximum Power Point Tracking (MPPT). 

Keywords: support vector machine for regression, risk optimization, machine 

learning, photovoltaics 

1. Introduction 

The journey for efficient and robust PV systems has become a focal point 

in the field of renewable energy research. These systems, which convert solar 

irradiance directly into electricity, are at the heart of a sustainable energy future. 

However, the performance and reliability of PV systems are influenced by 

numerous factors, demanding sophisticated modeling and prediction techniques. 

In the pursuit of optimizing the performance of PV panels, the management 

of stochastic optimization problems has become a pivotal focus of research and 
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development. In this context, the present paper delves into a comparative analysis 

that explores two distinct methodologies: a risk deterministic approach and a 

support vector machine strategy. These methodologies are applied to tackle an 

optimization problem intricately linked to the environmental dynamics surrounding 

PV systems, notably irradiance. 

The core objective of this comparative analysis is to discern the most 

effective approach for enhancing the power generation efficiency of PV panels. 

Central to this endeavor is the determination of the MPP, a critical parameter 

influencing the global performance of PV systems. These two innovative 

techniques will be presented in the current paper, while the other common methods 

used in the literature for computing the MPP were described in the case study [1]. 

Ultimately, the findings of this study are poised to contribute towards 

advancing the state-of-the-art methodologies for optimizing the performance of 

solar energy systems, thereby facilitating the transition towards a more sustainable 

and efficient energy landscape. The issues and challenges concerning the methods 

used for solar photovoltaic energy optimization were also addressed in [2]. 

Various optimization techniques have been explored to enhance the 

performance of MPPT algorithms, among which Support Vector Machine (SVM) 

optimization has emerged as a promising approach. This approach was presented 

for photovoltaic system monitoring in [3], together with a fault detection technique. 

SVM optimization techniques offer advantages such as robustness, 

flexibility, and adaptability, making them suitable for optimizing MPPT algorithms 

for PV panels. By effectively capturing the nonlinearities and dynamics of the PV 

system, SVM optimization techniques enable the development of robust MPPT 

algorithms, capable of achieving superior performance in terms of efficiency, 

accuracy, and stability, as shown in [4,5]. 

The SVM was introduced as a supervised machine learning algorithm, 

which examinates data for classification and regression. Practically, based on the 

predictors, consisting in historical input data set, and on responses, containing 

previous output data set, the response for the new input data is predicted [6]. Whilst, 

the Risk Deterministic Approach introduce a dual deterministic problem which will 

be solved using mathematical techniques as it was introduced in [7]. Through this 

comparative study, we plan to evaluate the advantages and drawbacks of each 

approach in modeling and predicting the performance of PV systems. The outcomes 

of this research will bring relevant insights for both practitioners and researchers in 

the field, which supply the development of efficient and reliable PV systems. 

2. Stochastic Optimization Problem 

A stochastic optimization problem (SO) involves an objective function 

and/or constraints dependent on random variables or uncertainty. This kind of SO 
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arises in a multitude of domains, including engineering, automotive, construction, 

and biomedical applications. Stochastic optimization methods are used to minimize 

or maximize the benefits of a statistic or mathematical function when having to deal 

with one or more input parameters dependent on random variables. 

A standard definition of a SO is proposed in the following relation [8,9]: 
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stating that J  is the objective function, ncc  are the coefficients of the function, 

nx  represents a nonlinear vector,   is considered the random variable, nc

nx   and 
nr ncA   with nr nc . 

Asserting that ( ) ( ) ( ) , ,A b c    defines a set of stochastic variables 

corresponding to each random variable  ,   being the space of the random 

variables [9]. The SO in (1) is considered also nonlinear [7,8].  

Taking into account all the values n ax D , where aD  is considered the 

admissible domain of the variables from (1), the relation [8,9]: 
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has lost the concept of optimization due to the fact that nx  is an aleatory variable 

that is not subject to the order relationship. Analogous reasoning applies to the 

constraints that infer the domain aD . 

Consider that for every  , the following problem can be solved by 

applying the provided constraints but transformed into egality type [8,9]: 
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For the problem described in (3), the optimal solution ( )*

nx   and 

( )( ) ( ) ( )* *T

n nJ x c x  =  the optimal values of the criterion function can be 

considered. We can conclude that ( )*

nx   and ( )( )*

nJ x   are random variables. In 

other words, ( )( )*

nJ x   cannot be precisely computed, but it can be formulated 

statistically. To solve (3), two strategies can be applied: to compute the repartition 

function of ( )( )*

nJ x   or to solve the problem by transform it into a deterministic 

one. 
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3. Risk optimization problem – Formulation 

For the purpose of the current paper, the SO will be solved by redesigning 

the optimization in order to transform it into a deterministic risk problem. 

In the current conditions, the optimization problem defined in (3) can be 

reformulated as a deterministic minimum risk problem [8]. 
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Minimizing r  for which ( )( ) T

nJ x c x=  is lower than an imposed iJ  (e.g. the 

average value). r  is considered the risk of computing ( )n iJ x J . 

For the minimum risk problem defined in (4) an equivalent problem can be 

restated if we accept the following hypothesis: 

• The vector containing random values, ( )c   follows the normal non-

degenerate distribution and the   vector of the mean values i  and 

  covariance matrix of 
ij  values can be attached: 
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• The optimization problem is linear [8,9,10]: 
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for which *

nx  is the only solution. In other words, ( )nJ x  will attain the maximum 

in * *T

nJ x = . Therefore, *

iJ J  will be chosen. 

The already described problem can be redesigned based on probabilities, 

considering that there is no way to compute the distribution function [8,10]: 
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The simplified arising from (7) leads to a new optimization challenge, 

considering the monotonic increase of the Laplace function and the requirement 

that matrix   is positively defined [8]. 
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Nonlinear programming conventional gradient approaches, that include 

selecting *

nx  as the best solution, can be used to address this kind of problems [8]. 

4. Support Vector Machine for Regression – Mathematical Model 

SVM for regression (SVR) is a mathematical model that aims to acquire 

knowledge of a regression function that maps input predictor variables to output 

values. In other words, the SVR model formulates an optimization problem to 

identify the hyperplane that maximizes the margin among the predicted values and 

the real values [11]. It can be also considered a SO, if the input and output variables 

are influenced by random variables. The start equation for the SVM regression 

model can be defined as [11]: 

0( ) Ty x w x w= +                                               (7) 

, where ( )y x  symbolizes the predicted output, w  is the weight vector, x  express the 

input vector, and 0w  act as the bias coefficient. The bias term 0w  and the weight 

vector w  are adjusted during the training process to identify the optimal hyperplane 

that maximizes the margin between the predicted and obtained values. 

The optimization problem for SVM regression can be formulated as [12]: 
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, where 
2

w is the squared norm of the weight vector, C  is the regularization 

parameter, i  represents the slack variable for the i  -th training sample, iy  is the 

actual output linked to its training sample, ix  denotes the input vector linked to the 

i  -th training sample, and   is the error tolerance. This problem can be computed 

by applying techniques similar to the quadratic programming or the convex 

optimization, in order to identify the optimal values for w  and 0w  minimizing the 

objective function and in the same time satisfying the restrictions. 

The kernel function matrix is used in the SVM regression model to map the 

input variables from their original space to a higher-dimensional feature space, 

allowing for non-linear regression [13,14]. And it can be defined as: 
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, where ( ),i jK x x  is the kernel function that computes the similarity between the i  -

th training sample and j  -th training sample. 
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The final SVM regression model [12] that will be used during the training 

stage can be reformulated as: 

( ) ( )( ) 0,i iy x K x x w= +                                  (10) 

, where i represents the Lagrange multiplier associated with the i  -th training 

sample, and ix stands for the support vector.  

For the current strategy, the prediction can be also evaluated based on the 

risk associated with the defined model, computed to reveal the variability in the 

SVR predictions.  

Assuming that during the test stage, the ( )testy x  values are predicted, the 

standard deviation res and the mean value res associated with the residuals 

( )i test ires y x y= −  are computed: 
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The risk associated with the SVR prediction can be proposed to be 

calculated as: 

100res

SVR

t

r

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=                                               (12) 

where ( )t tE y =  and ty  will be the vector of the considered test values.  

The SVR associated risk does not directly indicate whether the predictions 

are below or above the considered true values. Instead, it provides insight into the 

uncertainty associated with the model’s prediction. For example, if it is high, then 

the predicted values may deviate substantially from the true values.  

4. Case studies 

4.1. Simulation definition 

In this study, will be presented two distinct case studies related to 

photovoltaic (PV) power estimation. First, will be explored a Gaussian stochastic 

supervisor approach by addressing the minimum risk problem in the vicinity of the 

maximum point of the harvested PV power. This approach is then compared with 

the results of a second case study, which proposes power estimation using a Support 

Vector Machine (SVM) regression model. Both approaches rely on simulations 

based on power generation data of the PV panel established on the GECAD 

laboratory platform [15,16] collected with a sampling period 5minsT = . The 

GECAD system, established in Porto (Portugal) in 2012, initially featured a 

Kyocera KC200GH-2P 200W panel [17] integrated in a specific SMART-GRID 

system. For detailed technical specifications of the Kyocera panel, refer to [18]. 
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The proposed dataset consists in 930 measurements for solar irradiance, 

voltage and power from 6 days in July 2013 to introduce the minimum risk 

optimization problem to be solved and to train SVR models. The simulations will 

be conducted on a system operating on Windows 11, equipped with an Intel Core 

i5-11300H CPU and 16GB  of RAM.  

4.2. Minimum Risk Optimization Problem approach (MROP) 

Considering the characteristics of a PV panel, ( )P U , expressing the 

electrical power’s linkage to the generated voltage. The illustration which is 

grounded on real data [16,17], is visually displayed in Fig. 1. A first approach will 

be focused on computing a Gaussian stochastic supervisor based on addressing the 

minimum risk problem in the vicinity of the maximum point of the produced PV 

power in MATLAB R2021b. 

Starting from a region as shown in Fig. 2, the interdependency ( )P U  can be 

found using a quadratic interpolation polynomial. This approximation can be done 

by applying the direct Coggins search method [10]. In the context of this approach 

for the problem in (1), it was associated ( )nJ x  representing the photovoltaic 

generated power, nx  pointing the voltage and   the solar irradiance being 

considered Gaussian stochastic variable. The deterministic equivalent problem (4) 

can be specified for (1) by taking into account the hypotheses in (5) and it has the 

solution *

nx and the maximum associated value of the criterion function * *T

nJ x = . 

Based on this result, we choose *

iJ J .  

 

In the problem initially defined, six power characteristics that depend on 

voltage were considered, together with the impact of the solar irradiance  . For the 

problem in (1), we defined ( ) ( ), ,A b a b→  based on the datasheet characteristics of 

the panel [18]: 

Fig. 1. The Power evolution over  

the specific 6 days chosen for the case studies 
Fig. 2. The characteristic 2D,  

power depending on voltage 
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The c  vector approximates by the quadratic interpolation polynomials the 

representations in Fig. 3. The components of the random vector adhere to the 

  

  

  

Fig.3. The relation between power and voltage with data from six days(July 1, 2013; July 5, 2013; July 11, 2013; 

July 17, 2013, July 23, 2013; July 29, 2013), containing values measured in the solar noon 
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approach based on ( ) 2

0 1 2n n nJ x c x c x c+ +  approximation. Furthermore, c  has a 

normal repartition of the average value 3 467.1012 3.0085 10 3.3543 10  = −  −   , and 

of the   covariance matrix,  
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determined by applying the Cauchy Method: 
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By imposing, 169iJ W= , the new equivalent problem in (6) is defined as: 
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The solution to the problem, * 22.21nx V=  relating to the voltage that is linked 

with the point of optimal utilization, was determined based on Rosen’s Gradient 

Method [8] and the predicted result on the entire dataset was obtained in 

1.19sectMROP
e = , with an associated memory usage of 3.20GB  and a CPU usage of 

5% .  
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Moreover, the minimum risk r  attaches a confidence level of 82.02%  to the 

criterion value * 176.5J W = , greater than the imposed value 169iJ W= . 
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4.3. SVR Modeling approach (SVRM) 

The second case study was build based on the Support Vector Machine for 

Regression Modeling scheme. The target was to develop a model that considers the 

variations in voltage and solar irradiance, enabling accurate predictions of the 

maximum output power. The evolution of the environmental stochastic factor will 

introduce this issue as a stochastic problem to be solved. The SVR implemented in 

Python 3.10.7 using the scikit-learn library version 1.1.3 is described in Fig. 4.  

 
Fig. 4. SVR Modeling Strategy 

 

The algorithm was structured in three primary stages: training, validation, 

and testing. The initial data, obtained for those 6 days in July, were standardized 

and split into 60%  training values, 20%  validation values, and 20%  test data.  

During the training stage, five models depending on 
[0.05;0.11;10.05;44.88;104]C =  regularization parameter were computed as it was 

defined in (8), by choosing a gaussian kernel depending on the Radial Basis 

Functions (RBF), also considering features the voltage together with the solar 

irradiance and the label known as generated power. The C  selected values were 

narrowed down to the specified set due to exhaustive searches using an extensive 

grid. This analysis revealed that the implementation consumed substantial 

computational resources (e.g. 15.7GB ), yet the resulting improvements were not 

statistically significant.  
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In the second phase, the root-mean-square error (RMSE) associated to the 

defined models was computed by comparing i ty P=  (where tP is the measured value 

of P) from the validation set of data with the predicted ( ) fy x P= (where 
fP is the 

predicted value of P). 

( )
1

1
nvalid

r fvalid
ivalid

RMSE P P
n =

= −                                    (17) 

  

  

 

Fig.5. Validation – SVRModels applied for power prediction [red used for the real data, 

blue is for the estimated data] 
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where nvalid  is the size of validation dataset. For each of the five regressors, the 

identified values for power depending on voltage can be discovered in the 

illustrations from Fig. 5. These charts represent the results of the predictions done 

[blue] during the validation stage compared to the measured power values [red]. As 

it can be seen, the values predicted are close to the real ones, consequently a 

quantitative assessment needs to be applied, to decide which of the regressors shall 

be used as a PV model. 

Consistency of the predicted results was assessed against the actual data 

assuming that models have 0.15RMSE  . After evaluating the variation in RMSE 

and examining the chart representations. SVRModel4 emerged as the optimal 

choice. This model effectively captured the data’s evolution without undue 

superimposition. Notably, SVRModel4 exhibited a favorable balance between 

accuracy and complexity, outperforming the SVRModel5.  
 

Table 1 

RMSE - Trained SVR Models [on standardized data] 

Model C RMSE 

SVRModel1 0.05 0.179 

SVRModel2 0.11 0.161 

SVRModel3 10.05 0.194 

SVRModel4 44.88 0.138 

SVRModel5 104 0.319 

 

The best model was applied in the last test stage to predict ftest
P  power using 

data totally unexplored. The predicted values were then compared to the 

standardized measured ones by computing 0.137RMSE = , the residual error ires , 

represented in Fig. 6 and the SVRModel4 associated risk 18.22%SVRr = .  

For the training of these five models and for the prediction phase, the output 

was achieved in approximatively 1.61sectSVRM
e = , by using 9.1GB  of memory and 

20%  out of the available CPU capacity. 

 
Fig. 6. Residual errors depending on voltage 
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5. Discussion 

In addition to the previous research works, the presented comparative study 

offers 2 approaches to estimate the MPP by predicting the power values as 

suboptimal solutions for the SO. Firstly, the MROP approach relied on a specific 

polynomial model for power depending on voltage, evolving under solar irradiation 

impact, as described in the literature [8, 9]. It incorporated restrictions based on the 

PV electrical characteristics, particularly defining the nominal voltage domain. 

Secondly, the SVRM strategy trained 5 models using a RBF kernel. Unlike MROP, 

SVRM was agnostic to panel characteristics and did not require special restrictions. 

Instead, it standardized the data to mitigate the differences between features and 

label ranges by capturing the nonlinearities and dynamics of the PV, confirming the 

conclusions drawn from the literature [4,5]. 

6. Conclusions 

In the context of optimization, both approaches aimed to find solutions for 

a specific SO. The problem was defined for a photovoltaic panel influenced in 

generation by the environmental stochastic data conditions. For both approaches, 

the same dataset was used considering the power’s evolution based on voltage, 

which were concurrently influenced by solar irradiance. Regarding elapsed time, 

the presented results are quite close, 1.19sectMROP
e =  and 1.61sectSVRM

e = , but these 

values depend on the dataset size and the grid used for regularization factor search. 

Additionally, computational effort was reduced for the SVRM after selecting some 

regularization factors based on an initial grid search. If the first search were also 

considered, computation time would significantly increase. Both strategies assessed 

risk-associated values. For MROP, the 17.98%r =  attached to the * 176.5J W =

implies that the obtained power value exceeded the imposed mean value. For 

SVRM, the 18.22%SVRr =  attached to the SVRModel4 indicates that power values 

are estimated around the real measured values, without explicitly determining if 

they are above or below those values. 

The MROP approach is advisable when the electrical characteristics of the 

panel are well known, and computational memory resources are limited – e.g. 

around 4GB . Conversely, the SVRM is preferable when only measured data are 

accessible, and sufficient computational resources – e.g. around 10GB  - are 

available to handle a specific grid search for the regression factor. As a general 

guideline, achieving accurate MPP estimations in both approaches necessitates a 

substantial volume of data and, consequently, significant computational resources, 

but both of these validated results can be deployed on a real photovoltaic plant. 
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