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SPATIAL DOMAIN FILTERING OF SPECKLE
INTERFEROGRAMS DEPICTING VIBRATION MODES

Florin GAROI', Paul SCHIOPU? and Dan APOSTOL?

In aceasti lucrare investigdm imbundtdtirea interferogramelor in lumind
granulara obtinute prin Digital Speckle Pattern Interferometry (DSPI) din vibratia
unei pldci de aluminiu cu frecventele proprii de 3.05, 4.18 si 4.56 kHz. Folosind un
algoritm propriu, am obtinut o imbundtdtire a raportului semnal/zgomot de 0.3, 0.5
si respectiv 0.3 pentru cele trei cazuri studiate. Se aplicd egalizarea histogramei
pentru imbundtdtirea contrastului §i intervalului dinamic.

In this paper we investigate the improvement of speckle interferograms
obtained with Digital Speckle Pattern Interferometry (DSPI) from vibration of an
aluminium plate with 3.05, 4.18 and 4.56 kHz frequencies. With our algorithm, we
obtained a SNR improvement of 0.3, 0.5 and 0.35 respectively for the three studied
cases. Histogram equalization is applied to improve both the contrast and dynamic
range.

Keywords: image processing, speckle interferometry, histogram, median filter,
Gaussian filter, vibration, measurement

1. Introduction

Vibration monitoring and measurement is of great importance in
discovering possible problems associated with machines and various structures as
well as in controlling their noise level. Digital Speckle Pattern Interferometry
(DSPI) is a full field, non-contact and real time technique to measure the
vibrations of optically rough structures [1-7]. It is well-known that all speckle
interferograms obtained need processing [5-13] after recording. Even though the
method has many advantages, its main drawback is poor images. However, image
processing tool successfully covers this aspect.

In the present work we investigate vibrations of an aluminium plate.
Vibrations modes of this plate are shown and recorded as speckle interferograms.
Using a personal algorithm we successfully improve the SNR of these images.
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2. Experimental setup and the speckle interferograms

A DSPI setup (Fig. 1) was realized to analyze vibrations of a square
aluminium plate (144.5 x 144.5 x 1 mm). The arrangement is a Mach-Zender
interferometer and the fringes are visualized and recorded on a computer via a
Baxal CCD camera. Vibrations in the plate are induced by a shaker, controlled by
a signal generator. The beam from a 30 mW He-Ne laser (@ 632.8 nm) is split
into two different intensity beams by a variable beam splitter. The reflected beam
(e.g. object beam) reflects off a steering mirror, is expanded and illuminates the
surface of the aluminium plate. A lens gathers the diffused light from the plate
and sends it to the beam splitter cube to interfere with the reference beam. The
transmitted beam (e.g. reference beam) is reflected off three steering mirrors (e.g.
in order to obtain the path length equal with that of the object beam), expanded
and sent to the beam splitter cube to interfere with the object beam. The
interference pattern is recorded at the CCD.

We adjust the intensities in the two beams such that they have comparable
intensities at the CCD. This is to obtain an optimum contrast of the interference
pattern. Also, having the 11 cm focal length lens, the dimension of the
(subjective) speckle is adjusted with an iris placed just after it, according to the
formulae [8, 9]:

o,..=1224f, and o, = 8/1f#2, (D)

where A is the wavelength of the laser and f is the numerical aperture of the
imaging system (e.g. lens/iris).

Fig. 1. DSPI experimental setup.

Fig. 2. Speckle interferograms obtained by subtracting two instances in during the vibration of the
plate. The 3.05, 4.18 and 4.56 kHz vibration modes are shown.
Speckles of 35.09 nm in the x, z directions (e.g. plane of the plate; see Fig.
1 to visualize the reference system) and 10.45 nm in the y direction (e.g.
perpendicular to the plate) were obtained, with our setup.
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To obtain the speckle interferograms, we record two instances during the
vibration of the plate and subtract the images. Thus, the nodes of the vibration will
appear dark as the phase difference will not change during vibration (Fig. 2). The
moving parts of the plate will appear gray as the phase difference is changing
during the vibration. So, by subtracting two speckle interferograms recorded at
different times during the vibration cycle, not only we make a time-average we
also get an improvement of the contrast. However, further image processing is
needed to improve de SNR of the speckle interferograms.

3. Processing of speckle interferograms

There are two categories of image enhancement techniques: spatial domain
methods and frequency domain methods. The spatial domain refers to the image
plane itself, the approaches in this category are based on direct manipulation of
pixels in an image. Frequency domain methods are based on modifying the
Fourier transform of an image.

Our algorithm for improving the SNR of the speckle interferograms is
applied in the spatial domain and has the following steps:

a) apply a median filter (with filter aperture of 3);

b) apply despeckle filter;

c¢) adjust brightness and contrast;

d) estimate the background illumination; subtract the background illumination;

e) adjust contrast;

f) image averaging by addition of the initial speckle interferogram;

g) apply edge preserving smooth filter (with an amount of smoothing of 3);

h) apply Gaussian blur filter (with a radius of 0.6);

1) apply median filter (with filter aperture of 3)

j) perform histogram equalization.
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Fig. 3. Speckle interferograms with improved SNR. Only steps of the algorithm from a) to
1) are applied to these interferograms.

The resulting filtered images are shown in Fig. 3.The median filter (Fig. 4)
[14, 15], applied in our filtering algorithm, is normally used to reduce noise in an
image, somewhat like the mean filter. However, it often does a better job than the
mean filter of preserving useful detail in the image. The main idea of the median
filter is to run through the signal entry by entry, replacing each entry with the
median of neighboring entries. The pattern of neighbors is called the “aperture”,
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which slides, entry by entry, over the entire signal. If a pixel contains an extreme
value, it is replaced by a “reasonable” value, the median value in the

neighborhood. Given a sample of X}, ... , Xy pixels and reordering them so that Y;
<Y,<...<Yy,then Y is called the i order statistic.
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Fig. 4. The pattern of pixels called aperture. The median filter is applied to the central pixel of the
given aperture, for each pixel at the time.

Now, given the order statistic ¥; = min; Xj, Y>, ..., Y1, Yy = max; X, the
statistical median of the random sample is defined by:
Yivayn if Nisodd
71 2)

E(YN/Z +Y,,) if Niseven

Thus, a median filter having an aperture of 3 will result in 8 neighboring
pixels. Larger neighborhoods will produce more severe smoothing, but will
reduce the information in the image at the same time.

The despeckle filter [14, 16] removes noise from images without blurring edges. It
attempts to detect complex areas and leave them intact, while smoothing areas
where noise will be noticeable.

The effect is that grain or other noise is reduced without severely affecting
edges. Standard deviation of each pixel and its neighbors is calculated to
determine if the area is one of high or low complexity. If the complexity is lower
than the threshold, the area is smoothened using a simple mean filter.

Image averaging [14] by adding the initial noisy image to the image with a
degree of filtration, at this stage. Consider a noisy image g(x, y) formed by the
addition of noise /(x, y) to an original image f(x, y); that is,

glx.y)=flx y)+nlx,y), 3)
with the assumption that at every pair of coordinates (x, y) the noise is
uncorrelated (e.g. has zero covariance with respect to the mean value) and has
zero average value. This procedure wants to reduce noise by adding a set of noisy
images gi(x,y), in our case one image. Thus, an image §(x, y) is formed by

averaging K different noisy images:

gle )= 2 g ). @
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It follows that

E{g(x,»)}= f(x,y), and (5)
and
1
O ) = X O ) (6)

2
7(x.y

where E{g(x, y)} is the expected value of g, while aé(w) and o, ) are the

variances of g and 7 respectively, all computed at coordinates (x, y). The

standard deviation at any point in the average image is
1

xy) T ﬁ O () (7

Equations (6) and (7) indicate that noise of the pixel values at each
location (x, y) decreases as K increases. Moreover, the equality in equation (5),
suggests that g(x, y) approaces f{x, y) as the number of noisy images used in the

averaging process increases. We used only two images as to keep the inevitable
introduction of blurring in the output image to a minimum.

Nonlinear filters locate and remove data that is recognized as noise. The
algorithm is called nonlinear because it looks at each data point and decides if that
data is noise or valid signal. If the point is noise, it is simply removed and
replaced by an estimate based on surrounding data points, and parts of the data
that are not considered noise are not modified at all. Linear filters, such as those
used in bandpass, highpass, and lowpass, lack such a decision capability and
therefore modify all data. Nonlinear filters are sometimes used also for removing
very short wavelength, but high amplitude features from data.

The edge preserving smooth filter [14] is also a nonlinear filter and is
based on the Kuwahara algorithm [17, 18]. The algorithm implies that for a gray
level image I(x,y) and a square patch of the image centered on a pixel of (x, y)
coordinates, this area can be divided into four identical squares (Fig. 5a) Pi, Pa,
Ps, and P4, with the coordinates:

A(x,y)=[ex+d]x[y,y+d]

Py(x,y)=[x—d,x]x[y,y +d]

P (x,y)=[x~d.x]x[y-d.y]

P4(x,y)= [x,x+d]><[y—d,y]
where “x” denotes the Carthesian product. Now, let m(x, y) and oi(x, y) be the
local average and local standard deviation respectively, computed on each square
Pi(x, v), i = 1,...4. For a given point (x, y), the output Ix(x,y) of the Kuwahara
filter is given by the vaule of m«(x, y) that correesponds to the i-th square
providing the minimum value of oy(x, y) [18]. This can be sumarized as:

Og(

®)
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L o,(xy)=min{o, (x,y)}

0, otherwise

IK(x,y)z Zmi(x,y)ﬁ(x,y) where fl.(x,y) = {
)

Fig. 5b shows the behavior of the Kuwahara operator in the proximity of
an edge. When the central point (x, y) is on the dark side of the edge (point 4), the
chosen value of m; corresponds to the square that completely lies on the dark side
(e.g. P4), because it is the most homogeneous area, corresponding to minimum o;.

On the other hand, as soon as the point (x, y) moves to the bright side
(point B), the output is determined by the square that lies entirely in the bright
area (e.g. P,). This flipping mechanism guarantees the preservation of edges and
corners, while the local averaging smoothes out texture and noise.

The Gaussian blur [14, 19] is a linear filter that gets rid of the Gaussian
noise in the image. The shape and dimension of the filter must take into account
the standard deviation of the noise that affects the image:

1 (x=x0 P +(y=10

e 20

G(x,y)= Py ) (10)

where o is the standard deviation, (xo, yo) are the coordinats of the central row and
column of the kernel (e.g. Fig. 4), and (x, y) are the coordinates of the pixel to
which the filter is applied.
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Fig. 5. Kuwahara filtering (Edge Preserving Smooth): a — P; regions on which local averages and

standard deviations are computed; b — Region of smallest standard deviation (shown by a thick
line) determines the output of the filter.

The image restoration is, then, realized by the convolution of the source image
with the previously computed Gaussian kernel/filter, such that:

1,(x,3)=Glx,y)* I (x,»), (11)

where Ip (x, y) is the filtered image and /s (x, y) is the source image.

However, when the dimension of the filter w is large, the convolution operation
may be time consumming. In this case, we can use the separabilty property (Fig.
6) of the Gaussian function:

G(x.y)=G(x)G(»), (12)
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and replace the convolution with a bidimensional kernel with two convolutions of
one dimensional kernels:

1y (x,9)=(Gx)G())* I (x.y) = G(x)* (Gy)* I (x. )). (13)
where G(x) and G(y) are the central row and column vectors (Fig. 6) of the
bidimensional kernel, namely:

) ~(xx 2 1 ~(r-»)
Glx)= e 2 and G(y)=

\N27o i \/ 27[9' | . (19

vy
Fig. 6. The two vector components, G(x) and G(y) in which a2D Gaussian kernel can be separated.

The higher the radius of the filter the higher the amount of smoothing.

Fig. 7. Speckle interferograms w1th thelr corresponding histograms. Notice the poor
contrast and dynamic range.

Moreover, aplying multiple, successive Gaussian blurs to an image has the
same effect as applying a single, larger Gaussian blur, whose radius is the square
root of the sum of the squares of the blur radii that were actually applied. For
example, applying successive Gaussian blurs with radii of 3 and 4 gives the same

results as applying a single Gaussian blur of radius 5, since+/3* +4° = 5. Because
of this relationship, processing time cannot be saved by simulating a Gaussian
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blur with successive, smaller blurs — the time required will be at least as great as
performing the single large blur. On the other hand, Gaussian blurs have nice
properties, such as having no sharp edges, and thus do not introduce ringing into
the filtered image.

The histogram equalization [14, 20] technique is usually used for digitized
images composed mostly of pixels with either very dark or very bright gray level
components. The probability of occurrence of gray level r; in an image is
approximated by:

p.(n)="  where k=0,12,.,L-1, (15)
n

where #n is the total number of pixels in the image, 7y is the number of pixels that
have gray level r; , and L is the total number of possible gray levels (e.g. 256 = 2°)
in the image.

Shortly, the histogram equalization or linearization si given by the transformation:

k kon
5, ZT(rk)ZZpr(rj)zz%z where k=012,.,—-1.  (16)
=0 =0

Thus, a processed image is obtained by mapping each pixel with level 74 in
the input image into a corresponding pixel with level s; in the output image via
equation (16). Histogram equalization automatically determines a transformation
function that seeks to produce an output image that has a uniform histogram.
Histograms of all speckle interferograms are presented, both initial (Fig. 7) and
filtered with our algorithm (Fig. 8).

Fig. 8. Filtered speckle interferograms with the corresponding histograms. An improvement in
both contrast and dynamic range is noticed.

The initial images have poor contrast and darker pixels. An improvement,
regarding the contrast and dynamic range, is noticed for the processed
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interferograms. However, the histogram equalization process (Fig. 9) further
improves these images.

Fig. 9. Speckle interferograms with the correspondiilg histograms after the.hi“s_togram equalization
was applied. The contrast is greatly enhanced and the dynamic range extended.

In order to estimate the improvement in filtered interferograms we
calculated the speckle index and the SNR. The speckle index (also called
coefficient of variation in image processing language) is the ratio of standard
deviation of intensity to the mean of intensity C = o /m and the SNR is defined as
the inverse of this index SNR = 1/C. For the three speckle interferograms we have
the following improvement of the SNR: 0.3 (for 3.05 kHz), 0.5 (for 4.18 kHz) and
0.3 (for 4.56 kHz).

4. Conclusions

Unlike specular interferometry where the fringes are clear and discernible,
in the case of speckle interferograms, post-processing is needed. Processing of
these speckle interferograms in the spatial domain to improve SNR was presented.
An algorithm that uses both linear and nonlinear filters was realized and the
speckle interferograms showed an improvement, when applied. We noticed that
with this filtering method the SNR of the interferograms improved by a factor
between 0.3 and 0.5 depending on the vibration mode. For further enhancement of
the images, we also used histogram equalization. Thus, both the contrast and
dynamic range were improved. Detailed mathematical explanation of the filters
we applied was also presented.
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