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SPATIAL DOMAIN FILTERING OF SPECKLE 
INTERFEROGRAMS DEPICTING VIBRATION MODES 

Florin GAROI1, Paul ŞCHIOPU2 and Dan APOSTOL3 

În această lucrare investigăm îmbunătăţirea interferogramelor în lumină 
granulară obţinute prin Digital Speckle Pattern Interferometry (DSPI) din vibraţia 
unei plăci de aluminiu cu frecvenţele proprii de 3.05, 4.18 şi 4.56 kHz. Folosind un 
algoritm propriu, am obţinut o îmbunătăţire a raportului semnal/zgomot de 0.3, 0.5 
şi respectiv 0.3 pentru cele trei cazuri studiate. Se aplică egalizarea histogramei 
pentru îmbunătăţirea contrastului şi intervalului dinamic. 

In this paper we investigate the improvement of speckle interferograms 
obtained with Digital Speckle Pattern Interferometry (DSPI) from vibration of an 
aluminium plate with 3.05, 4.18 and 4.56 kHz frequencies. With our algorithm, we 
obtained a SNR improvement of 0.3, 0.5 and 0.35 respectively for the three studied 
cases. Histogram equalization is applied to improve both the contrast and dynamic 
range. 

Keywords: image processing, speckle interferometry, histogram, median filter, 
Gaussian filter, vibration, measurement 

1. Introduction 

Vibration monitoring and measurement is of great importance in 
discovering possible problems associated with machines and various structures as 
well as in controlling their noise level. Digital Speckle Pattern Interferometry 
(DSPI) is a full field, non-contact and real time technique to measure the 
vibrations of optically rough structures [1-7]. It is well-known that all speckle 
interferograms obtained need processing [5-13] after recording. Even though the 
method has many advantages, its main drawback is poor images. However, image 
processing tool successfully covers this aspect.  

In the present work we investigate vibrations of an aluminium plate. 
Vibrations modes of this plate are shown and recorded as speckle interferograms. 
Using a personal algorithm we successfully improve the SNR of these images. 
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2. Experimental setup and the speckle interferograms 

A DSPI setup (Fig. 1) was realized to analyze vibrations of a square 
aluminium plate (144.5 × 144.5 × 1 mm). The arrangement is a Mach-Zender 
interferometer and the fringes are visualized and recorded on a computer via a 
Baxal CCD camera. Vibrations in the plate are induced by a shaker, controlled by 
a signal generator. The beam from a 30 mW He-Ne laser (@ 632.8 nm) is split 
into two different intensity beams by a variable beam splitter. The reflected beam 
(e.g. object beam) reflects off a steering mirror, is expanded and illuminates the 
surface of the aluminium plate. A lens gathers the diffused light from the plate 
and sends it to the beam splitter cube to interfere with the reference beam. The 
transmitted beam (e.g. reference beam) is reflected off three steering mirrors (e.g. 
in order to obtain the path length equal with that of the object beam), expanded 
and sent to the beam splitter cube to interfere with the object beam. The 
interference pattern is recorded at the CCD. 

We adjust the intensities in the two beams such that they have comparable 
intensities at the CCD. This is to obtain an optimum contrast of the interference 
pattern. Also, having the 11 cm focal length lens, the dimension of the 
(subjective) speckle is adjusted with an iris placed just after it, according to the 
formulae [8, 9]: 

2
##, 8and22.1 ff yzx λσλσ == ,    (1) 

where λ is the wavelength of the laser and f# is the numerical aperture of the 
imaging system (e.g. lens/iris). 

 
Fig. 1. DSPI experimental setup. 

 
Fig. 2. Speckle interferograms obtained by subtracting two instances in during the vibration of the 

plate. The 3.05, 4.18 and 4.56 kHz vibration modes are shown. 
Speckles of 35.09 nm in the x, z directions (e.g. plane of the plate; see Fig. 

1 to visualize the reference system) and 10.45 nm in the y direction (e.g. 
perpendicular to the plate) were obtained, with our setup. 
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To obtain the speckle interferograms, we record two instances during the 
vibration of the plate and subtract the images. Thus, the nodes of the vibration will 
appear dark as the phase difference will not change during vibration (Fig. 2). The 
moving parts of the plate will appear gray as the phase difference is changing 
during the vibration. So, by subtracting two speckle interferograms recorded at 
different times during the vibration cycle, not only we make a time-average we 
also get an improvement of the contrast. However, further image processing is 
needed to improve de SNR of the speckle interferograms. 

3. Processing of speckle interferograms 

There are two categories of image enhancement techniques: spatial domain 
methods and frequency domain methods. The spatial domain refers to the image 
plane itself, the approaches in this category are based on direct manipulation of 
pixels in an image. Frequency domain methods are based on modifying the 
Fourier transform of an image. 

Our algorithm for improving the SNR of the speckle interferograms is 
applied in the spatial domain and has the following steps:  
a) apply a median filter (with filter aperture of 3); 
b) apply despeckle filter; 
c) adjust brightness and contrast; 
d) estimate the background illumination; subtract the background illumination; 
e) adjust contrast; 
f) image averaging by addition of the initial speckle interferogram; 
g) apply edge preserving smooth filter (with an amount of smoothing of 3); 
h) apply Gaussian blur filter (with a radius of 0.6); 
i) apply median filter (with filter aperture of 3) 
j) perform histogram equalization. 

 
Fig. 3. Speckle interferograms with improved SNR. Only steps of the algorithm from a) to 

i) are applied to these interferograms. 
 

The resulting filtered images are shown in Fig. 3.The median filter (Fig. 4) 
[14, 15], applied in our filtering algorithm, is normally used to reduce noise in an 
image, somewhat like the mean filter. However, it often does a better job than the 
mean filter of preserving useful detail in the image. The main idea of the median 
filter is to run through the signal entry by entry, replacing each entry with the 
median of neighboring entries. The pattern of neighbors is called the “aperture”, 
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which slides, entry by entry, over the entire signal. If a pixel contains an extreme 
value, it is replaced by a “reasonable” value, the median value in the 
neighborhood. Given a sample of X1, … , XN pixels and reordering them so that Y1 
< Y2 < … < YN, then Yi is called the ith order statistic.  

 
Fig. 4. The pattern of pixels called aperture. The median filter is applied to the central pixel of the 

given aperture, for each pixel at the time. 
Now, given the order statistic Y1 = minj Xj, Y2, …, YN-1, YN = maxj Xj, the 

statistical median of the random sample is defined by: 
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Thus, a median filter having an aperture of 3 will result in 8 neighboring 
pixels. Larger neighborhoods will produce more severe smoothing, but will 
reduce the information in the image at the same time. 
The despeckle filter [14, 16] removes noise from images without blurring edges. It 
attempts to detect complex areas and leave them intact, while smoothing areas 
where noise will be noticeable. 

The effect is that grain or other noise is reduced without severely affecting 
edges. Standard deviation of each pixel and its neighbors is calculated to 
determine if the area is one of high or low complexity. If the complexity is lower 
than the threshold, the area is smoothened using a simple mean filter. 

Image averaging [14] by adding the initial noisy image to the image with a 
degree of filtration, at this stage. Consider a noisy image g(x, y) formed by the 
addition of noise h(x, y) to an original image f(x, y); that is, 

( ) ( ) ( )yxyxfyxg ,,, η+= ,    (3) 
with the assumption that at every pair of coordinates (x, y) the noise is 
uncorrelated (e.g. has zero covariance with respect to the mean value) and has 
zero average value. This procedure wants to reduce noise by adding a set of noisy 
images gi(x,y), in our case one image. Thus, an image ( )yxg ,  is formed by 
averaging K different noisy images: 
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It follows that 
( ){ } ( )yxfyxgE ,, = , and    (5) 

and 
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where ( ){ }yxgE ,  is the expected value of g , while ( )
2

, yxgσ  and ( )
2

, yxησ  are the 
variances of g  and η respectively, all computed at coordinates (x, y). The 
standard deviation at any point in the average image is 

( ) ( )yxyxg K ,,
1
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Equations (6) and (7) indicate that noise of the pixel values at each 
location (x, y) decreases as K increases. Moreover, the equality in equation (5), 
suggests that ( )yxg ,  approaces f(x, y) as the number of noisy images used in the 
averaging process increases. We used only two images as to keep the inevitable 
introduction of blurring in the output image to a minimum. 

Nonlinear filters locate and remove data that is recognized as noise. The 
algorithm is called nonlinear because it looks at each data point and decides if that 
data is noise or valid signal. If the point is noise, it is simply removed and 
replaced by an estimate based on surrounding data points, and parts of the data 
that are not considered noise are not modified at all. Linear filters, such as those 
used in bandpass, highpass, and lowpass, lack such a decision capability and 
therefore modify all data. Nonlinear filters are sometimes used also for removing 
very short wavelength, but high amplitude features from data. 

The edge preserving smooth filter [14] is also a nonlinear filter and is 
based on the Kuwahara algorithm [17, 18]. The algorithm implies that for a gray 
level image I(x,y) and a square patch of the image centered on a pixel of (x, y) 
coordinates, this area can be divided into four identical squares (Fig. 5a) P1, P2, 
P3, and P4, with the coordinates: 

( ) [ ] [ ]
( ) [ ] [ ]
( ) [ ] [ ]
( ) [ ] [ ]ydydxxyxP

ydyxdxyxP
dyyxdxyxP
dyydxxyxP

,,,
,,,

,,,
,,,

4

3

2

1

−×+=
−×−=
+×−=
+×+=

,   (8) 

where “×” denotes the Carthesian product. Now, let mi(x, y) and σi(x, y) be the 
local average and local standard deviation respectively, computed on each square 
Pi(x, y), i = 1,…4. For a given point (x, y), the output IK(x,y) of the Kuwahara 
filter is given by the vaule of mi(x, y) that correesponds to the i-th square 
providing the minimum value of σi(x, y) [18]. This can be sumarized as: 
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Fig. 5b shows the behavior of the Kuwahara operator in the proximity of 

an edge. When the central point (x, y) is on the dark side of the edge (point A), the 
chosen value of mi corresponds to the square that completely lies on the dark side 
(e.g. P4), because it is the most homogeneous area, corresponding to minimum σi.  

On the other hand, as soon as the point (x, y) moves to the bright side 
(point B), the output is determined by the square that lies entirely in the bright 
area (e.g. P2). This flipping mechanism guarantees the preservation of edges and 
corners, while the local averaging smoothes out texture and noise. 

The Gaussian blur [14, 19] is a linear filter that gets rid of the Gaussian 
noise in the image. The shape and dimension of the filter must take into account 
the standard deviation of the noise that affects the image: 
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where σ is the standard deviation, (x0, y0) are the coordinats of the central row and 
column of the kernel (e.g. Fig. 4), and (x, y) are the coordinates of the pixel to 
which the filter is applied.  

 
Fig. 5. Kuwahara filtering (Edge Preserving Smooth): a – Pi regions on which local averages and 
standard deviations are computed; b – Region of smallest standard deviation (shown by a thick 

line) determines the output of the filter. 
 

The image restoration is, then, realized by the convolution of the source image 
with the previously computed Gaussian kernel/filter, such that: 

( ) ( ) ( )yxIyxGyxI SD ,*,, = ,    (11) 
where ID (x, y) is the filtered image and IS (x, y) is the source image. 
However, when the dimension of the filter w is large, the convolution operation 
may be time consumming. In this case, we can use the separabilty property (Fig. 
6) of the Gaussian function: 

( ) ( ) ( )yGxGyxG =, ,     (12) 
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and replace the convolution with a bidimensional kernel with two convolutions of 
one dimensional kernels: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )yxIyGxGyxIyGxGyxI SSD ,**,*, == ,  (13) 
where G(x) and G(y) are the central row and column vectors (Fig. 6) of the 
bidimensional kernel, namely: 
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Fig. 6. The two vector components, G(x) and G(y) in which a2D Gaussian kernel can be separated. 
 

The higher the radius of the filter the higher the amount of smoothing.  

 

 

 
Fig. 7. Speckle interferograms with their corresponding histograms. Notice the poor 

contrast and dynamic range. 
 
Moreover, aplying multiple, successive Gaussian blurs to an image has the 

same effect as applying a single, larger Gaussian blur, whose radius is the square 
root of the sum of the squares of the blur radii that were actually applied. For 
example, applying successive Gaussian blurs with radii of 3 and 4 gives the same 
results as applying a single Gaussian blur of radius 5, since 543 22 =+ . Because 
of this relationship, processing time cannot be saved by simulating a Gaussian 
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blur with successive, smaller blurs – the time required will be at least as great as 
performing the single large blur. On the other hand, Gaussian blurs have nice 
properties, such as having no sharp edges, and thus do not introduce ringing into 
the filtered image. 

The histogram equalization [14, 20] technique is usually used for digitized 
images composed mostly of pixels with either very dark or very bright gray level 
components. The probability of occurrence of gray level rk in an image is 
approximated by: 

( ) 1,...,2,1,0where −== Lk
n
nrp k

kr ,   (15) 

where n is the total number of pixels in the image, nk is the number of pixels that 
have gray level rk , and L is the total number of possible gray levels (e.g. 256 = 28) 
in the image.  
Shortly, the histogram equalization or linearization si given by the transformation: 
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Thus, a processed image is obtained by mapping each pixel with level rk in 
the input image into a corresponding pixel with level sk in the output image via 
equation (16). Histogram equalization automatically determines a transformation 
function that seeks to produce an output image that has a uniform histogram. 
Histograms of all speckle interferograms are presented, both initial (Fig. 7) and 
filtered with our algorithm (Fig. 8).  

 

 

 
Fig. 8. Filtered speckle interferograms with the corresponding histograms. An improvement in 

both contrast and dynamic range is noticed. 
The initial images have poor contrast and darker pixels. An improvement, 
regarding the contrast and dynamic range, is noticed for the processed 
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interferograms. However, the histogram equalization process (Fig. 9) further 
improves these images. 

 

 

 
Fig. 9. Speckle interferograms with the corresponding histograms after the histogram equalization 

was applied. The contrast is greatly enhanced and the dynamic range extended. 
 

In order to estimate the improvement in filtered interferograms we 
calculated the speckle index and the SNR. The speckle index (also called 
coefficient of variation in image processing language) is the ratio of standard 
deviation of intensity to the mean of intensity C = σ /m and the SNR is defined as 
the inverse of this index SNR = 1/C. For the three speckle interferograms we have 
the following improvement of the SNR: 0.3 (for 3.05 kHz), 0.5 (for 4.18 kHz) and 
0.3 (for 4.56 kHz). 

4. Conclusions 

Unlike specular interferometry where the fringes are clear and discernible, 
in the case of speckle interferograms, post-processing is needed. Processing of 
these speckle interferograms in the spatial domain to improve SNR was presented. 
An algorithm that uses both linear and nonlinear filters was realized and the 
speckle interferograms showed an improvement, when applied. We noticed that 
with this filtering method the SNR of the interferograms improved by a factor 
between 0.3 and 0.5 depending on the vibration mode. For further enhancement of 
the images, we also used histogram equalization. Thus, both the contrast and 
dynamic range were improved. Detailed mathematical explanation of the filters 
we applied was also presented.  
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