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GENERAL IMPLICIT SUBGRADIENT EXTRAGRADIENT METHODS
FOR MONOTONE BILEVEL EQUILIBRIUM PROBLEMS

Lu-Chuan Ceng’, Xiaopeng Zhao?, Li-jun Zhu®

In this paper, we introduce the general implicit subgradient extragradient method
for solving the monotone bilevel equilibrium problem (MBEP) with a general system of
variational inclusions (GSVI) and a common fized-point problem of finitely many non-
expansive mappings and a strictly pseudocontractive mapping (CFPP) constraints. The
strong convergence result for the proposed algorithm is established under the monotonic-
ity assumption of the cost bifunctions with Lipschitz-type continuous conditions recently
presented by Mastroeni in the auxiliary problem principle, and also applied for find-
ing a common solution of variational inequality, variational inclusion and fized-point
problems.
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1. Introduction

Let (3, || - ||) be a real Hilbert space with the inner product (-,-). Given a nonempty,
closed and convex set C' C H. We denote by Fix(I") the fixed-point set of a self-mapping
I’ on C. The mapping I' : C — C is said to be strictly pseudocontractive if 3¢ € [0,1) s.t.
|Tu — T'v||? < Jlu—||> +&[[(I = Tu— (I —T)v||? Vu,v € C. Let A be a self-mapping
on H. Consider the classical variational inequality problem (VIP) of finding u* € C such
that (Au*,v —u*) > 0 Vv € C. We denote by VI(C, A) the solution set of the VIP. The
extragradient method invented first by Korpelevich [19] in 1976 has become one of the most
effective methods for solving the VIP. It was shown in [19] that, if VI(C, A) # (), this method
converges weakly to a solution of the VIP. The literature on the VIP is vast and Korpelevich’s
extragradient method has received great attention given by many authors, who improved it
via various techniques; see e.g., [2, 6-8, 11-13, 15, 20, 31, 35, 38]. In particular, Censor et
al. [11] modified Korpelevich’s extragradient method and first introduced the subgradient
extragradient method, in which the second projection onto C' is replaced by a projection
onto a half-space:

vk = Po(uf — T Au),
Cr={veXH: W —r1Aur — vk v—ovF) <0},
ubtl = Pg, (uk — 7AV%),  Vk > 0.

Suppose that A;, Ay : 5 — I are single-valued mappings and let By, By : C — 2% are
multi-valued mappings with Bju # 0 Yu € C,j = 1,2. The general system of variational
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inclusions (GSVI) is to find (u*,v*) € C' x C satisfying
0 € M (Av* + Biu™) + u* — v, (1)
0 € Ao(Agu* + Bov™) + v* — u’*.

In particular, if A; = Ay = A, By = By = B and u* = v*, then problem (1) reduces to the
variational inclusion (VI) ([9]). It is known that problem (1) has been transformed into a
fixed point problem in the following way.

Lemma 1.1 ([10]). Let By, By : C — 2% be two mazimal monotone operators. Then
for given u*,v* € C, (u*,v*) is a solution of problem (1.1) if and only if u* € Fix(G),
where Fix(QG) is the fized-point set of the mapping G = Jﬁl (I - )\1A1)J/€2(I — A2As), and
vt = J0(I = A Ag)ut.

Furthermore, suppose that the mappings A1, As : C' — H are inverse-strongly mono-
tone and the mapping I' : C — C is asymptotically nonexpansive with a sequence {6y}
Very recently, via a modified extragradient approach, Cai et al. [5] suggested a viscosity
implicit rule for finding an element in the common solution set 2 of variational inequalities
for A;,i = 1,2 and the fixed-point problem of I', i.e., for any given u; € C, {u*} is the
sequence generated by

pk = skuk + (]— - Sk)qka
vk = Po(pk — Ay Agph), (2)
qk = PC(Uk - AlAlvk)>

Pt = Po[Brf(u¥) + (I — BrpF)I*q¥),

where {8i}, {sx} C (0,1] are such that

(i) limg oo B = 0, >peq Be =00 and D37 [Bet1 — Br| < oo;

(i) limg o0 % =0;

(i) 0 <e <sp <land Y o, |spt1 — sk| < oo;

(iv) D5, 117 g" — IFg¥|| < oo,

They proved the strong convergence of {u*} to an element u* € £2, which solves the
VIP: ((pF — flu*,v —u*) >0 Vv € (2.

Very recently, Ceng et al. [8] suggested a modified inertial subgradient extragradient
method for finding a common solution of the VIP with pseudomonotone and Lipschitz
continuous mapping A : H — H and the common fixed-point problem (CFPP) of finitely
many nonexpansive mappings {I;}¥; on H. Under some suitable conditions, they proved
strong convergence of the constructed sequence to a common solution of the VIP and CFPP.

Suppose that ® : H x H — RU {+o0} is a bifunction such that ®(z,z) =0, Vz € C.
The equilibrium problem (shortly, EP(C, ®)) is to find @ € C such that

®(a,v) >0, YveCl. (3)

The solution set of EP(C, @) is denoted by Sol(C, ®). It is worth mentioning that the EP (3)
is a unified model of several problems, namely, variational inequality problems ([14, 40, 45,
47-50, 53, 54, 56, 57]), optimization problems ([24]), saddle point problems, complementarity
problems, fixed point problems ([25, 27-30, 33, 34, 39, 52]), Nash equilibrium problems
([22, 26]), split problems ([16, 17, 23, 32, 41, 43, 44, 46, 51, 55]). Many algorithms have been
suggested and studied for solving the EP (3) and its extended versions; see [2, 6, 7, 9, 13,
26, 36, 42] and references therein. Very recently, Anh and An [2] introduced the monotone
bilevel equilibrium problem (MBEP) with the fixed-point problem (FPP) constraint, i.e., a
strongly monotone equilibrium problem EP ({2, ) over the common solution set {2 of another
monotone equilibrium problem EP(C, ®) and the fixed-point problem of a K-demicontractive
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mapping I:
Find u* € §2 such that U(u*,v) >0, Yve {2, (4)
where ¥ : C' x C' — RU {400} such that ¥(u,u) =0, Yu € C and 2 = Sol(C, ®) NFix(I).
Choose the parameter sequences {\z} and {8} such that
{M} C (a,b) € (0, min{ 5=, 5=3), limgoo Ak = A,
Bk\LO, 26k77_ﬂz52 < 13 Zﬁogk = +o00, (5)
0 <7 <min{n, S}, 0 < Br < min{Z, ;Z:i;, %},

where S is a constant associated with ¥. The following modified subgradient extragradient
method is proposed in [2] for finding a unique element of Sol(§2, ¥).

Algorithm 1.1. Choose an initial point u® € C and {ay} C [a,a] C (0,1 — K). The
parameter sequences {\} and {Bx} satisfy the conditions (5). Compute u*** (k > 0) as
follows:

Step 1. Compute v* = argmin{ A, ®(u*, v)+3[lv—u¥||> : v € C} and p* = argmin{\,®(v*, p)
+illp — u*||? : p € Ci}, where Cp = {y € H : (u¥ — Xgw® — v¥,y — vF) < 0} and w* €
82(I>(uk,vk).

Step 2. Compute ¢* = (1 — ay,)p¥ + i I'p* and uF 1 = argmin{ By ¥ (¢*, q) + $llg — ¢"[|* :
g€ C}. Setk:=k+1 and return to Step 1.

In this paper, we introduce the general implicit subgradient extragradient method
for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP
constraints, i.e., a strongly monotone equilibrium problem over the common solution set of
another monotone equilibrium problem, the GSVI and the CFPP. The strong convergence
result for the proposed algorithm is established under the monotonicity assumption of the
cost bifunctions with Lipschitz-type continuous conditions recently presented by Mastroeni
in the auxiliary problem principle. Our results improve and extend the corresponding results
announced by some others, e.g., Cai et al. [5], Anh and An [2], and Ceng et al. [8].

2. Preliminaries

Assume that C is a nonempty closed convex subset of a real Hilbert space H. Given
a sequence {y*} C I, we denote by y* — y (resp., y* — y) the strong (resp., weak)
convergence of {y*} to y. A bifunction ¥ : C' x C — R is said to be

(i) n-strongly monotone, if ¥(y,2) + ¥(z,y) < —n|ly — 2|, Vy, 2 € C;

(ii) monotone, if ¥(y, z) + ¥(z,y) < 0,Vy, z € C;

(iii) Lipschitz-type continuous with constants c1,ca > 0, if ¥(y,2) + ¥(z,w) >
U(y,w) —cilly — 2[|2 — cal|z — w||?, Vy, 2,w € C.

Also, recall that a mapping F': C — H is said to be

(i) L-Lipschitz continuous or L-Lipschitzian if 3L > 0 s.t. [|[Fy — Fz|| < L|y —
z||, Vy,z € G

(ii) monotone if (Fy — Fz,y —z) >0, Yy,z € C,

(iii) pseudomonotone if (Fz,y — z) > 0= (Fy,y —z) > 0, Yy,z € C;

(iv) n-strongly monotone if In > 0 s.t. (Fy — Fz,y — 2) > |y — 2||?, Vy,z € C;

(v) a-inverse-strongly monotone if 3o > 0s.t. (Fy—Fz,y—z) > o||Fy—Fz|]?, Vy,z €
C.

For each point z € H, we know that there exists a unique nearest point in C, denoted
by Pcz, such that ||z — Poz|| < ||z —y||, Vy € C. The mapping Pc is said to be the metric
projection of H onto C.

Lemma 2.1 ([18]). The following hold:
(i) (y — 2, Poy — Poz) = ||[Poy — Poz|?, Vy,z € H;
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(i1) (z — Pcz,y — Pcz) <0, V2 e H,y € C;

(iii) ||z — y|I> > ||z = Poz||* + |ly — Poz|?, Vz € H,y € C;

(i) Iz = ylI* = ll21* = Iyl — 2(z =y, ), Yy, 2z € 3,

(v) sy + (1= s)zlI> = sllyl> + (1 = s)[=]1* — s(1 = s)lly — 2|1, Vy,z € H,s € [0,1].

Recall that the mapping I' : C' — C'is a &-strict pseudocontraction for some & € [0, 1)
if and only if the inequality holds (I'y—I"z,y—z) < ||yfz||271—;€H(IfF)yf(IfF)sz Yy, z €
C. From [1] we know that if I" is a &-strictly pseudocontractive mapping, then I' satisfies
Lipschitz condition |[I'y — I'z|| < %Hy —z|| Yy, z € C.

Lemma 2.2. Let I' : C — C be a &-strictly pseudocontractive mapping. Let v and & be
two nonnegative real numbers. Assume (v + 6)§ < . Then ||y(y — 2) + 6(I'y — I'z)|| <
(v +0)ly ==, vy,z € C.

Let B : C — 2% be a set-valued operator with Bz # () Vo € C. B is said to be
monotone if for each x,y € C, one has (u — v,z —y) > 0 Vu € Bx,v € By. Also, B is said
to be maximal monotone if (I + AB)C = K for all A > 0. For a monotone operator B, we
define the mapping JZ : (I + AB)C — C by J§ = (I + AB)™! for each A > 0. Such J¥ is
called the resolvent of B for A > 0.

Proposition 2.1 ([20]). Let B : C — 2% be a mazimal monotone operator. Then the
following statements hold:

(i) the resolvent identity: J2x = J2(5a+ (1 —5)Jfx) VA, u >0, 2 € K;

(i) if Jf is a resolvent of B for A\ > 0, then Jf; s a firmly nonexpansive mapping
with Fix(JP) = B710, where B~'0 = {x € C': 0 € Bx}.

Let A : H — H be an a-inverse-strongly monotone mapping and B : C' — 2% be a
maximal monotone operator. In the sequel, we will use the notation Ty := J ){9 (I —MA) =
(I +AB)~Y(I — \A),¥Y\ > 0.

Proposition 2.2 ([20]). It is well known that (i) Fix(Ty\) = (A + B)~'0, VA > 0 and (ii)
ly —Thwyll <2|ly — Try|| for0 < A<r andyeC.

Lemma 2.3. Let the mapping A : H — H be a-inverse-strongly monotone. Then, for a
given A > 0, [|[(I = AA)u — (I — XA)||? < |lu —v||* = A(2a — \)||Au — Av||%. In particular,
if 0 < X\ < 2a, then I — A\A is nonexpansive.

Utilizing Proposition 2.1 (ii) and Lemma 2.3, we immediately obtain the following result.

Lemma 2.4. Let By, By : C — 270 be two mazximal monotone operators. Let the mappings
Ay, As : H — H be a-inverse-strongly monotone and B-inverse-strongly monotone, respec-
tively. Let the mapping G : H — C be defined as G := Jfll (I - AlAl)JiQ(I — Ady). If
0< A <2a and 0 < Ay <28, then G : H — C is nonexpansive.

Lemma 2.5 ([11]). Let A : C — 3 be pseudomonotone and continuous. Given a point
x€C. Then (Az,y—x) >0, Vy e C & (Ay,y—z) >0, VyeC.

Lemma 2.6 ([1]). Let I' : C — C be a &-strict pseudocontraction. Then I —1I is demiclosed
at zero, i.e., if {zn} is a sequence in C' such that z, — z € C and (I — ')z, — 0, then
(I —T')z =0, where I is the identity mapping of H.

Lemma 2.7 ([21]). Let {Ti} be a sequence of real numbers that does not decrease at infinity

in the sense that there ewists a subsequence {Ty;} of {Tr} which satisfies Ty, < Ty, 1 for
each integer j > 1. Define the sequence {T(k)}r>r, of integers as follows:

(k) =max{j <k:7T; <T;11},
where integer ko > 1 such that {j < ko :T; < T;11} # 0. Then, the following hold:
(i) T(ko) < T(ko + 1) < -+ and 7(k) — oo;
(14) Trky < Try41 and T < Troy1, VE > k.
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On the other hand, the normal cone N¢(u) of C at u € C is defined as N¢(u) = {w €
H: (w,v—u) <0, Yv € C}. The subdifferential of a convex function g : C — RU {400} at
u € C' is defined by dg(u) = {w € H : g(v) — g(u) > {(w,v —u), Yv € C}.

In this paper, we are devoted to finding a solution z* € Sol({2, ¥) of the problem
EP(£2,¥), where 2 = ﬂf.vzo Fix(I;) N Fix(G) N Sol(C, @) with Iy := I'. We assume always
that the following hold: (i) I is a nonexpansive self-mapping on H for i« = 1,..., N and
I : 3 — His a &-strictly pseudocontractive mapping with ¢ € [0,1); (ii) By, B2 : C —
270 are two maximal monotone operators, and A;, As : H — J{ are a-inverse-strongly
monotone and [-inverse-strongly monotone, respectively; (iii) G : 5 — C is defined as
G = Jﬁl(I — )\1A1)Jﬁ2(1 — A Ag) where 0 < Ay < 2a and 0 < A2 < 283. Choose the
sequences {ei}, {8k}, {7}, {0k} in (0,1), and positive sequences {ay}, {sr} such that

(H1) Br + 9k + 0, = 1 Vb > 1, 0 < liminfg_o0 0 and (yx + 05)E < Yg;

(H2) limsupy,_, . Br < 1 and 0 < liminfy_,oc ek < limsupy_, . € < 1;

(H3) >op, sk = 00, limy_yo0 5 = 0, and 2s,v — 5752 < 1;

(H4) {ax} C (a,b) C (O,min{i, ﬁ ) and limy_,o0 a = &;

(H5) 0 < A < min{v, S} and 0 < s;, < min{}, 25=33, Z}.

In terms of Xu and Kim [37], we write Iy := 'kmodn for integer k > 1 with the mod
function taking values in the set {1,2,..., N}, i.e., if K = jN + ¢ for some integers j > 0 and
0<g<N,then Il =I'yifg=0and I, =1, if0<g<N.

Algorithm 2.1. Given x' € 3 and ¢ € (0,1) arbitrarily. The sequences {ex},{Br}, {7V},
{0k} in (0,1), and positive sequences {ax}, {si} satisfy the conditions (H1)-(H5). Calculate
zF 1 as follows:

Step 1. Compute

{uk = epaf + (1 — &) (CTH* + (1 — O)Ga"),
ok = T2 (aF — Ay Apul).
Step 2. Compute
{qk = JP @k — A AT,
y* = argmin{ax ®(¢*,y) + 3y — ¢*|* : y € C}.
Step 3. Choose w"* € 9,®(¢*,y*), and compute
{Ck ={veH : (7" — apw® —y* v —yF) <0},
2F = argmin{a, ®(y*, z) + 3|z — ¢"[|* : z € Ci}.
Step 4. Compute
P* = Be2* + wGP* + 6. TGP,
P =Gpt,
o = argmin{s, ¥ (p*, 1) + L[|t — p*||? : t € C}.
Set k :=k+ 1 and return to Step 1.
We need the following technical propositions.

Proposition 2.3 ([4]). Let C be a convex subset of a real Hilbert space H and g : C —
R U {+o0} be subdifferentiable. Then, T is a solution to the following convexr minimiza-
tion problem min{g(z) : = € C} if and only if 0 € Jg(Z) + Nc(Z), where dg denotes the
subdifferential of g.

Proposition 2.4 ([3]). Let X and Y be two sets, G be a set-valued map from'Y to X, and
W be a real valued function defined on X x'Y. The marginal function M is defined by

M(y) ={z" € §(y) : W(z",y) = sup{W(z,y) : z € G(y)} }-
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If W and S are continuous, then M is upper semicontinuous.

Next, we assume that two bifunctions ¥ : C x C' — RU {+oc0} and ® : H x H —
R U {+00} satisty the following conditions where some notation is adopted from [2]:

ASS@I

(@1) 2 =N, Fix(I3) NFix(G) N Sol(C, ®) # ) with Iy := I".

(®2) @ is monotone and Lipschitz-type continuous with constants ¢1,ce > 0, and ®
is weakly continuous, i.e., {z¥ — 2 and y* — g} = {® (2, v*) — ®(2,9)}.

Assy:

(U1) ¥ is v-strongly monotone and weakly continuous.

(U5) There exist the mappings ¥; : C' x C' — H and ;1 C — Hforeachi € {1,...,m}
such that Wi(z,y) + Vi(y, ) = 0, [[Wi(z,y)l| < Lillz -y and [[¢i(x) = ¢i(y)|| < Lillz -yl
for all z,y € C, and ¥(z,y) + V(y,2) > U(z,2) + > (Ui(z,y), Yi(y — 2)), Vo,y,2 € C.

k
(U3) For any sequence {y*} C C such that y* — d, we have limsup,,_, . ‘\i/(’ilfdﬁl

+00.
It is easy to see that if the bifunction ¥ satisfies the condition Assg(¥3), then U is

Lipschitz-type continuous with constants c¢; = ¢y = % E:il Eiﬁi.

3. Main results

In this section, utilizing the general implicit subgradient extragradient method, we
present convergence analysis of the iterative algorithm for solving the MBEP with the GSVI
and CFPP constraints, i.e., a strongly monotone equilibrium problem EP({2, ¥) over the
common solution set {2 of another monotone equilibrium problem EP(C, ®), the general sys-
tem of variational inclusions (GSVI) and the CFPP of finitely many nonexpansive mappings
{I;}Y| and a strictly pseudocontractive mapping I, where 2 = ﬂZN:O Fix(I;) N Fix(G) N
Sol(C, ®) with I'y :=TI.

Theorem 3.1. Assume that {x*} is the sequence constructed by Algorithm 2.1. Let the bi-
functions U, & satisfy the assumptions Assg-Assy. Then, under the conditions (H1)-(H5),
the sequence {x*} converges strongly to the unique solution x* of the problem EP(2,¥ ).

Proof. Choose an element p € {2 = ﬂzN:O Fix(I;) N Fix(G) N Sol(C, ®) arbitrarily, where
G = JJ (I = AtA1)Jy? (I — AaAz) with 0 < A\ < 20 and 0 < Ay < 23. We divide the proof
into several steps as follows:

Step 1. We show that the following inequality holds

125 =plI* < 17" = BlI* = (1 = 2ae)ly* = ¢°1* — (1 = 2akea) |28 — ¥ VE> 1.

Indeed, by Proposition 2.3, we know that for y* = argmin{o,®(¢"*,y) + 3 |ly— 7" : y € C},
there exists w* € 9,®(¢", y*) such that apw* 4+ y* — §* € —Nc(y*), which hence yields

(og® 4+ yF — @,z —y*) >0, vVzecC. (6)
From the definition of w* € 9,®(¢*, y*), it follows that
a[®@(@",2) — (7", ")) = (0™, z —y"), Ve eIt (7)
Adding (7) and (6), we get
ar[®(q", ) — (¢", ¥ + (v" —¢" 2z —y") 20, VzeC. (8)
It follows from z* € C} and the definition of Cy, that (¢* —aw* —y* v—5*) < 0, and hence

ak<wkvzk 7yk> Z <qk7ykvzk7yk>' (9)
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Putting z = 2¥ in (7), we get ax[®(G", 2%) — ®(q,v*)] > an(w*, 2* — ¢*). Adding (9) and
the last inequality, we have
a[®(g", 2%) — @(q",y*)] = (6" — y*, 2" — o). (10)
By Proposition 2.3, we know that for z* = argmin{a,®(y*,y) + 3|y — ¢"||* : y € Ci}, there
exist h¥ € 9, ®(y*, z¥) and t* € Ng, (2*) such that aph® +zF — " +1* = 0. So, we infer that
ap(h®,y —2F) 2 (q" = 2F,y — 2¥) Yy € Oy, and (3", y) — D(y*, 2*) = (hF,y — 2*), vy € 5.
Putting y = p € C C C in two last inequalities and later adding them, we get
ak[q)(yk7ﬁ) - q)(yk7 Zk)] > <qk - Zkvp - Zk>'
By the monotonicity of ®, p € Sol(C,®) and y* € C, we get ®(y*,p) < —®(p,y"*) < 0.
Therefore, —ap®(y*,2%) > (7" — 2%, p — 2¥). Combining this and the following Lipschitz-
type continuity of ®
(7", y*) + 0(y*, 2") > (7", 2") — cullg” — y*II” — cally® — 2117,
we obtain that
(@ = 2F, 2" = p) > @ (y", 2¥)
> o[ (7", 2%) — (7", y")] — ancrllg® — yF|I? — ance|ly* — 2F|
This together with (10), implies that
(@ =252 =) 2 (@ —y", 2" ) —avalld® — oI - aweallyt — 2 (11)

Therefore, applying the equality
(1,0) = 5 (-4 o =l = o) Va0 € 3¢ (12)
for (g% — 2%, 2F — p) and (y* — @*, 2¥ — y*) in (11), we obtain the desired result.
Step 2. We show that the following inequality holds
[ — 2|2 < p° = 2l® — |2 = pP)? + 25, [ (5", 2) — WP, Y], ve e
Indeed, since 2" = argmin{s; U(p*, )+ |[t—p"||? : t € C}, there exists m* € &V (p*, 2FT1)
such that 0 € spm” + 2%+1 — p* + No(2¥+1). By the definition of normal cone N¢ and the
subgradient m*, we get (spm* + z*+t!1 — p* x — k1) > 0,Vz € C, and
se[U(pF, z) — W(p", 28T > (spmF, z — oY), vz e C.

Adding two last inequalities, we get

25U (pF, x) — U(p", ")) + 2(aF Tt — pF Lz — 2P >0, VeeC. (13)
Putting v = 2! — p* and v = 2 — 2FT1 in (12), we get

265, (W (2", ) =0 (p", )]+ || — 2| — 2" = PP — [T — 2P >0, VzeC.

This attains the desired result.

Step 3. We show that if * is a solution of the MBEP with the GSVI and CFPP con-
straints, then ||z¥ 1 —p%|| < np||p* —2*|| < (1=Asp)||p* —z*||, where p¥ = argmin{s, ¥ (z*,v)+

%HU—CE"‘H2 cv € CH M =1 — 25,0+ 5352, 0 < XA <min{r, S}, 0< s < min{%, %’;:iﬁ ,
and S = 37 L;L;. Indeed, put p* = argmin{s,¥(z*,v) + |lv — 2*[|> : v € C}. By the
similar arguments to those of (13), we also get
sp[U(x*, x) — Uz, p))] + (F — 2",z —pF) >0, VzeC. (14)
Setting = p¥ € C in (13) and 2 = 2**! € C in (14), respectively, we obtain that
sk[W(p",pY) — W(p*, &) + (2™ — pF, pl — 2™ ) > 0,
skl (2, 2Y) = W, ph)] + (pL — 2%, 2" = pl) > 0.
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Adding two last inequalities, we have
0 < 285, [W(p", p7) — W(P", &) + W(a®, ™) — W(a”, )
+2(a T =gt —pl ot pl -2t

o _ . . e (15)
= QSk[\II(pk,pf) - \Il(pkvkarl) + \II(QC ,1,k+1) - \II( apf)] + Hpk - ||2
S Ay A oAl [ EaS o [
where the last equality follows directly from (12).
Note that, under assumption Assy(¥2), it follows that
U(ph,pk) — W(a*, pt) < U(pF, 2" Z (Ti(p",2*), di(a — pb)),
i=1
\Il(m*,.fck+1) _ \I/(ﬁk, mk-{-l) Z (ﬁk _ mk-ﬁ-l)).
i=1
Therefore, we have
\P(ﬁkaﬁf) - \Il(ﬁkakarl) + \Ij(x*vxk+1) - \Il( *,ﬁf)
< W, at) U ) — ST 1), it — ) — S (Tl 5, (0 — 25)).
i=1 i=1

Then, using Assy(VUs3), and the strong monotonicity of ¥ in Assy(¥;) that ¥(x,y) +
U(y,z) < —v|z —y||® Vz,y € C, we get

U(p",py) = W(E", M) + Wt 2t — (T, pY)

< —vp* — 2| + Z Gi(p" — 2t = di(a” — p))

< —v|p* -2 + Ziiﬁi\\ﬁ’“ —a|[p* — 2"~ 4 L

= —v[lp* — 2*|* + S[p" — | [Ip" — ™ — 2t + g
Combining (15) and (16), we get

0 <(1—2s)[Ip" —a*|* + 25..S|p" — 2*||||p* — *+! — 2% + pF||
=l = pt = pl 4 2P — [t - pl|J?

= (1= 2spv)[Ip* — 2*||? — (JJla*+! — pF — pF + 2*|| — s.S||p* — 2*|))?

—I—SiSQHﬁk _ x*HQ _ ||£k+1 _ﬁ]:HQ

< (1= 2sv + 5757 [Ip* — a*[|* — [Ja* 1 — pF |2

Note that 0 < np = /1 — 25 + siS2 < 1 — Asp. This ensures the desired result.

Step 4. We show that the sequence {*} is bounded. Indeed, putting X := C,Y :=
[0,1],5(s) := C,Vs € Y, s := s,W(z,s) := —s¥(z*,2) — L[z — 2*|? V(z,s) € X x Y, we
have that M (sy) = argmax{W (z,s;) : € C} = argmin{s,V(z*,z) + ||z — 2*|* : z €
C} = {p*}. Note that M is continuous and limj_,o, p*¥ = *. Since ¥ is continuous on C,
we get limy 0o U(2*,p%) = U(2*,2*) = 0. In terms of Assg(V¥3), there exists a constant
M(z*) > 0 such that |¥(z*,p¥)| < M(x*)||p¥ — 2*||,Vk > 1. Putting * = z* in (14) and
using ¥(z*, 2%) = 0, we get —s,V(z*, pF) + (pF — 2%, 2* — pF) > 0, which hence yields

155 — 2*||* < sk~ (=", p0)] < suM (27) L — ™|, Wk >1.

This immediately implies that ||p* — 2*|| < sx M (x*),Vk > 1. Also, according to Lemma 2.3
we know that I—A; Ay and I — X2 A are nonexpansive mappings, where A\; € (0, 2«) and Ay €
(0,2B). Note that the mapping G : H — C is defined as G := J{' (I — A1 Ap)J{2 (I — A2 Ay).
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Hence, by Lemma 2.4, we know that G is nonexpansive. We write y* = Jf; (I — A2 Ag)x™.
Then, by Lemma 1.1, we get z* = Jﬁl (I — M Aq)y* = Gz*. Thus we observe that

7% —2*| < eplla® — ||+ (1 —ep)[CITRa" — 2*[| + (1 = Q)[|GT* — 2*|]
<enla® — o + (1 —e)[Clla* — ¥ + (1 = Qfla* — 2*]]
= eplla® — || + (1 — ep) 0" — 2],

which hence yields
[a* —a*|| < [la* — 2. (17)
Since v* = ij (I — N\oAs)u* and g* = Jfll (I — X\ Ao, we have ¢¥ = Gu*. Thus we get
|g" — z*|| = |Gu* — z*|| < ||u¥ — z*||, which together with (17), yields
lg" —a*|| < [la* —a*|| < [la* — 2.

This together with the result in Step 1, implies that

125 —a*|| < llg° — 2| < |@* —a*|| < |la* =¥, VEk>1. (18)
Since I' is &-strictly pseudocontractive such that (v, + 0,)€ < vy, by Lemma 2.2 we have

7% =¥l < Bull® — o] + (1 = Ba)lli=5; [y (GB* — 2%) + 6 (I'GP* — )]
< Bellz" — 2*|| + (1 — Ba) | GP* — 27|
< Belle® — 2| + (L= Bu)lIp" — 2|,
which together with (18) and p*¥ = Gp*, yields
I7° = 2| < Ip* = a*|| < =" —2*|| < [lg° — 2™ < [|a* — 27| < []a" —2*| V& >1. (19)
So it follows that
2"+ — (| < ]2 = pE + [1pE — 2| < (1= Asw)|P" — 2*|| + [IpE — 2*|
M(x*)} (20)
L
By induction, we get ||2* — z*|| < max{|lz! — z*||, %} Vk > 1. Thus, {z*} is bounded,

and so are the sequences {p*}, {p*}, {@"}, {v*}, {z*}, {@*}, {v"}.
Step 5. We show that if 2% — 2, g% — 2% — 0 and @ — y* — 0 for {k;} C {k},
then # € Sol(C, ®). Indeed, noticing ¢* — z* — 0 and g% — y* — 0, we get

=0 (i = o0). (21)

<(1- /\sk)||mk — || + s M(z*) < maX{ka —z",

ki < |l — @ + lg" — y*

So it follows from z** — & that ¢ — & and y* — 2. Since {y*} C C, y* — & and C is
weakly closed, we know that & € C. By (8), we have

ki
-y
k

2

ar, (g%, x) > a, ®(G",y*) + (v — "y —x), vzec

Taking the limit as ¢ — oo and using the assumptions that limg_, oo ap = & > 0, (2, &) = 0,
{y*} is bounded and ® is weakly continuous, we obtain that a®(z,x) > 0, Vo € C. This
implies that & € sol(C, ®).

Step 6. We show that 2F — z*, a unique solution of the MBEP with the GSVI and
CFPP constraints. Indeed, set T = [z — 2*||%. Since I" is &-strictly pseudocontractive
such that (g + 0x)& < 7k, using Lemma 2.2 and Lemma 2.1 (v) we obtain

5% —2*[I” = [I1Bu(z" — 2*) + W (GD* — a*) + o (D GP* — 2*)||?
< Brllz® — ¥ * + (1 = B)llGp* — 2*||?
=Bl = Bi)ll =5 [ (2" — GB*) + on(2* — I'GEM)|1?
< Belle® — 2|17 + (1 = B)Ip* — 2|2
—Be(1 = Bi)ll =g [ (2" — GB*) + 01 (2% — I'GpY)]|1%,
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which immediately leads to

17° = 2*|* < |l=" =™ )* - (1 - ﬁk)llﬁm(zk — Gp*) + 0k (2 = TGP, (22)

By the results in Steps 1 and 2 we deduce from (19) and (22) that
2"+ — 2| < " — a1 = [l = pF)? + 25 [0 (0", 27) — W (p", M)
< lg" =" = (1 = 2apen)[ly* — ¢°[° — (1 — 2akea) |27 — " |

1
- (1= Bl

+ 25, [U(F, ) — W, 2P )]

< la* = 2*|? = (1 = 2ae) |y* = ¢°[1* — (1 — 2akez) || 2* — y*||?

[ (=" = GB*) + 0 (2" = TGRM)|* = "+ = p°|1?

1 ) i _
-1~ Bk)llmm(zk — Gp") + 0,(2" = TGN = (|21 = p¥|1* + s K,

where sup,> {2|¥(pF, z*) — ¥ (pF, zF )|} < K for some K > 0.
Finally, we show the convergence of {J;} to zero by the following two cases: Case
1. Suppose that there exists an integer kg > 1 such that {T%} is non-increasing. Then the
limit limy 00 Ty = 7 < +00 and T, — Tpy1 — 0 (kK — 00). From (23), we get
(1= 2axer)lly” — @117 + (1 = 2ake0) |27 — 4" 1> + (1 = Br)
(24)

x || [y (2 = GPY) + 6k (2" = PGP)|I? + |2" ! — %[> < Tie — Tigr + sk K,

1
1 — B
Since s — 0, Tp — Tpy1 — 0 and limsup,_,., Bx < 1, we obtain from {ay} C (a,b) C
((Lmin{ﬁ, ﬁ}) that

. 1 - .
lim | [k (=" = Gp") + 0k (=" = TGN = 0, (25)
k—oo ' 1 — [

and
lim [[y* —¢" = lim [z* —¢*| = lim [2*! —p"| = 0. (26)
k— o0 k—o0 k—o0

We now show that [|[a* — g*|| — 0 as k — oo. Indeed, we set y* = Jf; (x* — A2 Agx™). Note

that o = Jff (@F — Ay Au*) and @~ = Jﬁl (0% — A1 A19%). Then ¢ = Gu*. By Proposition
2.1 (ii) and Lemma 2.3 we have

7% =y [I* < [la® — 2| = X2(28 — Ao)|| Aza® — Aza™||?, (27)
and

1g* — 2*|* < J]o" —y*|* = A2 — A0 417" — Avy* |2 (28)
Substituting (27) for (28), by (19) we get
g — ™| < fla® = 2|2 = A2(28 — Ao) [ A2® — Aoz = A1 (20 = A1)l 410" — Avy*[%. (29)
Also, substituting (29) for (23), we get

||.Z‘k+1 _ x*||2 < ”qk _ x*HQ 4 SkK
< H.Tk — Ll?’k”2 — )\2(25 — )\Q)HAQ’ELk — A2$*||2 — )\1(20[ — )\1)|‘A117k - A1y*H2 + SkK,

which immediately yields
A2 (28 — Xo)||Ag@F — Agz™ || 4+ A1 (200 — A)||A17” — Avy* || < T — Tigr + si K.
Since A1 € (0,2a), Ay € (0,28), sp — 0 and T — Ty — 0, we get
len;C |As@® — Asz*|| =0 and kli_)n;o |A15* — Ayy*|| = 0. (30)
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On the other hand, from Lemma 2.1 (iv) and Proposition 2.1 (ii), we get

g% —a*||> < (@% — y*, 3 — a*) + M (Ary* — AoF, g — 2*)
< Lo =y )2 + (1g% — 272 = (|oF — @ + 2 — y*[]H]) + M| Ayt — AR |k — 2.

This ensures that

1g° —2* | < ||o* —y* | = [|0" = " + & — y*|I” + 20| vy — Aot (llg" — 2"l (31)
Similarly, we get
7% —y*|I* < fla* = a*|* — [la* — o* + 5" — 2*|* + 2Xe[ Aza® — Apu®[|0* — 7| (32)
Combining (31) and (32), by (19) we have
k

e e e e A Tl [
+ 20 [[Ary* = AP @ — 2| + 200 Asr™ — Aou®||[[7* — 7.
Substituting (33) for (23), we get
Ja* =¥ < || — 2*|]* + sp K
< la® = a*|)? = la* — o +y* —a*|? |78 — 3 + 2 — |
21 [ Ay — Aot |lg" — 2% + 22| Aga® — Axu®|[]|0F — y*|| + si K.
This immediately leads to
Hak _ @k +y* _ m*HQ 4 H@k _ (jk + gt — y*HQ
< T = Thar + 20 [ Ay — Ao¥|]|g" — 2% || + 22| Aga® — A2u®|[[|0% — y*|| + sk K.
Since s — 0 and Ty — Tpa1 — 0, we deduce from (30) that

17 (33)

lim ||@* — " +y* —2*| =0 and lim +|o* — @ + 2" —y*|| = 0.
k—o0 k—o0
Thus,
la* — Ga*|| = [|a* — || < [|a* =" +y* — 2|+ 7 = " +a* —y*| = 0 (k— o). (34)
Utilizing the similar arguments to those of (34), we obtain
lim |p* — Gp*|| = lim [|5* —p*|| = 0.
k—o0 k—o0
Noticing @* = ex* + (1 — ) (¢IRa* + (1 — ¢)G@*), we obtain from (19) and Lemma 2.1
(v) that
1a* —a2*|? = epllz® —2*[* + (1 - en)[CII1T%T" — 2*[|* + (1 = Q)| GT* — o*||?
—C(L = OlIra* = Gu*|*] — ex(1 — ex)[IC(a* = Ia*) + (1 = ¢)(a* — Ga")|]?
< erfla® — 2* | + (1 - en)[Clla* — a*|* + (1 = Ol|a* — a2
—C(1 = QIIwa* = Ga*|?] — e (1 = ep)ll¢(a* — Dya*) + (1 = Q) (2" — Gu¥)||?
= exlla® — 2|2 + (1 —ep)a* — 2*|* = (1 —ex)C(1 = Q| Twa” — Gu¥||?
—ep(1 —ep)ll¢(a® = Ipa) + (1 = ¢) (=" — Ga")||?,
which hence yields
[ab —a* || < fla* =2 = 1521~ Q| pa” — Gat|)?
—(1—ep)[¢(z? = Dua*) + (1 = )z — Ga")|*.
This together with (23) and (19), implies that
o — a2 < |g" — 2% + s K < [Jaf - 2¥]? + sp K
< fla* — 2| = 2201 = Ol - Gat|)?
—(1 —ep)ll¢(@® = Iak) + (1 = ¢)(a* — Ga¥)|]* + si K.
So it follows that

= A= Mt —Gab |2+ (1—ex) | (o — L) + (1= ) (@~ GT*) |2 < Ty—Tiy1 +s1 K.
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Since s = 0, Ty — Tp41 — 0, ¢ € (0,1) and limsup,,_, . ek < 1, we get

lim | [pa* — Ga*|| =0 and  lim ||C(z" — [a®) + (1 = ) (2F — Ga*)|| = 0.
k—o0 k—o00

Noticing @* — Gu* = ey (2% — Gu*) + (1 — e)¢(Iwu* — Gu*), we have

exlle® — GaF|| < @b - GaF|l + (1 - ep)¢| Tvah — G|
< ||a* — Ga*|| + || Twu* — Gu*||.

From (34), (35) and 0 < liminfy_,c €, it follows that
Jim. 2" — Ga*|| =0,
which together with (35), implies that
[a* — || = (1 = ep)ll¢(Tpa” —2*) + (1 = ¢)(Ga" —2¥)]|
< [¢(Ipu” — Gu* + Ga* —a*) + (1= ¢)(Ga" —2")]
< | Ipu* — Gu*|| + |Gu" — 2% - 0 (k — ).
Combining (36) and (37), we have
lz* — Ga*|| < |a* — Ga*|| + || Ga* — Ga*|
< |l2* — Ga*|| + [[a" —2*| - 0 (k — o).
Moreover, from (34), (35) and (37), we infer that
|Tpu® —a¥| < || Mva” — Ga¥| + |Ga* —a¥|| - 0 (k — o),
and hence
1T — a®|| < || Ty — Dpa®|| + || Tpa® — @ + [|a* — 2"
<2|zF — a@”|| + || Tpa* —a*| -0 (k — o).

In addition, from (25) and (26) it follows that

k =k _ (1 1
[ =Pl = (1 ﬁk)”l_ﬂk

(=" = GB*) + 81(2* = TG = 0 (k = o0),

and
125 =" < 12" =¥l + ly* =" = 0 (k= o0),

and hence

17" = a*|l < 19" = "1l + 115" — "

<8 ="+ 15* = 2N+ 15 =" =0 (k= o0).
Thus, using (26), (36) and (42), we have

2"t — 2| < Y|l = P+ " =+ 18 -2l =0 (k= o).
Note that
lg" = Gg"|l = |IGa* — Gg*|| < [|a* = "l = 0 (k — o0).
So it follows from (34), (41) and (42) that
12 = Gp*l| < |I=* = ¢"[| + ll¢° = Ga*|| + 1Ga* — G|
< |l2* ="l + ld" — a*|| + [1g° = | = 0 (k — o0).

(39)
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Since 2F —pF = i (2¥ —Gp*)+5x (2 —T'GP), we obtain from (40), (45) and 0 < lim infj_, 5k
that

. 1 _ _
I2* — rGpt|| = gllzk =" — (" — G|

; (46)
< a(llzk = B[+ kll" = GBEI) = 0 (k= o0).
Note that N N ) ) . ) )
IGp* —p"|| < |IGp” = Gg*[| + [|Gq" — ¢"|| + [lg" — "
<2lp* - ¢"|[ + |Ga" - a*].
So it follows from (40), (42), (44) and (46) that
IP* = IGp¥(| - < |Ip" = 2¥[| + ||2* — I'Gp¥||
< Mp* =PI+ 1IP* — 28+ Nle® - TGRP| + ITGR* — TG
< =P =2l + 15" — 2% + 1127 — TGP,
and hence
Ip" = || < |Ip* = PGp¥|| + [P Gp* — I'p|
2 ok k ko _k k I+ f o
< 1ff\lp o R e e e e HGP I (47)
2 _ _
< ﬁ\lpk R e (R EA H+ (2H ¢l + 1Gg" — ¢"[)) — 0
Meantime, it is easy to see from (26) and (43) that
2% = B°|| < [la® — 2| + | =5 = 0 (k= o0). (48)
Next we show that limy,_,, ||[2* —2*|| = 0. In fact, since the sequences {p*} and {z*}

are bounded, we know that there exists a subsequence {p*} of {p*} converging weakly to
Z € C and satisfying the equality

li inf[0 (7, ) + (5", 2] = Jim [9(a",p) + W, 25, (49)
—00

1—> 00

From (26) and (48) it follows that x** — & and z**1 — 2. Then, by the result in Step 5,
we deduce that & € Sol(C, ®). We now show that limy_,o [|2% — Ija*|| = 0 for j = 1,..., N.
Note that for j =1,..., N,

lo% = Fepja®|| - < [la® — 29| 4[24 — Iy xk“ll + ([T — Degya®|
< 2l|2* — 2| + [|l2PH — Dy et
Thus, from (39) and (43) we get limy_, oo ||2¥ — Ik1j2%|| = 0 for j = 1,..., N. This immedi-
ately implies that
lim ||z* — Ija*| =0 forj=1,..,N. (50)
k—o0
Also, by (47) and (48) we have
la* = Pa®(| < |lo* = p"[| + [p* — Ip*|| + | 1" — I'a¥]|

_ _ 1+§ _
<™ =P+ 1IP" = TRt + ¢ g lp i

| (51)

= 1f§||a:’“—ﬁk|| gt =Tt 50 (k> oo)

It is clear from (50) that z* — I;z* — 0 for j = 1,...,N. Note that Lemma 2.6
guarantees the demiclosedness of I—1I'; at zero for j = 1, ..., N. So, we know that & € Fix(I7).
Since j is an arbitrary element in the finite set {1,..., N}, we get & € ﬂ;y:lFix(Fj). Also,
note that Lemma 2.6 guarantees the demiclosedness of both I — I and I — G at zero. Since
limy o0 ||2% — I'z¥|| = 0 (due to (51)), we infer from z*¢ — & that & € Fix(I"), which hence
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yields & € ﬂ;.vzo Fix(I';). Meantime, from 2% — % and z* — Ga* — 0 (due to (38)) it follows
that & € Fix(G). Consequently, & € (), Fix(I;) N Fix(G) N Sol(C, ®) = 2. In terms of
(49), we have

liminf[W(2*, p%) + U(p", 2" 1)) = U(z*, &) > 0. (52)

k—o0
Since W is v-strongly monotone, we have

lim supl (&, 7*) + B(p*, 2] < limsup(—v]|f* — 2*|) = —v7. (53)
k—o0 k—o0
Combining (52) and (53), we obtain
limsup[W (p*, ) — W(p*, z"*1)]

k—oco

= hmsup[\I/(ﬁk,x*) + \Il(g;*’ﬁk) - \Il(x*aﬁk) - \Il(ﬁka ‘(EkJrl)}

k—o0

< limsup[¥(p", z*) + ¥(2*, p%)] + limsup[— ¥ (z*, p*) — T (p", 2 1)] (54)
k—o0 k—o0

= limsup[¥(p*, %) + U(z*, p%)] — lim inf[¥(z*, p*) + U (5", 1)
k—o0 k—o0

< —vT.

We now claim that 7 = 0. On the contrary, we assume 7 > 0. Without loss of
generality we may assume that 3ky > 1 s.t.

V(o) — Wt M) <~ k> ko, (55)
which together with (23), implies that for all & > ko,
4 a7 < fla* — 272 — (1~ 20pen) | — 27 — (1~ 200e5) 2 — o)

— (1 =Buly _15k (2" = GB*) + 81(2* — TGE")]|? — [l — p*1? (56)

+ 255, [T (p", %) — T (P, 2"T)]
< la? — ¥ + 28, [T (P, %) — U(F, "))
So it follows that for all k& > kg,

k—1
Tp — Ty < —07 Z 55. (57)
Jj=ko

Since Z]oil s; = 00 and limg_,oc Ty = 7, taking the limit in (57) as k — oo we get

k-1
—00 < T—Tp, = leII;o(Tk = Thiy) < lerI;O[—V?ZSj] = —o0.
j=ko

This reaches a contradiction. Therefore, limy_,o, T = 0 and hence {2*} converges strongly
to the unique solution z* of the problem EP ({2, ¥).

Case 2. Suppose that I{Ty,} C {Ti} s.t. Tp; < Tp;41 Vj € N, where N is the set of
all positive integers. Define the mapping 7: N — N by 7(k) := max{j < k:T; < T;41}. By
Lemma 2.7, we get

Trt) S Tryr and - T < Tryqa- (58)
Utilizing the same inferences as in (26) and (43), we can obtain that

T (27O O = i (7 ® 7O = T [y ® - W =0, (5)
—00 k—o0 k— o0
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and

lim [|z"®)*1 — 27®)|| = 0. (60)
k—o0
Since {p"} is bounded, there exists a subsequence of {p”(*)} converging weakly to &. Without
loss of generality, we may assume that p™(¥) — z. Then, utilizing the same inferences as in
Case 1, we can obtain that £ € 2 = ﬂf\;o Fix(I;) NFix(G) N Sol(C, ®). From p™*) — & and
(59), we get 27+ ~ & Using the condition {ay} C (a,b) C (O,rnin{i7 ﬁ}), we have
1 —2a;yc1 > 0 and 1 — 2a,(4)c2 > 0. So it follows from (23) that

25,y [P (™), a7 WFT) —W(pT R 2*)] < Ty — Tray g — [Ja7 R+ — pr )2
—(1 =2 gyen) ly™® — W12 — (1 = 20, c2)[|27H) — y7#))|2
—(1- Bf(k))”%[%(m(zﬂm — G0 + 6.1y (27 — PG M)]|* <0,

which hence leads to
B(p®) T WHY _g(pr®) 1) < 0, (61)
Since W is v-strongly monotone on C, we get
VHﬁT(k) _ LU*||2 < —\I/(ﬁT(k),.’lﬁ*) _ \Il(x*,ﬁT(k)) (62)
Combining (61) and (62), we deduce from Assg(¥;) and & € 2 that

vlimsupllp™™® — 2> < limsup[~ W (pm "), 27WH) — @(z=, pT)]
k—o00 k—o0

= —U(i, 1) — U(z*, &) <0.

Hence, limsupy,_, ., |27®) — 2*||? < 0. Thus, we get limg_, o [|27*) — 2*||? = 0. From (60),
we get

er(k)-&-l _ x*HQ _ ||x7—(k) _ x*HQ — 2<xr(k)+1 _ wT(k)7xT(k) _ SL‘*) + ||3;‘T(k)+1 _ xT(k)||2
< 2||x7—(k)+1 _ xT(k)HHJ}T(k) _ x*” + er(k)-&-l _ a?T(k)HQ.

Owing to Ty < T (x)41, we get

ka _ $*||2 < er(k)+1 o x*H2
< ||z7(k) _ I*HQ + 2||1:T(k)+1 _ :CT(k)HHxT(k) _ I*H + ||x'r(k:)+1 _ ‘TT(k)H2-

So it follows from (60) that x* — z* as k — co. This completes the proof. O

4. Concluding remarks

In a real Hilbert space, let the GSVI and CFPP represent a general system of varia-
tional inclusions and a common fixed-point problem of finitely many nonexpansive mappings
and a strictly pseudocontractive mapping, respectively. In this article, we have suggested
a new iterative algorithm with the general implicit subgradient extragradient technique
for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP
constraints, i.e., a strongly monotone equilibrium problem over the common solution set
of another monotone equilibrium problem, the GSVI and the CFPP. The strong conver-
gence result for the proposed algorithm to solve such a MBEP with the GSVI and CFPP
constraints is established under some suitable assumptions. Furthermore, in the proposed
method, the second minimization problem over a closed convex set is replaced by the sub-
gradient projection onto some constructible half-space, and a new approach for solving the
GSVI and CFPP via Mann implicit iterations is provided.
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