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ANALYSIS OF NONLINEAR RANDOM VIBRATIONS BY
STATISTICAL EQUIVALENT METHODS

Felicia Eugenia NICORESTIANU', Tudor SIRETEANU?

In this paper is given a method for improving the accuracy of the mean
square response estimation of quadratic dissipative systems using a linear
oscillatory system having the same exact solution with a statistically equivalent
system with nonlinear dissipative characteristic. It is compared numerically the
proposed method with the classical linearization method.
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1. Introduction

Stochastic equivalent linearization method is the most popular approach to
the approximate analysis of nonlinear systems under random oscillator. The
original version of Gaussian equivalent linearization was proposed by Caughey
[1] and has been generalized by many authors (see e.g. [2]-[6]). It has been shown
that this method is presently the simplest tool widely used for analysis of
nonlinear stochastic problems. The use of equivalent linear systems for assessing
the mean square response of the non-linear systems allows applying the transfer
functions method which provides closed analytical solutions and is very efficient
from computational point of view. However, a major limitation for its application
is that its accuracy decreases as either the nonlinearity or input intensity increase.
For this reason, there have been developed up o recent years a series of statistical
equivalent linearization methods aimed to improve the approximation accuracy of
statistical characteristics of nonlinear system output [7-13]. In this paper, the
classical method of statistical equivalent linearization will be improved to increase
the approximation accuracy of the mean square response of a SDOF system with
quadratic dissipative characteristic excited by a Gaussian stationary white noise
process. The method is applied in two steps. In the first step, the system with
quadratic damping is replaced by a nonlinear equivalent system for which the
exact mean square output can be obtained by solving the associated Fokker-
Planck equation [14], [15]. In the second step, the parameters of the latter system
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are determined so that the exact solution of the equivalent nonlinear system to be
equal with the exact solution of the linear system. It is shown that the proposed
method, which combines the statistical linearization and non-linearization
techniques, significantly improves the accuracy of classical linearization method.

2. Analytical model and input calibration.

In order to analyze comparatively the behavior of different oscillating
systems excited by a white noise random process, it is necessary to develop a
numerical simulation program to determine their mean square response. It is well
known that the one sided power spectral density (PSD) of the theoretical white

noise process has a constant value 2§, within the infinite frequency range[O,oo) ,

thus implying an infinite energy. However, due to the filtering properties of
physical systems, the white noise process can be used as useful excitation model
in many practical applications. According to Nyquist sampling theorem, the
frequency bandwidth of the PSD, estimated from numerically simulated sample
functions, is inherently limited. Therefore the intensity of simulated white noise
excitation must be sized so that the system response belongs to the usual range of
the considered practical application. In what follows, the way of solving this
problem is illustrated in the case of a SDOF oscillator consisting of a sprung
mass, spring and damper (Fig.1), modeling the automobile random vibrations
excited by the road irregularities for a traveling speed V' [16].

x1(f)
m V
F(x) G(x) soll)
o

Fig. 1. Mechanical system with one degree of freedom, consisting of a mass, spring and damper

This model can be used to assess the automobile ride comfort, which is
measured by the root mean square (r.m.s.) value of the sprung mass acceleration
X, [16]. The equation of motion of the considered system is:

mx, + F(x)+G(x) =0,

x(0)=x",%(0)=x", x°,x°eR

(1
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where x =x, — x, is the relative displacement, F'(x) is the elastic force and G(x)
is the damping characteristic. Equation (1) can be rewritten as

X, + f(x)+g(x)=0, (2)

where
F =T (=9 3)

m m
For the linear case

F(x)=kx and G(x)=cx 4)

so that
f(x)= ix and g(x)=—x . %)

m

the system undamped natural frequency and

Denoting by o, = \/7 C—

relative damping coefficient, the equation of motion becomes

¥+20,Cx+o.x=2z(t), teR, (6)
where z(¢) =—X,(¢) is a Gaussian random white noise perturbation with
E[z(H]=0, E[z()z(t + )= 275,6(r) (7)

It is known that the mean square solution of equation (6) is [15], [17]:
2 TSy o, WSy 1o, S, (1+4C%)
T20 T T 2000 T 2
Knowing that the usual values for automobiles [5] are:
21-09<w, <2n-l4rads , 0.15<(<035 and 0.96m/s* <oy <2m/s* (9)
the parameters of the system and the intensity of the numerical simulated

excitation will be chosen in order to cover the range of these values.
The constant value s, of the spectral density of the white noise excitation

®)

will be now determined, so that the solution obtained by numerical simulation to
approximate with a good accuracy the exact mean response (8) forw, = 2mrad/s

and all practical values of the relative damping coefficient,0.1<<0.7. The

considered sampling interval was Az = 0.01s , which corresponds to a 50Hz white
noise bandwidth, according to the Nyquist criterion (if the sampling frequency is
fe=1/At =N/T [Hz], then the cut-off frequency is fc=fc / 2). This bandwidth can
be viewed as infinite for the considered system which behaves like a band-pass
filter with undamped natural frequency f,=1 Hz. The numerical simulations were
carried out using a program developed in Matlab-Simulink.

The program was run for different values of simulated white noise input
power until the system r.m.s. acceleration value was obtained within the range of
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those measured for a car equipped by adjustable dampers, travelling on different

types of roads [16]. The results of numerical simulations are presented in Table 1.
Table 1
Simulated values of the r.m.s. output of linear system

i | G| ox(G)Im]| 0,(E;)[mss] | 64(5;) [ms’]
1 | 0.1 0.042 0.262 1.676
2 102 0.030 0.192 1.291
3103 0.025 0.158 1.153
4104 0.022 0.138 1.099
5105 0.019 0.123 1.085
6 | 0.6 0.0175 0.112 1.093
7107 0.016 0.104 1.112

Considering, however, that the parameter of practical interest is in this case the
r.m.s. sprung mass acceleration, in order to calibrate the excitation of the linear
system, S, will be determined so that the following expression reaches its

minimum:
f(%)i{ci(g)—%;“@}  min., %:o (10)
This gives
2i{c§1(g)(”§49)}
Sy =—"— oy =0.029m’s’ (11)
Tf@nz( +C2Ci)

The time history of calibrated input acceleration (0<¢<100s) and its
amplitude spectrum are shown figures 2 and 3. Figure 4-6 present the r.m.s.
output values obtained by numerical simulation, compared with the exact values
(8), using the white noise intensity given by (11). These results show that the
simulated solutions approximate well the exact solutions obtained for the same
values of the relative damping coefficientC .

Inacc [m/s*2]

Fig.2. Simulated time history of input acceleration
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3. Classical equivalent linearization method

Consider now an oscillating system with linear elastic characteristic and
quadratic dissipative characteristic.

X+ g + o2x = z(1) 0
E[z(t)]=0. E[z(t)z(t+ 1)] = 21S,8(7) (12)
Using the statistical linearization method, the relative damping coefficient of the
linear equivalent system is obtained by imposing the condition
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() = E(g|] - 20,45)* | = min. | % =0 (13)

The expectations are calculated with respect to the Gaussian probability density
function

) 1 % , 7S,
X)= exp| — , O; =
p(x) o p( Zcij 20.C (14)
yielding a nonlinear algebraic equation with the unknown quantity . By solving
this equation, one obtains

C=L(qzso)1/3 (15)

()

n

Relation (15) will be used to compare the results of the two analysis methods for
the values of (,i=1,2,..7 used in table 1. Therefore, in case of classical
linearization method, the coefficientgcan be expressed as function of its
equivalent relative damping value { as follows:

4 (©) = % (16)

4. Proposed equivalent linearization method

In order to improve the accuracy of equivalent linearization of system with
quadratic damping (12) a two steps method is proposed. In the first step it is
applied an equivalent non-linearization method consisting in replacing the system
with quadratic damping by a system having a special type of nonlinear damping
characteristic, for which the exact r.m.s. output can be calculated [15]. The
equation of motion of this system is

¥+ exq/ X +olx’ +olx’ = z(t) (17)

E[z()]=0, E[z()z(t +1)]= 27S,5(7)
As one can see, the nonlinear dissipative characteristic g(x)=cxx* +@lx?
depends explicitly on the system Hamiltonian H :%()'c2 +@'x”). The joint

probability density function p(x,)'c)of the steady state solution of equation (17)

can be determined by solving the associated Fokker-Planck equation, which in
this case can be written as (see [14], [15]):

2¢\H p(H) + 7S,

dZ(H)=o (18)
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The solution of equation (19) can be written as

p(x,x)=p(H) = 27;2‘/ 2 [3T;S°j exp{— ()'c2 + @ X )} (19)

The r.m.s. output of system (17), determined by using the joint probability density
function (19), is given by

2/3 2/3 2/3
ot =E[x]- (3n)°T(4/3) [%j _ 1.432 (ij

S,

2I'(2/3)w; ®, \C
ol = E[f}:m Sy . —1.472 S .
¥ 2r2/3) \c ' c (20)

S -2/3 S 2/3
o} =E[ ¥ ]|=73555; (—0] +1.4720 (_Oj

X
C C

The nonlinear system (17) can be directly replaced by an equivalent linear
system (6) having same r.m.s. output. This condition, which is fulfilled if the r.m.s
values of relative displacement from (6) and (20) are equal, yields

3/2
c=%(1.472 Zm"cj : 1)
T
0
Next, the following condition is imposed for nonlinear stochastic
equivalence of systems (12) and (17):

E(c)= [(q|x|x CX\[X* + @l X )2} min, f =0 (22)

where the expectations are calculated with respect to the joint probability density
function (19). This condition leads to the following relation between the
equivalent nonlinear damping coefficients ¢ and ¢:

8
= 23
c=3-4 (23)

In the second step, a new relation between the coefficient of quadratic damping ¢

and its equivalent relative damping coefficient value{ is directly obtained from

(21) and (23):
(1 47222 C) . (24)

3n
doy = ?T
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5. Comparison of classical and proposed linearization methods

In what follows, the accuracy of classical and proposed linearization
methods is assessed comparatively in terms of the r.m.s. output of system with
quadratic damping and of its linear equivalent systems.

The results obtained by numerical integration of the nonlinear system (12)
with damping coefficients ¢, () and ¢, () given by (16) and (24),

respectively, are given in Tables 2 and 3.
Table 2
R.m.s. output of nonlinear system with quadratic damping (first method)

i Qi q(l)(gi) [m-l] Gx(q(l)) [m] Gx(Q(l)) [m /s] jS'l (q(l)) [m/SZ]
1]0.1 2.92 0.043 0.271 1.74
2102 8.27 0.0312 0.197 1.32
3103 15.2 0.0255 0.162 1.17
4104 23.4 0.0221 0.140 1.12
5105 32.7 0.0197 0.126 1.11
61 0.6 43 0.0179 0.115 1.12
7107 54.2 0.0166 0.106 1.14

Table 3
R.m.s. output of nonlinear system with quadratic damping (second method)

i Ci q(Z)(C—'i) [ml] O_x(‘I(z)) [m] Gx(q(z)) [m /s] G)‘C‘l (Q(z)) [m/sz]
1]0.1 3.13 0.0421 0.264 1.69
2102 8.84 0.0304 0.192 1.299
3103 16.24 0.0248 0.158 1.16
4104 25 0.0215 0.137 1.112
5105 35 0.0192 0.122 1.106
6]0.6 45.9 0.0175 0.111 1.121
7107 57.8 0.0162 0.103 1.147

Figures 7-9 present comparatively the r.m.s. output values from Tables 2
and 3 with those from Tablel
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Figure 10 shows the variation versus the equivalent linear damping ratio {
of the relative errors

K (¢ )= Gx(q(k))_cx(ci)| O () = Gx(q<k>)—0,e(€»)|

v o.(dw) () o (qu) (25)
(k)(c )= G}c‘,(Q(k))_le(g)| E—12
C SHY (q(k)) ’ ’

obtained for the first and second linearization methods, where o ({),0,(¢;) and
c; (G) are calculated using relations (8). As one can see, the relative errors

between the mean square response of the system with quadratic and its linear
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equivalent system is significantly reduced by application of second linearization
method, within the range of most relevant damping ratio values (0.15< £ <0.5).
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Fig.10. Relative errors of classical and proposed equivalent linearization methods

Figures 11-16 show comparatively the repartition functions and the FFT
amplitude spectra of system output samples obtained by numerical simulations for
£=0.5,¢ =32.7[m"], g, =35[m™"](see tables 2 and 3 )
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6. Conclusions

An equivalent linearization method with two steps was proposed to
evaluate the r.m.s. response of oscillators with quadratic damping excited by
white noise random process. The intensity of simulated white noise excitation and
the model parameters were chosen as so the system output to be within the usual
range of automobile random vibrations. The results can be used for assessing the
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optimum damping for ride comfort measured by the r.m.s. value of sprung mass
acceleration. The classical linearization method was compared with a two step
linearization procedure. The results obtained by numerical simulation have shown
that the accuracy of proposed method is better than that of classical equivalent
linearization method, for all damping coefficient values, relevant for the
considered application.
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