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 ANALYSIS OF NONLINEAR RANDOM VIBRATIONS BY 
STATISTICAL EQUIVALENT METHODS 

Felicia Eugenia NICOREŞTIANU1, Tudor SIRETEANU2 

In this paper is given a method for improving the accuracy of the mean 
square response estimation of quadratic dissipative systems using a linear 
oscillatory system having the same exact solution with a statistically equivalent 
system with nonlinear dissipative characteristic. It is compared numerically the 
proposed method with the classical linearization method. 
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1. Introduction 

 Stochastic equivalent linearization method is the most popular approach to 
the approximate analysis of nonlinear systems under random oscillator. The 
original version of Gaussian equivalent linearization was proposed by Caughey 
[1] and has been generalized by many authors (see e.g. [2]-[6]). It has been shown 
that this method is presently the simplest tool widely used for analysis of 
nonlinear stochastic problems. The use of equivalent linear systems for assessing 
the mean square response of the non-linear systems allows applying the transfer 
functions method which provides closed analytical solutions and is very efficient 
from computational point of view. However, a major limitation for its application 
is that its accuracy decreases as either the nonlinearity or input intensity increase. 
For this reason, there have been developed up o recent years a series of statistical 
equivalent linearization methods aimed to improve the approximation accuracy of 
statistical characteristics of nonlinear system output [7-13]. In this paper, the 
classical method of statistical equivalent linearization will be improved to increase 
the approximation accuracy of the mean square response of a SDOF system with 
quadratic dissipative characteristic excited by a Gaussian stationary white noise 
process. The method is applied in two steps. In the first step, the system with 
quadratic damping is replaced by a nonlinear equivalent system for which the 
exact mean square output can be obtained by solving the associated Fokker-
Planck equation [14], [15]. In the second step, the parameters of the latter system 
                                                            
1 Lect., Dept. of Mathematics, University POLITEHNICA of Bucharest, Romania, e-mail: 
felicia_nicores@yahoo.com  
2 Prof., Director of the Institute of  Solid Mechanics of the Romanian Academy, Romania 
 



20                                      Felicia Eugenia Nicoreştianu, Tudor Sireteanu 

are determined so that the exact solution of the equivalent nonlinear system to be 
equal with the exact solution of the linear system. It is shown that the proposed 
method, which combines the statistical linearization and non-linearization 
techniques, significantly improves the accuracy of classical linearization method. 

2. Analytical model and input calibration. 

In order to analyze comparatively the behavior of different oscillating 
systems excited by a white noise random process, it is necessary to develop a 
numerical simulation program to determine their mean square response. It is well 
known that the one sided power spectral density (PSD) of the theoretical white 
noise process has a constant value 02S  within the infinite frequency range[ )0,∞ , 
thus implying an infinite energy. However, due to the filtering properties of 
physical systems, the white noise process can be used as useful excitation model 
in many practical applications. According to Nyquist sampling theorem, the 
frequency bandwidth of the PSD, estimated from numerically simulated sample 
functions, is inherently limited. Therefore the intensity of simulated white noise 
excitation must be sized so that the system response belongs to the usual range of 
the considered practical application. In what follows, the way of solving this 
problem is illustrated in the case of a SDOF oscillator consisting of a sprung 
mass, spring and damper (Fig.1), modeling the automobile random vibrations 
excited by the road irregularities for a traveling speed V  [16]. 

                                                                  

 

  

                                                                                      

 

                                          

 

  

 
Fig. 1. Mechanical system with one degree of  freedom, consisting of a mass, spring and damper 

 This model can be used to assess the automobile ride comfort, which is 
measured by the root mean square (r.m.s.) value of the sprung mass acceleration 

1x [16]. The equation of motion of the considered system is: 
0)()(1 =++ xGxFxm ,  
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where 01 xxx −=  is the relative displacement, )(xF  is the elastic force and )(xG  
is the damping characteristic. Equation (1) can be rewritten as       

0)()(1 =++ xgxfx , (2)
 where 

   ,)()(
m

xFxf =
m

xGxg )()( = . (3)

For the linear case 
xcxGkxxF == )(and)(      (4)

so that      

     x
m
kxf =)(   and     x

m
cxg =)(   . (5)

Denoting by n
k
m

ω = ,
km
c

2
=ζ  the system undamped natural frequency and 

relative damping coefficient, the equation of motion becomes 
)(2 2 tzxxx nn =++ ωζω ,   +∈ 'Rt        (6)

where )()( 0 txtz −= is a Gaussian random white noise perturbation with 
[ ] 0)(E =tz ,   [ ] )(2)()(E 0 τδπτ Stztz =+  (7)

It is known that the mean square solution of equation (6) is [15], [17]:  
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Knowing that the usual values for automobiles [5] are: 

1

2 22 0.9 2 1.4rad/s , 0.15 0.35 and 0.96m/s 2m/sn xπ ⋅ < ω < π ⋅ < ζ < < σ <  (9)
the parameters of the system and the intensity of the numerical simulated 
excitation will be chosen in order to cover the range of these values. 

The constant value 0S of the spectral density of the white noise excitation 
will be now determined, so that the solution obtained by numerical simulation to 
approximate with a good accuracy the exact mean response (8) for 2 rad/snω = π  
and all practical values of the relative damping coefficient, 0.1 0.7≤ ζ ≤ . The 
considered sampling interval was st 01.0=Δ , which corresponds to a 50Hz white 
noise bandwidth, according to the Nyquist criterion (if the sampling frequency is 
fe = 1/Δt =N/T [Hz], then the cut-off frequency is  fc= fe / 2). This bandwidth can 
be viewed as infinite for the considered system which behaves like a band-pass 
filter with undamped natural frequency fn=1 Hz. The numerical simulations were 
carried out using a program developed in Matlab-Simulink.  

The program was run for different values of simulated white noise input 
power until the system r.m.s. acceleration value was obtained within the range of 
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those measured for a car equipped by adjustable dampers, travelling on different 
types of roads [16]. The results of numerical simulations are presented in Table 1.  

                 Table 1 
Simulated values of the r.m.s. output of linear system 

i iζ  )( ix ζσ [m] )( ix ζσ [m/s] )( ix ζσ [m/s2] 

1 0.1 0.042 0.262 1.676 
2 0.2 0.030 0.192 1.291 
3 0.3 0.025 0.158 1.153 
4 0.4 0.022 0.138 1.099 
5 0.5 0.019 0.123 1.085 
6 0.6 0.0175 0.112 1.093 
7 0.7 0.016 0.104 1.112 

Considering, however, that the parameter of practical interest is in this case the 
r.m.s. sprung mass acceleration, in order to calibrate the excitation of the linear 
system, 0S  will be determined so that the following expression reaches its 
minimum: 
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The time history of calibrated input acceleration ( 0 100st≤ ≤ ) and its 
amplitude spectrum are shown figures 2 and 3. Figure 4-6 present the r.m.s. 
output values obtained by numerical simulation, compared with the exact values 
(8), using the white noise intensity given by (11). These results show that the 
simulated solutions approximate well the exact solutions obtained for the same 
values of the relative damping coefficientζ .  

 

Fig.2. Simulated time history of input acceleration 
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Fig.3. Amplitude spectrum of  input acceleration Fig.4. R.m.s. values of relative displacement 
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Fig.5. R.m.s. values of relative velocity Fig.6. R.m.s. values of  sprung mass acceleration 

3.  Classical equivalent linearization method 

 Consider now an oscillating system with linear elastic characteristic and 
quadratic dissipative characteristic. 

)(2 tzxxxqx n =++ ω  

         0)](E[ =tz ,   [ ] )(2)()(E 0 τδπτ Stztz =+  
(12)

Using the statistical linearization method, the relative damping coefficient of the 
linear equivalent system is obtained by imposing the condition  
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                       ( ) [ ] .min)2(E 2 =−= xxxq nζωζE  ,  0=
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The expectations are calculated with respect to the Gaussian probability density 
function  
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yielding a nonlinear algebraic equation with the unknown quantity ζ . By solving 
this equation, one obtains 

( ) 3/1
0

21 Sq
nω

ζ =  (15)

Relation (15) will be used to compare the results of the two analysis methods for 
the values of , 1,2,...7i iζ =  used in table 1. Therefore, in case of classical 
linearization method, the coefficient q can be expressed as function of its 
equivalent relative damping valueζ  as follows: 

3

(1)
0

( )( ) nq
S
ζω

ζ =  (16)

4. Proposed equivalent linearization method 

In order to improve the accuracy of equivalent linearization of system with 
quadratic damping (12) a two steps method is proposed. In the first step it is 
applied an equivalent non-linearization method consisting in replacing the system 
with quadratic damping by a system having a special type of nonlinear damping 
characteristic, for which the exact r.m.s. output can be calculated [15]. The 
equation of motion of this system is 

)(22222 tzxxxxcx nn =+++ ωω  

0)](E[ =tz ,       [ ] )(2)()(E 0 τδπτ Stztz =+  

 
(17)

As one can see, the nonlinear dissipative characteristic 2 2 2( ) ng x cx x x= + ω  

depends explicitly on the system Hamiltonian 2 2 21 ( )
2 nH x xω= + . The joint 

probability density function ( ),p x x of the steady state solution of equation (17) 
can be determined by solving the associated Fokker-Planck equation, which in 
this case can be written as (see [14], [15]): 

0
( )2 ( ) 0d p Hc H p H S

dH
+ π =         (18)
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The solution of equation (19) can be written as 
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The r.m.s. output of system (17), determined by using the joint probability density 
function (19), is given by 
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The nonlinear system (17) can be directly replaced by an equivalent linear 
system (6) having same r.m.s. output. This condition, which is fulfilled if the r.m.s 
values of relative displacement from (6) and (20) are equal, yields  
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 Next, the following condition is imposed for nonlinear stochastic 
equivalence of systems (12) and (17):  
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where the expectations are calculated with respect to the joint probability density 
function (19). This condition leads to the following relation between the 
equivalent nonlinear damping coefficients c  and q : 

8
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In the second step, a new relation between the coefficient of quadratic damping q  
and its equivalent relative damping coefficient valueζ  is directly obtained from 
(21) and (23): 
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5. Comparison of classical and proposed linearization methods 

In what follows, the accuracy of classical and proposed linearization 
methods is assessed comparatively in terms of the r.m.s. output of system with 
quadratic damping and of its linear equivalent systems.   

The results obtained by numerical integration of the nonlinear system (12) 
with damping coefficients ( )(1) ζiq  and ( )(2) ζiq  given by (16) and (24), 
respectively, are given in Tables 2 and 3. 
                                                                                                                                         Table 2 

R.m.s. output of nonlinear system with quadratic damping (first method) 

i iζ  (1) ( )q iζ [m-1] (1)( )x qσ [m] (1)( )x qσ [m /s] (1)
1

( )qxσ [m/s2] 

1 0.1 2.92 0.043 0.271 1.74 
2 0.2 8.27 0.0312 0.197 1.32 
3 0.3 15.2 0.0255 0.162 1.17 
4 0.4 23.4 0.0221 0.140 1.12 
5 0.5 32.7 0.0197 0.126 1.11 
6 0.6 43 0.0179 0.115 1.12 
7 0.7 54.2 0.0166 0.106 1.14 

                                                                                                                                   Table 3 
R.m.s. output of nonlinear system with quadratic damping (second method) 

i iζ  (2) ( )q iζ [m-1] (2)( )x qσ [m] ( 2)( )x qσ [m /s] ( 2 )
1

( )qxσ [m/s2] 

1 0.1 3.13 0.0421 0.264 1.69 
2 0.2 8.84 0.0304 0.192 1.299 
3 0.3 16.24 0.0248 0.158 1.16 
4 0.4 25 0.0215 0.137 1.112 
5 0.5 35 0.0192 0.122 1.106 
6 0.6 45.9 0.0175 0.111 1.121 
7 0.7 57.8 0.0162 0.103 1.147 
Figures 7-9 present comparatively the r.m.s. output values from Tables 2 

and 3 with those from Table1 
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Fig.9. R.m.s. acceleration 

Figure 10 shows the variation versus the equivalent linear damping ratio ζ  
of the relative errors  
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obtained for the first and second linearization methods, where ( )x iσ ζ , ( )x iσ ζ  and 

1
( )x iσ ζ  are calculated using relations (8). As one can see, the relative errors 

between the  mean square response of the system with quadratic and its linear 
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equivalent system is significantly reduced by application of second linearization 
method, within the range of most relevant damping ratio values ( 0.15 0.5≤ ζ ≤ ). 
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Fig.10. Relative errors of classical and proposed equivalent linearization methods 
Figures 11-16 show comparatively the repartition functions and the FFT 

amplitude spectra of system output samples obtained by numerical simulations for 
1 1

1 20.5, 32.7[m ], 35[m ]q q− −ζ = = = (see tables 2 and 3 ) 
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Fig.14. FFT Amplitude spectrum of relative 
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6. Conclusions 

An equivalent linearization method with two steps was proposed to 
evaluate the r.m.s. response of oscillators with quadratic damping excited by 
white noise random process. The intensity of simulated white noise excitation and 
the model parameters were chosen as so the system output to be within the usual 
range of automobile random vibrations. The results can be used for assessing  the 
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optimum damping for ride comfort measured by the r.m.s. value of sprung mass 
acceleration. The classical linearization method was compared with a two step 
linearization procedure. The results obtained by numerical simulation have shown 
that the accuracy of proposed method is better than that of classical equivalent 
linearization method, for all damping coefficient values, relevant for the 
considered application.  
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