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REFINED MODEL FOR THE PASSAGE FROM
CLASSICAL TO QUANTUM PHYSICS

Alexandru LUPASCU', Catalin HALATI?

We review and refine a model which explains classical, as well as quantum
results of the double-slit experiment. The model is deterministic, linear and rests
on only two assumptions: particles may travel in different directions and are
reflected by the borders of the slits. The change from classical to quantum
behavior is very smooth and results from the variation of one or several
parameters linked only with the possible directions of particles' movement.
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1. Introduction

In early studies [1-3] we introduced a model which can treat together
quantum and classical problems. To be specific, we studied the famous double-slit
experiment introduced by Feynman [4]. This “mind experiment” compares the
movement of classical waves or particles and of quantum entities travelling
through a Young-type interferometer. As is well-known, classical waves produce
behind the screen an interference pattern with maxima and minima. Classical
particles go through one or the other of the two slits without splitting and form
just two maxima. As for the quantum micro-particles, they give an interference
pattern acting like waves, but at the same time they travel as particles, without
dividing in any way. Therefore the quantum interference pattern could be
recorded even if particles pass through the device one at a time. A quantum
particle is much smaller than all the geometrical distances of the experimental
arrangement. There is no classical explanation to the path of such a small entity
through one of the slits, the resulting pattern being developed as if the particle
would go through both slits at a time. Speaking about the double-slit experiment
Feynman noted that classical physics is unable to explain this phenomenon, which
is the central point of quantum mechanics. Therefore Feynman indicated this
situation as being the only quantum mystery.

Even though the double-slit experiment is very old, new research is
conducted in this area and the outcomes are considered among first-rate results of
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experimental physics. Examples are “the most beautiful experiment in the world”
of Tonomura et. al., [5], experiments with large molecules of Zeilinger and co-
workers [6] and the recent electron-interference results of Bach et. al. published in
March 2013 [7].

This is why we further investigate classical, as well as quantum results of a
double-slit experiment, both contained in a simple classical model. It could be
connected with quantum random walk [8], but the approach is rather different

The model is linear and depends chiefly on a single parameter, i.e. the
probability for a particle to move in a straight line or to deviate from this direction
along two symmetrical paths. By continuous variation of this probability both
classical and quantum behaviors occur, the passage between them being as
smooth as possible. Our conclusions are compared with known results from
interference theory and the agreement is satisfactory, taking into account our
unrefined model. Later we improve this agreement by introducing several new
directions for the motion of particles. We end with a few comments and
explanations of the model.

Our purpose is not to contest quantum results or interpretation, neither do
we sustain that a classical explanation can prevail against quantum theory.
Therefore this paper does not fit among theories trying to challenge quantum
mechanics, as do for example hidden variable theories (see e.g. [9, 10]). In fact
these attempts were contested by experimental work leading to the corroboration
of quantum theory via Bell's inequalities [11, 12]. Other classical models based on
stochastic mechanics lead to results similar to those of quantum mechanics [13].
However, our model, unlike these random models, is very simple and this is its
main benefit.

2. Simple model with three directions

The arrangement is described in Fig. 1. Parameters indicated are: h — the
screen thickness, ds — the width of the source, d — the distance between the two
slits, D — the distance source-screen, 2w — the width of a slit and D — the distance
screen-detectors.

The source emits classical particles. They travel mainly to the right with
probability a, but some particles move away from the main stream, upwards or
downwards, with equal probabilities indicated by b. Quantities a and b are
connected by the relation a + 2b =1([14]).
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Fig. 1. Double-slit experimental arrangement.

To take into account these three possibilities we consider that the region
through which particles go is a lattice formed by distinct cells, each of them
divided into three compartments denoted by geographic names (NE, E, SE), as in
Fig. 2. In order to observe clear patterns the entire area has dimensions comprised
between 50%20 to 200x100 cells. Larger number of cells may be used, but the
computation time increases accordingly.

a_b
NE b
E ==
SE b

a ip

Fig. 2. Cell structure and probabilities for particle advance.

The same diffusion occurs for each cell. Denote the occupation
probabilities for the sub-cells of cell (i, j) by ung (i, j), ug(i, j) and uge(i, j). The

process of free movement is described by an obvious system of three linear
difference equations, as in [1-3]:
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une (i, ))=aupe (-1, j-1)+bug(i-1,j-1)
ug (i, j)=bupne(, j—1)+aug(i, j—1)+buge (i, j—1) (1)
use(i, j)=auge(i+1,j—1)+bug(i+1,j-1)

Particles spread from the source until they reach the two-slit obstacle.
They are reflected by the borders of the slits [15]. Reflected and diffused particles
mix together and eventually arrive to a line of detectors. Here the contents of the
three subcells are added and their total number, called cumulated amplitude, is
presented as a function of the detector position. As a general rule, if parameter a is
smaller than 0.9, one gets a "classical behavior" without interference, as in Fig.
3a. When the two slits are close enough (d less than 10 cells), one obtains only
one central maximum.
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Fig 3a). Cumulated amplitude for the classical case for two values of the probability
parameter a=0.60 and a=0.75.

In order to find a “quantum behavior” the only detail we have to change is
the value of a, the probability of forward movement of the particles. By increasing
this parameter, on top of the smooth curves from Fig. 3a superposes a series of
spikes. For a>0.9 these spikes grow until a clear interference pattern appears as in
Fig. 3b. In reality the pattern acquired by simple use of the equations (1) has
several fake maxima. We eliminate them by averaging the cumulated intensity
over five “detecting cells”.

Fig. 3b presents a comparison of our results with a curve computed by
Van Cittert-Zernike theorem for the interference of quasi-monochromatic light.
(see e.g. [16]). The centered detector position is calculated with respect to the
central maximum of the pattern. Only the central maxima and minima can be
fitted in this simple model with just three directions.
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Fig.3b). Comparison of the model for three directions of possible movement. Dashed
curve: cumulated amplitude for the quantum case, a=0.97; continuous curve: predictions from
quasi-monochromatic interference theory. The pattern is smoothed by averaging over five
detectors.

3. Model with five or seven directions

We refine the model by permitting the particles to move in five directions.
Results for a<0.9 are analogous to those from Fig. 3a. For a>0.9 the results of our
model are compared with the same calculation from the theory of interference of
partial coherent waves. They are presented in Fig. 4.
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Fig. 4. Comparison of the model for five directions of possible movement. Dashed curve:
cumulated amplitude for the quantum case, a=0.97; continuous curve: predictions from quasi-
monochromatic interference theory. The pattern is smoothed by averaging over five detectors.
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The above figure shows a much better matching between our model and
classical results. We expect the same improvement when going to seven
directions. This is not so obvious from Fig. 5, but the number of well-matched
fringes grows when the number of directions increases.
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Fig.5. Comparison of the model for seven directions of possible movement. Dashed
curve: cumulated amplitude for the quantum case, a=0.97; continuous curve: predictions from
quasi-monochromatic interference theory. The pattern is smoothed by averaging over five
detectors.

4. Discussion and conclusions

Our linear model is rather unsophisticated. Particles move through a lattice
diffusing in three, five or seven directions. For the simplest case of three
directions, the only variable is parameter a, which measures the probability to
move forward. Parameter b is fixed by the condition a + 2b = 1. Modification of a
is sufficient to pass from the classical behavior from Fig. 3a to the quantum
comportment as in Fig. 3b. Model with five directions contains three parameters,
denoted by a, b and c, linked by the condition a + 2b+2c =1. It is easy to choose
values for two of them and go smoothly from classical to quantum behavior. The
same is true for seven directions, where the four parameters are connected by the
condition a+2b+ 2c+ 2e =1. Allowing more directions the agreement between
our results and those from classical interference theory becomes better and the
fitted number of maxima and minima grows as may be observed from Figs. 3b, 4
and 5. Therefore we are confident that the model is consistent.

We have no explanation for the threshold value of parameter a which
breaks up classical and quantum behavior.
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Parameters indicated in Fig. 1 may well be modified to obtain convenient
pictures, but the general structure of the patterns does not change significantly. All
these quantities are to be measured in terms of “cells”. For instance, if the screen
has a thickness of just two cells, maxima are very weak, but the shape of the
pattern is the same as those in Figs. 3-5. The same changes appear if the source
has but one cell. In the particular situation when the two-slit screen is replaced by
an opaque obstacle, the Fresnel spot is apparent behind the obstacle [3].

It has to be remarked that interference does not appear from superposition
of waves, but from two processes typical for particles:

- spreading about the forward direction of movement

- reflection on the borders of the slits.

We have analyzed several conditions of this reflection and always found
analogous forms of the final pattern.

Studies will continue on the following topics:

- Variation of parameters along the path

- Increasing the number of possible directions

- Changing the limit conditions on the frontiers of the slits

- Minimal conditions under which the pattern changes from classical
to quantum form.
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