U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 1, 2016 ISSN 2286-3540

REAL TIME COLLABORATIVE EDITING IN MOBILE
COMPUTING ENVIRONMENTS

Cristina-Loredana DUIAI, Laura GHEORGHE?, Nicolae IAPUS3

Nowadays, due to the rapidly development of technology, the mobile
computing environment is in continuous transformation. The purpose of this paper is
to determine how mobile devices can be used for the development of collaborative
systems. The field of mobile collaborative work is in progress (is a part of the
Computer Supported Collaborative Work - CSCW) and will provide in the future a
tool for co-workers to collaborate and work on the same shared workspace in real-
time to provide data such as text, images and diagrams regardless of their
geographical location. This paper describes several algorithms used to implement
group editors such as: causal order algorithm based on vector clocks, total order
algorithm based on a centralized component, total order algorithm based on a
token, three-phase distributed algorithm, dOPT, Jupiter and Paxos. A comparative
performance evaluation is made to determine which of these algorithms is the most
suited for mobile environments where the network is an important and expensive
resource.

Keywords: distributed systems, concurrency control, collaborative editing,
mobile computing, operational transformation, vector clocks

1. Introduction

The mobile computing environment is in continuous transformation
ranging from laptops to mobile phones, from digital cameras and players to
portable devices. The new devices need an environment with different
characteristics than the older mobile management systems. To achieve this, users
must be able to carry their data with them all the time, regardless of their
geographical position and also to be able to access and modify it whenever they
need. The purpose is to determine how mobile devices can be used for the
development of collaborative systems. When referring to real-time collaborative
editors there are two types of architectures which can be used: a centralized or a
replicated architecture.

' PhD student, Department of Computer Science and Engineering, University POLITEHNICA of
Bucharest, Romania, e-mail: cristina.duta.mapn@outlook.com
Assistant Professor, Department of Computer Science and Engineering, University
POLITEHNICA of Bucharest, Romania, e-mail: laura.gheorghe@cs.pub.ro

3 Professor, Department of Computer Science and Engineering, University POLITEHNICA of
Bucharest, Romania, e-mail: nicolae.tapus@cs.pub.ro

4 Cristina-Loredana Dutd, Laura Gheorghe, Nicolae Téapus

In a centralized architecture, a central server holds the shared document
and resolves problems such as ordering of updates, conflicts and document
consistency. Every user will send his action to the server and the server will apply
it to the document.

At the other end is the replicated or decentralized architecture where
every site owns a copy of the shared document on which they work
independently. Every user executes his operations on the local replica
immediately without delays and then the operations are transmitted to the other
sites. Because a user has to be able to work on the local replica even if he is
disconnected for a period of time, this last solution is preferred in mobile
networks which have limited resource reliability and availability.

In this paper, we present seven types of protocols for maintaining
consistency in real-time collaborative text editors and we perform a comparative
evaluation in order to determine which is the most appropriate for mobile
environments. The paper is organized as follows. Related work is presented in
Section 2. Section 3 gives an overview of the protocols chosen to maintain
consistency. Section 4 offers details about our implementation. In Section 5 shows
the experimental results obtained using a testing simulator to generate random
traffic. Section 6 draws the conclusions for the protocol comparison and presents
future work.

2. Related Work

Even though people have been using editors for a while now, not many of
them took into consideration the wide variety of interesting research issues
regarding an editor used in real collaborative context. For these applications, one
of the main challenges remains consistency maintenance, which is so complex
that it has a growing research potential. To offer a better perspective and
understanding of our work, this section presents the results obtained by other
researchers.

The first presentation of collaborative real-time editor was made by
Douglas Engelbart in 1968, in “The Mother of All Demos” [1], but the actual
implementations of such an editor appeared many years after. In 1991, Mac OS
revealed Instant Update [2] and later, a version for Microsoft Windows was
released as well, which could provide real-time collaboration between the two
previously mentioned operating systems. Their product was based on a centralized
server which coordinates the documents updated by several clients in real time.
When Web 2.0 appeared, a product called Writely [3] had an explosive growth
and was acquisitioned by Google in 2006 (represents today’s Google Docs). Other
two products, such as Synchroedit [4] and MobWrite [5] attempted to solve the

Real time collaborative editing in mobile computing environments 5

problem of real-time browser-based collaborative editing, but they were unable to
achieve true real-time performance, especially for large scale architectures.

The difficulty of a real-time collaborative editing system relies in the size
of the communication latency. The problem that appears is that clients must see
their edits inserted instantly into the document, but in this case due to
communication latency, their modifications must be inserted into different
versions of the document. Thus to develop a real-time collaborative text editing
for mobile computing requires methods for content adaption, reduced usage of
network bandwidth and conflict resolution mechanisms. We will mention further
on some of the efforts that address the need for concurrency control in
collaborative applications.

The most frequently used technique to ensure consistency is the
operational transformation method. The main advantage for mobile devices is that
users can work on local data replicas, even if they are disconnected. In [6], the
authors present a review of several operational transformation techniques (dOPT,
GOT, aDOPTed, GOTO) in order to identify the issues, algorithms, achievements
and what challenges remain still unresolved. After taking all these elements into
account, they propose a new optimized generic operational transformation
algorithm. A comparison between different algorithms is also made in [7]. dOPT,
adOPTed, GOT, GOTO, SOCT2, SOCT3, SOCT4, SDT, ABT and ABTS are
compared based on criteria such as: correctness, property of operations of remote
sites, storage, time complexity, transformation function, space complexity. Even
though there are many similarities between these algorithms, the authors try to
emphasize the advantages and drawbacks of each of them, in order to identify
major issues for further research.

In [8] the authors describe a new transformation-based merging algorithm
which supports mobile collaboration. They compare it with other optimistic
consistency control methods and conclude that their algorithm improve the
existing time complexity and ensure updates without loss.

Compared to our work, there are some differences, because they analyze
only operational transformation methods, while we analyze besides the dOPT
algorithm, different types of consistency maintenance methods and we compare
their suitability for mobile environments.

Similar approach with how we defined and implemented the operations to
evaluate the methods used for collaborative editing is presented in [9]. They
focused their research in studying the existence of transformation functions that
satisfy two properties which are necessary and sufficient to ensure convergence.
They applied these transformation functions to shared strings which can be
modified (by insert and delete operations).

Even though many protocols which solve agreement problems have been
published, little has been done to analyze their performance. Our paper focuses on

6 Cristina-Loredana Dutd, Laura Gheorghe, Nicolae Téapus

analyzing the performance of different types of algorithms used to implement
group editors in order to determine which is best suited for mobile environments.

In [10], the authors focus on comparing the performance of consensus
algorithms such as Paxos and Chandra-Toueg. For their experiment they varied
the number of processes involved in the execution and determined the latency
based on different classes of runs (with failures or with no failures). Even though
for most of the cases the two algorithms had the same performance, Paxos is more
efficient when the process that handles the first round of the protocol crashes.
Some strategies to support collaborative editing are described in Section 3.

3. Algorithms

In a distributed system there are different types of processes that
communicate by sending messages to each other. In this situation, an order for the
generated events must be imposed. This means that the distributed algorithm has
to take into account all the rules defined in [11]. One solution is a causal order
algorithm based on logical clocks.

3.1. Causal order algorithm based on vector clocks

The first protocol presented is based on vector clocks [12] and is an
algorithm used to ensure partial ordering of events in a distributed system and to
detect causality violations. When using vector clocks we must ensure a delivery
protocol so that every site has the capability to delay received messages if it is
necessary and to deliver them in a consistent order. In our implementation we
used vector timestamps. The delayed messages are stored in a queue and this is
sorted by vector time and the concurrent messages are ordered based on the time
of receiving them.

Even though causal order is most commonly used, for situations such as
updating replicated data in distributed systems total order is a better option,
because it requires all the messages that were sent to arrive at the receivers in the
same order. For the total order protocol we have implemented three algorithms as
described further on.

3.2. Total order algorithm based on centralized component

This solution is very useful for systems with FIFO channels. Every site
that wants to transmit a message sends it only to the centralized component, which
simply broadcasts all the messages it receives to all the other sites included in the
system. Because the server receives the messages in a certain order, the order is
given by the server and that is how the messages are transmitted further to the
other sites. The main disadvantage of the solution based on a centralized
component is that it has a single point of failure and congestion, which at some
moment will create problems.

Real time collaborative editing in mobile computing environments 7

3.3. Total order algorithm based on a token

These token based algorithms are very efficient in terms of throughput (the
number of messages that can be delivered per time unit). This is justified because
they are able to reduce the network contention by using the token to eliminate the
problem of ACK transmissions and to ensure flow control.

The protocol works as follows. When a site has generated a message, it
cannot send it immediately. It will put its messages in a queue and will start to
deliver them when it gets the token, for as long as it has the token. If messages
still remain in the queue, they will be sent the next time the site gets the token. In
this way a total order is ensured similar to a serialized form. We have
implemented a total ordering protocol based on a dynamic token-passing scheme
which determines the next token holder dynamically, not in predetermined order.

3.4. Three phase distributed algorithm

In three phase distributed algorithm, the site is both sender and receiver
and each site has a queue where it stores the messages received. When a site is the
sender it follows the next three phases. In the first phase, the site broadcasts its
message M with a locally unique tag and the local timestamp to all the other sites
in the system. In the next phase, the sender waits for replies from all the receiver
sites. Then, it will determine the maximum of the proposed timestamps it received
for message M and declares the value chosen as the final timestamp. In the last
phase, the sender will broadcast the final value to all the sites in the system,
including himself.

If the site is a receiver it will execute the following steps. First, it will
receive the message M with a proposed timestamp. In the second step, the
receiver site will send the revised value and a tag back to the sender of the
message M. In the third step, it waits to receive the final timestamp. Based on this
value, the receiver replaces the revised timestamp with the new received value and
reorders the queue. If the message M represents the head of the queue, it will be
delivered; otherwise it will wait until it becomes the head of the queue and then
delivers it. The main advantage is that the messages can be delivered by all the
sites in the same total order.

3.5. dOPT algorithm

The dOPT algorithm [13] uses a replicated architecture were the
documents are reproduced at each participating site and the copies are initially
identical. The algorithm works as follows. When a site generates an operation, it
executes it locally immediately, generates a priority for the operation and then
sends these pieces of information to all the other sites in the system. When a site
receives an operation, the information from the message received is examined. If
there have been operations executed by the site which sent the message, the

8 Cristina-Loredana Dutd, Laura Gheorghe, Nicolae Téapus

operations will be queued, otherwise the operations will be executed. After all of
these, the algorithm updates its copy of the document to reflect the transformed
update.

dOPT offers several advantages for collaborative text editors such as
ensuring consistency among distributed replicated documents without the need of
serialization or even serializability among the updates at different sites. Although
dOPT is a simple algorithm that satisfies many of the correctness properties,
Gordon Cormack [14] found a case where dOPT could not always ensure
convergence when remote concurrent requests with similar operations are
transmitted from two different sites. After further research a solution to this
problem was found: to use different data structures for time stamping and conflict
handling (for example, the Jupiter algorithm) or to transform the log entries every
time they are used to transform an update.

3.6. Jupiter algorithm

Jupiter [15] is a multimedia, multi-user virtual world which offers support
for long-term remote collaboration. Jupiter is different from other groupware
systems because it does not use the synchronization protocol directly between the
sites, but synchronizes each client with the server and then the server will make
all the changes and send the changes made by one site to the other sites in the
system.

In the Jupiter protocol, each message will be labeled with the state of the
sender, before the generation of the message. This component is used for conflict
detection and then xform function is used to solve these conflicts. The algorithm
can ensure that regardless of the divergence between client and server in the state
space, they will have identical values when they reach the same state.

The Jupiter protocol fixes the problem with the dOPT algorithm. In case of
dOPT, when a message from a site diverges more than one step in the state space,
the algorithm will not transform the saved messages when it processes the new
incoming messages. Jupiter protocol treats the N-way consistency in a different
manner, so the problem previously mentioned never appears for it.

3.7. Paxos algorithm

Paxos [16] is a protocol for distributed systems where sites in the same
group can use to agree on a value proposed by a member of the group. At the end,
the algorithm reaches consensus regardless the unreliability of the network and
the simultaneously multiple attempt proposals of different values.

A site can be any of the following components: proposer (proposes a
value), acceptor (accepts or rejects a proposed value) and learner (is informed
about the chosen value). The steps in Paxos protocol are described below.

Real time collaborative editing in mobile computing environments 9

The proposer tries to confirm a proposed decision value (which is selected
from an arbitrary input group) by collecting approvals from a majority of
acceptors, while the learners have the role to observe how this approval is done.
By ensuring that only one of the proposals can receive the votes of a majority of
acceptors, the agreement is enforced. Moreover, the validity is ensured by
allowing only input values to be proposed. Any proposer can decide to restart the
protocol by issuing a new proposal. In this case, the algorithm ensures a procedure
to release the acceptors of their old votes.

4. Application Implementation

The sites in a groupware system communicate through TCP/IP
connections. Our application provides unconstrained group editing of documents
between users based on different protocols: casual order algorithm, total order
algorithm with a centralized component, total order algorithm using tokens,
dOPT, three-phase distributed algorithm, Jupiter and Paxos. We used NetBeans
IDE 7.3 and Java programming language for developing the application interface
and the protocols which ensure consistency between the sites in a collaborative
text editor. Fig. 1 shows how the window for editable documents in our
application appears to the user.

Text area for
nsertion/deletion
of characters

| 1ncarca fisier comenzil. bt

The name of

Button to load the testing fil
utton to load the testing file the testing file

Fig. 1. The window of the application

-y

& CLIENT 1 || 2| CLIENT 2 h o "
e | &| CLIENT 3 I R e)]

1esting testing
’ testing et
testing

| Incarca fisier | | incarca isier pe— l.
! ! | ncarca tf |_incamansier | comenat
| ! SRR
1

Fig. 2. Four clients connected at the same time

10 Cristina-Loredana Dutd, Laura Gheorghe, Nicolae Tapus

The window in Fig. 1, consists of a TextBox which displays the state of the
document and allows users to perform different operations, a pushbutton named
“Load File” which loads the testing file for the application and a TextPanel which
is displaying the name of the testing file used by the application. The application,
as it can be seen in Fig. 2, allows two or more users to remotely edit a document
simultaneously. The editing is completely unconstrained and users can insert and
delete characters at any location.

To manipulate a document, the user can perform (automatically, by
loading the file commands.txt) two operations: INSERT (char,pos) (inserts a new
character to the specified position in the document. If the position has not been
reached yet, the character is appended at the end of the written text) and DELETE
(pos) (deletes a character situated at the specified position in the document).

Fig. 3 shows how the windows of clients appear when a total order based
on a token protocol is used. For optimistic algorithms such as dOPT and Jupiter
the changes are reflected immediately in the user’s window, before they are
processed by the other sites.

.| sa766 S |08 Ty e =

| testing

Incarea fisiar | comenzl bt i | Incarca nsier J comaenzi bd

Site 1- No token (inactive text areal Sile 2 - Has the token (active lext area)

Fig. 3. Window for token based protocol

For Paxos algorithm, several messages are displayed. If a site is proposer,
the message ““This site is a proposer” appears in the console together with the
proposed value, the number of acceptors that are in the system at the current
moment and if the value has been accepted or not. If a site is an acceptor, the
message ““This site is an acceptor’ appears in the console, together with the value
received from the proposer. If the value is the chosen value, the message
“Propose OK™ is displayed and the acceptor will send this value to the
distinguished learner. If the site is a distinguished learner it receives the value
chosen from all the acceptors and then sends it to all the other learners. The
message “This site is a distinguished learner’ or “This site is a learner” appears
in the console.

Real time collaborative editing in mobile computing environments 11

5. Experimental evaluation

For our experiment, we used a system with Intel Core Dual CPU 2 GHz, 2
GB of RAM, Windows 7 32-bits and integrated video card. The purpose of this
paper is to determine which of the protocols for maintaining consistency is more
suitable for mobile environments, where the network is an important and
expensive resource. We took into consideration the total number of bytes sent
through the network for each method and the number of users involved (which
varies from 2 to 6) and we used a testing module to generate random traffic
between the users. This module automatically performs different operations
(insert, delete characters) for each client based on predefined files which contain
these operations. The results were plotted using Java’s Swing widget for
NetBeans IDE 7.3. The experiments that were performed are presented in detail in
the following sections.

5.1. Experimental results for files of 10, 50 or 100 characters

In Fig. 4 we have a graphical representation of the experimental results for
all the algorithms previously mentioned, obtained for small files of 10 characters
and a various number of clients (from 2 to 6 clients).

It can be observed that the number of bytes sent through the network by
each algorithm is different according to the number of clients. For two clients, the
causal order algorithm based on vector clocks offers the best results (all 10 bytes
are sent). Also, the number of bytes sent by the total order algorithm based on a
centralized component is high (10 bytes for two clients and 9 bytes for six
clients). It is a fast algorithm which ensures a maximum number of bytes sent
through the network at once.

10
7 m 2 clients
:’, B 3 clients
- 4clients
- W5 clients
; m e clients
> . i i i i i v

Causal Order Total Order Total Order Three Phase doPT Jupiter Paxos
Centralized Token

Number of bytes sent through the network

[T - TR R}

The algorithms

Fig. 4. Number of bytes sent for files of 10 characters

12 Cristina-Loredana Dutd, Laura Gheorghe, Nicolae Téapus

In Fig. 5 and Fig. 6 are shown the number of bytes sent by the algorithms
through the network, when using small files of 50 and 100 characters respectively,
and different number of clients.

20

45

40
35 4 H 2clients
30 A W 3clients
25 4 m 4clients
20 B Sclients
15 4 = gclients

10

MNumber of bytes sent through the network

Causal Order Total Order Total Order Three Phase dOPT Jupiter Paxos
Centralized Token

The algorithms

Fig. 5. Number of bytes sent for files of 50 characters

For the first two algorithms it can be seen that the number of bytes sent
doesn’t decrease very much (96 bytes of 100 are being transmitted, which is very
good). The causal order algorithm offers a very satisfying result, when we deal
with FIFO channels.

100

ELER

80
= 2clie
70

P =3 clie
60 |

W aclie
50

m s clie
40

3 3 3 3
O A

6 clien
30 o

Numberof bytes sent through the network

20 o

10 4

Causal Order Total Order Total Order ThreePhase doPT Jupiter Paxos
Centralized Token

The algorithms

Fig. 6. Number of bytes sent for files of 100 characters

However in real life we have no FIFO channels and two messages
generated from the same site can arrive at the other site in reverse order. In this
case, the second message (which arrived first) cannot be executed before the first
message because it depends on it.Comparing three-phase distributed algorithm
with the previous algorithms it can be observed that is more complex and has a
lower number of bytes sent through the network (87 bytes sent for two clients and
59 bytes for six clients). This happens because it needs 3N messages to send a

Real time collaborative editing in mobile computing environments 13

message to N sites and also includes a delay of 3 message hops (corresponding to
the three phases).

For the total order algorithm based on a token, the number of bytes sent
through the network is inverse proportional with the number of clients: as the
number of clients participating in the application increases, the number of bytes
sent by them is decreasing. This situation is justified because, the token is
dynamically passed to clients and when the number of users increases, the chance
to get the token becomes smaller.

5.2. Experimental results for files of 250 and 500 characters

Fig. 7 and Fig. 8 show the number of bytes sent through the network by all
algorithms when using a different number of clients and files of 250 and 500
characters respectively.

m 2clients
® 3 clients
= 4 clients
= 5 clients

its.

® 6 clien

Numberof bytes sent through the network
=
0
=]

Causal Order Total Order Total Order Three Phase doPT Jupiter Paxos
Centralized Token

The algorithms

Fig. 7. Number of bytes sent for files of 250 characters

The results of the total order algorithm based on a centralized component
are very good, but the main disadvantage of this protocol is that is a single point
of failure and if the server crashes, there will be no communication. Because in a
mobile environment the connectivity may be intermittent, the transmission may be
interrupted and the central server may be unreachable, this algorithm doesn’t seem
the best solution for collaborative editing in mobile environment.

It can be seen that the total order algorithm based on a token has the worst
results (only 72 bytes out of 500 are sent for six clients). This is not a solution to
handle consistency in mobile environments because this requires a large usage of
the network bandwidth, which is limited for this type of devices.

14 Cristina-Loredana Dutd, Laura Gheorghe, Nicolae Téapus

= 2 clients
= 3 clients

4 clients
= s clients

= 6 clients

Numberof bytes sent through the network
N
n
o

Causal Total Order Total Order Three doPT Jupiter Paxos
Order Centralized Token Phase

The algorithms

Fig. 8. Number of bytes for files of 500 characters

The three-phase distributed algorithm has good results (447 bytes out of
500 for six clients), but if we take into consideration the complexity of the
algorithm and the time needed to send messages to all the other sites, we can
affirm that it may be a solution for mobile environment, but for sure not the best.

For dOPT algorithm, the differences in the number of bytes sent through
the network when having two clients (486 bytes sent) to six clients (467 bytes
sent) are small. Unfortunately, even if this seems the best solution for a mobile
environment because it allows the users to work on local data replicas even in
disconnected mode, a scenario was found where dOPT could not always ensure
convergence, when remote concurrent requests with similar operations were
transmitted from two different sites.

For Jupiter algorithm, results are better than for dOPT algorithm, 489
bytes sent for two clients and 473 bytes for six clients. Jupiter is appropriate to use
for mobile environments, but the problem relies in the existence of the server,
which is a single point of failure and which will interrupt communication between
sites when it crashes.

For Paxos algorithm with two clients, 494 bytes out of 500 are transmitted
and for six clients 476 bytes are sent through the network. Even though it has
great results, Paxos is not suitable for collaborative editing in mobile
environments, because if the network is down, there is no chance for all acceptors
to reach an agreement and to choose a proposed value.

6. Conclusion

The aim of this paper is to compare several algorithms which maintain
consistency in collaborative editing applications and decide which can be used in
mobile environments. According to the simulation results we can conclude that
algorithms which include operational transformation (dOPT and Jupiter) are the
most suited to support collaboration using mobile devices because it allows users

Real time collaborative editing in mobile computing environments 15

to work on local data replicas even in a disconnected mode and synchronize with
each other when reconnected. Our future work will involve evaluating other
operational transformation algorithms (such as adOPTed, GOTO, ABT) and
discover which is the best for collaborative editing in mobile environment.

Acknowledgement

This work has been funded by the Sectoral Operational Programme
Human Resources Development 2007-2013 of the Ministry of European Funds
through the Financial Agreement POSDRU/159/1.5/S/134398.

REFERENCES

[1]. D. Engelbart, 1968 demo, http://vimeo.com/1408300 (Accessed: December 2014).

[2]. PayPal - Instant Update API, 2009, http:/cms.paypal.com/cms_content/US/en_US
[files/developer/PP_Callback InstantUpdate API_Guide.pdf (Accessed: December 2014).

[3]. Writely Word Processor, 2005, http://disedlibrarian.edublogs.org/2005/12/08/writely-word-
processor/ (Accessed: December 2014).

[4]. Synchronous Editing for the Web, 2006, http://www.synchroedit.com/ (Accessed: December
2014).

[5]. MobWrite, 2010, http://www.mobwrite.net/static/about.html (Accessed: December 2014).

[6]. C. Sun and C. Elli, “Operational Transformation in Real-Time Group Editors: Issues,
Algorithms, and Achivements”, in Proceedings of 1998 ACM Conference on Computer
Supported Cooperative Work, 1998, pp. 59-68.

[7]1. S. Kumawat and A. Khuntela, “A Survery on Operational Transformation Algorithms:
Challenges, Issues and Achievements”, in International Journal of Computer Applications,
2010, Vol. 3, pp. 30-38.

[8]. B. Shao, D. Li and N. Gu, “A Fast Operational Transformation Algorithm for Mobile and
Asynchronous Collaboration”, in Parallel and Distributed Systems, IEEE Transactions,
2010, Vol. 21, pp. 1707-1720.

[9]. A. Randolph, H. Boucheneb, A. Imine and A. Quintero, “On Consistency Operational
Transformation Approach”, in Infinity’12 EPTCS 107, 2013, pp. 45-59.

[10]. N. Hayashibara, P. Urban and A. Schiper, “Performance Comparison Between the Paxos
and Chandra-Toueg Consensus Algorithms”, in Proceedings of International Arab
Conference on Information Technology, 2002, pp. 22-34.

[11]. R. Hirschfelder and J. Hirschfelder, “Introduction to Discrete Mathematics”, Wadsworth Pub
Co, 1990.

[12]. L. Lamport, “Time, Clocks and the Ordering of Events in a Distributed System”, in
Communications of the ACM, No. 7, 1978, pp. 558-565.

[13]. C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems”, in ACM SIGMOD
Record 18, 1989, pp. 399-407.

[14]. G. V. Cormack, “A Counterexample to the Distributed Operational Transform and a
Corrected Algorithm for Point-to-Point Communication”, in Research Report CS-950-08,
University of Waterloo, 1995.

16 Cristina-Loredana Dutd, Laura Gheorghe, Nicolae Tapus

[15]. D. A. Nichols, P. Curtis, M. Dixon and J. Lamping, “High-Latency, Low-Bandwidth
Windowing in the Jupiter Collaboration System”, in Proceedings of the ACM User
Interface Software and Technology Symposium, 1995, pp. 234-244.

[16]. L. Lamport, “Paxos Made Simple”, in ACM SIGACT News, No. 4, 2001, pp. -58.

