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AI PATENT IDENTIFICATION IN A-SHARE 

MANUFACTURING ENTERPRISES BASED ON CNN-

TRANSFORMER 

Haoyue CHEN1*, Qijian PAN2, Jiayue ZHANG3 

Accurate identification and classification of artificial intelligence (AI) patents 

necessitate advanced computational methods capable of processing complex textual 

data. In order to improve the accuracy and effectiveness of AI patent analysis, this 

study presents a revolutionary deep learning model that combines Transformer 

topologies with Convolutional Neural Networks (CNN). Using a large dataset of AI 

patents published by A-share listed manufacturing companies between 2014 and 

2023, we compare the CNN-Transformer model to well-known deep learning models 

like standard CNNs and Long Short-Term Memory networks (LSTM) as well as 

conventional machine learning algorithms like Decision Trees, Random Forests, and 

Support Vector Machines (SVM). Experimental results reveal that the CNN-

Transformer model achieves superior performance, attaining an accuracy of 90.75%, 

precision of 91.10%, recall of 93.20%, F1 score of 90.97%, and AUC of 96.56%, 

thereby significantly outperforming all comparative models. These findings 

demonstrate the model’s exceptional capability in handling complex patent text 

analysis, highlighting its potential as a powerful tool for AI patent classification tasks. 

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, 

Convolutional Neural Networks, Transformer  

1. Introduction 

The incorporation of AI technology has had a significant influence on a 

number of sectors in the age of fast AI advancement, resulting in an unparalleled 

surge in technical development and innovation [1]. This surge in AI-driven 

innovation has resulted in a substantial increase in complex textual data, 

particularly in patent documents that encapsulate cutting-edge technological 

advancements [2]. Efficiently processing and analyzing this large-scale, 

unstructured textual data presents significant challenges for traditional 

computational methods. 

Accurate classification of patent texts is essential for understanding 
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technological trends, informing policy decisions, and guiding strategic business 

initiatives [3]. However, the intricate language structures, specialized terminologies, 

and sheer volume of patent documents make them difficult to analyze using 

conventional machine learning algorithms. Techniques like SVM, Decision Trees, 

and Random Forests have demonstrated limitations: SVM has too high dimension, 

high calculation cost, slow operation. [4,5]; Decision Trees are sensitive to training 

data and prone to overfitting [6]; Random Forests suffer from weaker model 

interpretability and difficulty in handling imbalanced datasets [7]. 

Tools like CNN and LSTM from deep learning are used to resolve certain 

challenges [8]. While CNNs are good at identifying local features, the use of 

pooling layers might cause contextual data to be discarded, and they often fail to 

consider the interaction between local and global aspects [9, 10]. LSTMs are 

capable of modeling sequential data but are prone to overfitting and involve high 

computational costs [11]. Although BERT excels at capturing long-distance 

dependencies, its capacity to model locally fine-grained patterns is relatively 

limited. In contrast, BERT-CNN has an excessive number of parameters, which 

leads to a prolonged training duration. These limitations underscore the need for 

more sophisticated computational models that can effectively capture both local and 

global semantic relationships within complex textual data. 

This paper proposes an inventive CNN-Transformer approach to overcome 

these issues by fusing Transformer's global context modeling advantage with CNN's 

local feature identification capability. The Transformer component excels at 

capturing long-range dependencies and semantic nuances, which are critical for 

accurately classifying complex patent documents. By integrating these two 

architectures, the proposed model aims to overcome the deficiencies of existing 

methods and enhance text classification performance. 

In addition to alternative deep learning models and conventional machine 

learning techniques, the study trains and assesses the suggested model using a 

manually annotated patent dataset based on the AI lexicon created by Yao et al. 

(2024) [12]. Model performance is tested using metrics like accuracy, recall, F1 

score, and AUC. Experimental results indicate that the CNN-Transformer model 

significantly outperforms existing methods in classifying patent texts, 

demonstrating its effectiveness in handling complex textual analysis tasks. 

Furthermore, to validate the practical applicability of the proposed model, 

it is employed to classify patents from A-share listed manufacturing enterprises 

between 2014 and 2023, identifying AI-related patents among them. In addition to 

demonstrating the model's resilience in practical situations, this application offers 

insightful information about how widely AI technology is being used in these 

businesses. 

The following structure is used in this paper: Section 2 recalling existing 

computational methods for text classification and their limitations; Section 3 
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presents the research design, including data acquisition, preprocessing, and model 

construction; Section 4 provides empirical analysis and results, highlighting the 

performance of the proposed model; and Section 5 summarizes the study and 

examines avenues for future exploration. 

2. Literature Review 

2.1 Machine Learning 

Machine learning, one of the core directions of AI, has been broadly 

employed in agriculture, logistics, and communication. In Natural Language 

Processing (NLP), machine learning technologies have been more broadly utilized 

to handle challenging tasks like text classification, abstraction, and emotion 

analysis [13]. Its significant advantages in processing unstructured data have led to 

extensive use in enterprise risk prediction, performance evaluation, and decision 

support [14]. These empirical studies offer an excellent foundation for the 

approaches chosen in this study, emphasizing machine learning's capacity to gauge 

the extent of enterprise-level adoption of AI technology. 

SVM, a traditional machine learning technique founded on statistical 

learning theory, works especially well with high-dimensional, small-sample, and 

nonlinear data. They have been broadly utilized in areas such as image recognition, 

fault diagnosis, and text classification [5]. However, SVM exhibits considerable 

computational complexity, high computational cost and slow operation when 

dealing with large-scale data. In addition, multi-class problems require manual 

selection of kernel functions, which increases the complexity of model construction 

[4]. 

Decision Trees are widely used due to their low preprocessing requirements 

and ability to handle mixed-type data. However, Decision Trees react strongly to 

slight fluctuations in the training data, causing them to be prone to overfitting [6]. 

To overcome this limitation, Random Forests enhance model stability and accuracy 

by integrating multiple Decision Trees and employing voting or averaging 

mechanisms for output, thereby reducing the risk of overfitting [7]. 

CNN are extensively applied in the field of NLP for text analysis tasks. A 

CNN-based approach to text classification was presented by Guo et al. (2019). It 

uses Word2vec technology to convert text into numerical vectors and use 

convolutional kernels of different sizes to extract features. These features are then 

processed through pooling and classification layers to achieve efficient 

classification. The model captures local text features and optimizes computational 

load, thus enhancing training efficiency [9]. Even so, pooling layers may overlook 

the interplay between local and global information, leading to a partial loss of 

contextual information [10]. 

To address the limitations of CNNs in handling the contextual associations 

in long text sequences and the gradient reduction problem encountered during 
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training by classic Recurrent Neural Networks face during training while 

processing lengthy sequences, Hochreiter and Schmidhuber (1997) invented LSTM. 

LSTMs can efficiently capture long-range dependencies, significantly alleviating 

the issues of gradient vanishing and explosion during training [11]. However, this 

model is prone to overfitting and incurs high computational costs. 

BERT uses a Transformer pre-trained bidirectional encoder to improve 

language understanding through context-aware feature extraction and a deep 

bidirectional architecture [15]. Transformer is an important structure of PFM in the 

fields of NLP, CV and GL. For NLP, Transformer can help solve the long-distance 

dependency problem when processing sequential input data [16]. ChineseBERT, 

designed for Chinese characteristics, further expands the BERT architecture and 

enhances the ability to handle Chinese semantic ambiguity and homophones by 

integrating multimodal information of Chinese character shapes and pinyin [17]. 
Although BERT is good at capturing long-range dependencies, it has limited ability 

to model local fine-grained patterns [18]. 

BERT-CNN achieves high classification accuracy in short text sentiment 

analysis scenarios by combining BERT’s deep semantic representation capabilities 

with CNN’s local feature extraction mechanism [19]. However, this model is 

limited by the local receptive field characteristics of convolutional neural networks 

and is unable to effectively capture long-distance semantic dependencies [20]. 

Given the aforementioned limitations of existing models in processing 

complex text data, this study proposes an innovative deep learning model, CNN-

Transformer. This model aims to fully utilize the strengths of CNNs in extracting 

local characteristics and the capabilities of Transformers in capturing overall 

dependencies and long-distance information. By integrating these two architectures, 

the CNN-Transformer model significantly enhances classification accuracy and 

efficiency in complex patent text classification tasks, overcoming the shortcomings 

of single models in feature extraction and context understanding. 
 

Table 1 

Literature Review of Machine Learning Algorithms 

Machine 

Learning 

Algorithm 

Advantages Disadvantages References 

SVM 

Suitable for nonlinear, small-

sample, and high-dimensional 

data; widely used in image 

recognition, fault diagnosis, 

and text classification 

high computational 

complexity for large-scale 

data; requires manual 

selection of kernel functions 

Jiang-hua, 

2002; Li et 

al., 2022 

Decision 

Tree 

Low preprocessing 

requirements; can handle 

mixed-type data 

Sensitive to training data; 

prone to overfitting 

Amro et al., 

2021 

Random 

Forest 

Enhances model stability and 

accuracy; reduces risk of 

Weaker model 

interpretability; difficult to 

Sun et al., 

2024 
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overfitting handle imbalanced datasets 

CNN 

Effectively captures local text 

features; reduces computational 

complexity; accelerates 

training 

Pooling layers may lead to 

loss of contextual 

information; neglects 

interaction between local 

and global information 

Guo et al., 

2019; Ma et 

al., 2023 

LSTM 

Effectively learns long-distance 

dependencies; alleviates 

gradient vanishing and 

explosion problems 

Prone to overfitting; high 

computational costs 

Hochreiter, 

1997 

BERT 

Good at capturing long-

distance dependencies and can 

simultaneously capture 

bidirectional contextual 

information of text 

Limited ability to model 

local fine-grained patterns 

Jacob et 

al,2019; 

Sun et 

al,2021; 

Chen et 

al,2022 

BERT-CNN 

Fine-grained sentiment 

classification has significant 

accuracy and is suitable for 

sentiment analysis of short 

texts 

The model contains an 

excessive number of 

parameters, resulting in 

excessively long training 

durations. 

Abas et 

al,2022; 

Rong et 

al,2023 

The primary machine learning algorithms covered in this study's literature 

review are compiled in table 1 above, which also includes a list of pertinent 

references and highlights each algorithm's benefits and drawbacks. Through 

comparative analysis, the limitations of existing models in handling complex text 

data become evident, providing theoretical support and directions for improvement 

for the proposed CNN-Transformer model in this research. 

2.2 Methods for Measuring the Level of AI Technology Adoption 

Existing studies employ various methods to determine the capability level 

of AI technology adoption in enterprises, with questionnaire surveys, keyword 

analysis, and proxy variable approaches being the primary techniques. 

The questionnaire survey method is commonly used to assess AI technology 

application by collecting feedback from internal managers of enterprises. For 

example, Liu et al. (2022) constructed an intelligent apparel ecosystem under the 

context of digital transformation based on platform ecosystem theory using 

questionnaire surveys and proposed a customer trust model based on human-

computer interaction technology [21]. Sharma et al. (2022) measured the level of 

AI technology adoption by surveying the attitudes and perspectives of machine 

learning (ML) and AI researchers [22]. However, the questionnaire survey method 

relies heavily on the subjective evaluations of enterprise managers and is 

susceptible to the "halo effect," where the order of questions and other factors may 

influence respondents' answers [23]. 

The keyword method has been used extensively as a useful instrument for 

gauging the degree of technological innovation in AI within businesses. For 
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example, Liu et al. (2022) created an indicator to gauge the degree of AI 

development in businesses by counting the AI-related phrases they extracted from 

the financial documents of Chinese listed companies using web crawler technology 

[24]. Nguyen et al. (2022) utilized the International Federation of Intellectual 

Property (IFIClaims) patent dataset and applied the Panel Smooth Transition 

Regression (PSTR) model to analyze the relationship between AI and 

unemployment under different inflation levels [25]. Zhang and Peng (2024) 

generated an AI dictionary using machine learning methods and constructed an 

enterprise-level AI indicator through text analysis of annual data from listed 

companies [26]. Although the keyword method effectively identifies trends, its 

insufficient understanding of context may lead to biases in semantic and sentiment 

interpretation [13]. 

The proxy variable method indirectly measures the level of AI technology 

adoption by using substitute variables that are difficult to directly observe or 

quantify. In order to scientifically assess the energy efficiency of micro-enterprises 

and investigate the role of AI in it, Yang and Wang (2023) use panel data from 2013 

to 2015 that integrates enterprise-level data from a thorough survey of over 110,000 

manufacturing enterprises in Guangdong Province with the global count of 

industrial robots by industry from the International Federation of Robotics (IFR) 

[10]. The concentration of industrial robots at the provincial agricultural level was 

used by Lee et al. (2024) to gauge the application and development level of AI in 

agriculture [27]. Furthermore, Liu et al. (2022) determined the percentage of 

enterprise output value to the industry's overall output value in order to gauge the 

extent of AI adoption [28]. However, the proxy variable method depends on the 

completeness of databases and the accuracy of variable definitions and typically 

only identifies data at the national and industry levels, limiting in-depth analysis of 

digital technology characteristics. 

In summary, although existing methods provide important insights into 

measuring the level of AI technology adoption in enterprises, each has certain 

limitations. The questionnaire survey method primarily captures the short-term 

technological adoption of enterprises. The keyword analysis method can effectively 

identify trends but struggles to fully understand the context, potentially leading to 

semantic and sentiment interpretation biases [15]. The proxy variable method is 

limited in its ability to comprehensively and deeply characterize AI technology. 

Therefore, this study proposes to use a deep learning model that combines CNN 

and Transformer architectures to efficiently identify and classify corporate AI 

technology patents through text analysis methods, improve the tracking of corporate 

strategic changes, and deepen the application of machine learning in text semantic 

understanding. Table 2 offers a methodical summary of the approaches used in 

previous studies, highlighting their benefits and drawbacks. 
 

Table 2 
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Overview of Existing Research on Measuring AI Levels 

Research 

Method 
Data Source Method Advantages Limitations References 

Questionnaire 

Survey 

Questionnaire 

Surveys 

Collect 

subjective 

evaluations of 

AI adoption 

from 

managers by 

designing and 

distributing 

questionnaires 

Captures 

short-term 

technological 

adoption 

within 

enterprises 

Easily 

influenced by 

the "halo 

effect," high 

subjectivity 

Liu & Li, 

2022; 

Sharma et 

al., 2022; 

Xie et al., 

2024 

Keyword 

Analysis 

Annual 

Reports of 

Listed 

Companies, 

Patent 

Datasets 

Extract AI-

related 

keywords and 

construct AI 

adoption 

indicators 

through 

counting and 

statistical 

analysis 

Effectively 

identifies 

technological 

development 

trends 

Insufficient 

understanding 

of context 

may lead to 

semantic and 

sentiment 

biases 

Liu et al., 

2022; 

Nguyen & 

Vo, 2022; 

Zhang & 

Peng, 

2024; 

Wankhade 

et al., 2022 

ffigureProxy 

Variable 

Method 

Industrial 

Robot Usage 

Data, 

Enterprise 

Output Data 

Use substitute 

variables 

(e.g., robot 

stock, robot 

density) to 

indirectly 

measure AI 

adoption 

levels 

Utilizes 

existing data 

for indirect 

measurement, 

suitable for 

cross-country 

or cross-

industry 

analysis 

Strong 

dependency 

on data 

completeness 

and variable 

definition 

accuracy, 

difficult to 

deeply 

characterize 

AI technology 

Yang & 

Wang, 

2023; Lee 

et al., 

2024; Liu, 

Qian, 

Yang & 

Yang, 

2022 

3. Research Design 

3.1 Sample Selection and Data Sources 

This study chooses companies listed in the A-share market manufacturing 

enterprises over the past decade (2014-2023) as the initial research sample. The data 

for the sample companies are categorized into two types: firstly, basic company 

information is obtained from the CSMAR database; secondly, patent text 

information of listed companies is sourced from the WinGo Financial Text Data 

Platform, including the company name, patent application date, and the abstract, 

description, and claims of the patent documents. Additionally, to minimize the 

impact of financial anomalies, companies classified as ST and *ST are excluded 

from the initial sample. After sorting, this study obtained a non-equilibrium data set 

containing 3533 manufacturing enterprises, with a total of 986296 samples, of 
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which 3000 positive samples and 7000 negative samples. 

3.2 Text Vectorization and Representation 

To effectively input textual data into machine learning and deep learning 

models, this study employs two different text vectorization methods. For traditional 

machine learning models, the TfidfVectorizer from the scikit-learn library is used 

for vectorization. By computing Term Frequency-Inverse Document Frequency 

(TF-IDF), TfidfVectorizer produces sparse high-dimensional feature vectors that 

accurately capture significant lexical information in text. 

For deep learning models, a text embedding method is utilized. Specifically, 

each Chinese character is ranked by frequency, and characters with a frequency 

below 5% are removed, retaining a total of 4,906 high-frequency characters. 

Considering that over 95% of the texts (including patent titles and abstracts) are 

fewer than 256 characters in length, the texts are uniformly processed to a length of 

256 characters, truncating any excess and padding shorter texts. This process 

ensures uniformity of input vectors and enhances the efficiency of model training. 

3.3 Model Construction and Implementation 

This study evaluates and compares the performance of traditional machine 

learning models—Decision Trees, Random Forests, and SVM—as well as deep 

learning models including LSTM, BERT, CNN-BERT, and a proposed CNN-

Transformer hybrid model. Traditional models are implemented using the scikit-

learn library, with hyperparameter tuning conducted through grid search.  

Deep learning models use a 128-dimensional embedding layer to convert 

input character vectors into dense representations. The CNN baseline consists of 

two convolutional layers with 64 filters and a kernel size of 3, designed to capture 

local textual features. The LSTM model includes two stacked layers with 64 hidden 

units to capture long-range dependencies. Transformer-based models include BERT, 

which uses a pretrained TFBertModel to extract the hidden state of the CLS token, 

followed by a fully connected layer with 128 units and a sigmoid activation for 

binary classification. CNN-BERT enhances this by applying a one-dimensional 

convolution with 128 filters and a kernel size of 3 to the final hidden states, followed 

by global max pooling and a dense layer with 128 units.  

All models are implemented and evaluated under consistent experimental 

settings to ensure a fair and rigorous comparison. 
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Fig. 1 CNN-Transformer Model Architecture 

The proposed architecture consists of two repeatedly stacked modules, each 

comprising a convolutional layer followed by a Transformer encoder layer. In this 

design, only the encoder component of the Transformer is utilized, explicitly 

omitting the decoder structure, as the text classification task does not require 

sequence generation or reconstruction. 

Each convolutional layer employs 64 filters with a kernel size of 3, 

effectively capturing local patterns in the input sequence. These local features are 

then processed by the Transformer encoder layer, which includes a multi-head self-

attention mechanism with two attention heads and a 64-dimensional hidden state. 

This configuration enables the model to capture both local and global dependencies 

within the sequence, enhancing the contextual representation. 

The input sequence is first converted into continuous embeddings, with 

positional encodings added to retain sequential information. These enriched 

embeddings pass through the stacked CNN-Transformer blocks, where the 

convolutional layers extract localized features, and the attention layers model long-

range semantic relationships. Unlike sequence-to-sequence tasks such as machine 

translation that rely on the decoder to generate sequential outputs, text classification 

only requires a compact semantic representation of the entire input. 

Therefore, the output of the final encoder layer is passed through a global 

average pooling layer to produce a fixed-length representation, which is then fed 
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into a fully connected layer and activated using a sigmoid function to yield a binary 

classification result. This architecture, illustrated in Fig. 1, offers a simplified and 

computationally efficient model structure that is well-aligned with the objective of 

the classification task. 

The hybrid structure makes full use of the advantages of CNN in capturing 

local information and Transformer in modeling global dependencies, thereby 

effectively improving training speed and overall performance while maintaining 

model expressibility. The transformer model in CNN-transformer and bert in CNN-

BERT model both play the role of self-attention mechanism. However, the 

parameters of BERT models are large, and transformer provides greater flexibility. 

3.4 Data Labeling 

The manual labeling process in this study references the 73 AI-related 

keywords proposed by Yao et al. (2024) as the initial basis for annotation [12]. 

Building on this foundation, the research team provided systematic training to the 

annotators and ensured the accuracy and consistency of the labeling process through 

sample-based learning. 

In order to further ensure the accuracy and consistency of the annotations, 

the method of cross-validation is adopted in this report. The trained taggers were 

divided into two groups and annotated the same text independently. Only when two 

groups of taggers have the same tagging results for the same text, the tagging result 

is considered valid. In the case of annotation differences, the team will conduct in-

depth discussion and review until a consensus is reached. In addition, all 

annotations are ultimately reviewed and confirmed by senior researchers to ensure 

the overall quality and consistency of the data. Ultimately, 10,000 samples were 

labeled, the data is partitioned into an 80% training set and a 20% test set. 

3.5 Model Training and Evaluation 

The training set is used to train the models, and their performance on the 

test set is assessed. F1-Score, AUC, Accuracy, Recall, and Precision are among the 

metrics used for assessment. These metrics comprehensively assess the models' 

performance in classification tasks, ensuring the scientific validity and reliability of 

the results. This study validates the exceptional performance of the suggested CNN-

Transformer model in AI patent identification tasks after analyzing the performance 

of several models on these criteria. 

3.6 Experimental Environment 

All computational experiments in this study are conducted on high-

performance computing servers equipped with NVIDIA 3060 GPUs to ensure the 

efficiency of deep learning model training. This study uses Python 3.9.20 as the 

programming language, TensorFlow 2.10.0 as the deep learning framework, and 

scikit-learn for traditional machine learning implementation.This setup ensures the 

efficiency and stability of model training and provides a foundation for the 
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reproducibility of the results. 

4. Research Results 

4.1 Model Performance Analysis 

This research examines the efficacy of algorithms—namely, Decision Tree, 

Tured Decision Tree, Random Forest, Tured Random Forest, SVM, Tured SVM, 

CNN, LSTM, BERT, CNN-BERT, and CNN-Transformer—with relation to the 

classification of patent texts. The main objective is to precisely determine the 

presence of AI technologies within patents, thereby improving the speed and 

precision of patent text analysis. 

Five metrics—Accuracy, Precision, Recall, F1-score, and the AUC—were 

used to assess each algorithm's performance in detail.  

(1) Accuracy 

The ratio of correctly predicted cases to the whole dataset is known as the 

accuracy measure, and it is calculated using the following formula: 

Accuracy  =  
𝑇𝑃  +  𝑇𝑁

𝑇𝑃  +  𝑇𝑁  +  𝐹𝑃  +  𝐹𝑁
 (1) 

TP stands for true positives, TN for true negatives, FP for false positives, 

and FN for false negatives. An elevated accuracy score signifies a superior general 

predictive capability of the model. 

(2) Precision 

The precision metric assesses the ratio of true positive instances to the total 

instances labeled as positive, computed by the formula: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (2) 

A high precision value signifies a minimal false positive rate, suggesting 

that the model seldom misclassifies negative instances as positive. 

(3) Recall 

The recall measure, which is calculated using the following formula, 

assesses the proportion of correctly detected real positive instances to all actual 

positive instances: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (3) 

An elevated recall level indicates a minimal false negative rate, suggesting 

that the model rarely misses identifying positive instances. 

(4) F1-score 

The F1-score provides a fair evaluation of the model's accuracy and 

comprehensiveness since it is the harmonic average of precision and recall. Its 

calculation is as follows: 

F1-score = 2 ×
Precision × Recall

Precision + Recall
  (4) 
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An increased F1-score denotes enhanced performance in both precision and 

recall. 

(5) AUC 

The area under the ROC curve, or AUC, indicates how well the model 

distinguishes between positive and negative results. AUC values that are closer to 

1 indicate improved the accuracy of models. 

 
Fig. 2 Model Performance Across Metrics 

Fig. 2 illustrates the comparative performance of Decision Tree, Tured 

Decision Tree, Random Forest, Tured Random Forest, SVM, Tured SVM, CNN, 

LSTM, BERT, CNN-BERT, and CNN-Transformer in terms of accuracy, precision, 

recall, F1-score, and AUC. 

As shown in the data above, deep learning models generally outperform 

traditional machine learning models. Among all evaluation metrics, the CNN-

Transformer model exhibits superior performance, achieving the highest scores in 

Accuracy (90.75%), Precision (91.10%), Recall (93.20%), F1-score (90.97%), and 

AUC (96.56%). This indicates that the CNN-Transformer model significantly 

outperforms other models in comprehensive classification performance. 

The CNN-Transformer model combines the local feature extraction 

capabilities of CNNs with the attention mechanisms of Transformers, enhancing 

classification accuracy and robustness by better capturing semantic information in 

patent texts. The results demonstrate the effectiveness of this integrated approach 

in handling complex text data, providing strong technical support for patent text 

analysis. 

4.2 AI Patent Analysis 

(1) Overview of AI Patents 

This study utilizes the trained CNN-Transformer model to classify and 

identify patents of A-share listed manufacturing enterprises. Fig. 3 illustrates the 

cumulative number of AI patents and non-AI patents from 2014 to 2023. The x-axis 

displays the number of years and the y-axis shows the total number of patents. 
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Green bars in the chart represent AI patents, whereas orange bars represent non-AI 

patents. 

 
Fig. 3 Total Number of Patents from 2014 to 2023 

Fig. 3 shows a steady increase in cumulative patent filings by A-share listed 

manufacturing enterprises from 2014 to 2023 in both AI and non-AI categories. 

Non-AI patents grew from 59,768 to 871,005, while AI patents rose from 5,156 to 

91,981. This sustained growth highlights continued investment in innovation across 

the manufacturing sector. 

(2) Top Ten Enterprises in AI Patent Applications 

This study analyzes the top ten A-share listed manufacturing enterprises by 

AI patent applications, as shown in Table 4. Gree Electric Appliances leads with 

4,871 patents, followed by BOE Technology Group with 4,232. Midea Group and 

Visionox Holdings hold 3,110 and 3,085 patents, ranking third and fourth. 

Hikvision and Haier Smart Home follow with 2,936 and 2,919 patents, respectively. 

ZTE, Dahua Technology, BYD, and Sichuan Changhong have 2,823, 1,767, 1,451, 

and 1,421 patents, respectively. 
Table 3 

Total Number of Patents (2014-2023) of Top Ten Enterprises 

Stock 

Code 
Company Name 

Total Number of AI 

Patents 

000651 Gree Electric Appliances, Inc. of Zhuhai 4,871 

000725 BOE Technology Group Co., Ltd. 4,232 

000333 Midea Group Co., Ltd. 3,110 

002841 
Guangzhou Shiyuan Electronic Technology 

Company Limited 
3,085 

002415 Hangzhou Hikvision Digital Technology Co.,Ltd. 2,936 

600690 Haier Smart Home Co., Ltd. 2,919 

000063 ZTE Corporation 2,823 

002236 Zhejiang Dahua Technology Co.,Ltd. 1,767 

002594 Build Your Dreams Co., Ltd. 1,451 
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600839 Sichuan Changhong Electric Co., Ltd. 1,421 

As shown in Table 3, Gree Electric Appliances leads in AI patent 

applications, highlighting its strong commitment to AI R&D. BOE Technology 

Group and Midea Group also show notable competitiveness, reflecting substantial 

investments in the field. 

Fig. 4 further illustrates the AI patent trends of these ten companies from 

2014 to 2023. From 2014 to 2019, most experienced rapid growth, especially Gree, 

BOE, and Midea. Gree’s AI patents rose from 173 in 2014 to 1,062 in 2019, while 

BOE increased from 208 to 794, reflecting intensified focus on AI innovation 

during this period. 

 
Fig. 4 Annual Patent Trend of Top Ten Enterprises (2014-2023) 

As shown in Fig. 4, since 2020, AI patent applications by most enterprises 

have declined or stabilized. ZTE and Dahua Technology saw sharp drops to 13 and 

52 patents, respectively. Haier Smart Home peaked at 929 patents in 2021 but fell 

to 194 soon after. Midea Group and BYD showed similar downward trends post-

2020.  

Overall, the ten enterprises show early intensive AI innovation, followed by 

a decline reflecting technological maturity, strategic shifts, or market changes. This 

pattern highlights key trends in manufacturing-oriented AI development. 

5. Conclusion and Future Work 

This study presents a novel deep learning model that integrates CNN with 

Transformer architectures to advance the identification and classification of AI 

patents. By integrating CNN's expertise in local feature extraction with the 

Transformer's ability to capture global context, the proposed CNN-Transformer 

model effectively tackles the complexities in patent text analysis. Comparative 
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experiments show that CNN-Transformer model is superior to traditional machine 

learning algorithms, such as decision trees, random forests, SVM, BERT and Bert-

CNN models. 

The proposed CNN-Transformer hybrid model significantly enhances text 

analysis for complex, domain-specific content such as patent documents. By 

integrating CNN for local semantics and Transformer for long-range dependencies, 

it improves classification accuracy and efficiency, facilitating informed R&D 

decision-making. 

While this study focuses on AI-related patent classification, the proposed 

model architecture is readily adaptable to various text classification tasks, such as 

news categorization, academic topic identification, legal document analysis, and 

sentiment detection. Its ability to process lengthy and domain-specific texts 

demonstrates strong generalizability and broad applicability in NLP scenarios. 
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