U.P.B. Sci. Bull,, Series C, Vol. 75, Iss. 3, 2013 ISSN 2286-3540

MODEL CHECKING WITH FLUID QUALITIES

Cristian GIUMALE!, Mihnea MURARU?

This work addresses computational aspects related to a modeling
approach for temporal reasoning, based on fluid qualities. The investigated is-
sues are the decidability and complexity of some properties of models, considered
important for model checking.

Keywords: temporal reasoning, fluid quality, evolution graph, model, behavior,
model checking

1. Introduction

This work addresses computational issues related to a modeling approach
based on fluid qualities, presented in [1]. The modeling approach aims to declara-
tively describe processes the evolution of which depends, in complex ways, on time,
in a possibly non-Markovian fashion. The basic idea is that the modeled process is
populated by entities, called individuals, which have evolving qualities, referred to
as fluid, spanning various time intervals. The qualities are created, destroyed, and
modified by means of actions applied onto individuals. Besides the individuals,
qualities and actions that populate it, a model is also defined by its rules. These
follow the precondition-action-effect pattern, and describe what must hold for an
action to bring about its effects and what are the effects themselves. The evolution
of a model is called behavior and is represented by a special oriented graph, named
evolution graph, the nodes of which correspond to sets of concurrent actions, while
the edges designate qualities associated to individuals.

Fig. 1 illustrates an example evolution graph. The grey nodes depict time
moments and white nodes, actions. a, b and ¢ are individuals. Initially, only the
qualities Q;(a) and Q3(c) are present. When the action a;(a) is externally gen-
erated, it destroys Q(a) and creates a new quality, Q»(b), while Q3(c) remains
unaffected. A similar explanation can be given for the concurrent actions a;(b) and
a3(c). Notice that there can be multiple Q| (a) qualities, within disjoint time spans.

A possible rule describing the behavior of action a3 is given in Listing 1.
?x and ?y are variables, which get bound to the individuals ¢ and a, respectively.

IProfessor, Computer Science Department, University “Politehnica” of Bucharest, Romania, e-
mail: cristian.giumale@cs.pub.ro

2Teaching assistant, Computer Science Department, University “Politehnica” of Bucharest, Ro-
mania, e-mail: mihnea.muraru@cs.pub.ro

27

W =

28 Cristian Giumale, Mihnea Muraru

ti liy1
Fig. 1. Example evolution graph

proper_part_of is a temporal primitive, enforcing the restriction that the time
span of the first quality must be completely included in the time span of the second.

rule r
precondition Ql (?y) proper_part_of (Q3(?x) as ?g3)
action a3 (?x)

postcondition destroy 793, assert Q1 (?y)

Listing 1. Possible rule describing the behavior of action a3

The investigated issues are the decidability and the complexity of some prop-
erties of models, and are important for model checking (static and/or dynamic).

2. Behaviors

Let M be a model, Actions(M) the finite set of actions in M, Qualities(M) the
finite set of qualities in M, and 7Time the set of time points, considered equipotent
with the set of natural numbers.

Definition 2.1 (State). A state s of M, at a given time moment t, is a subset of
Qualities(M), at time t.

We use the notations States(M) =get P(Qualities(M)), and Stimuli(M) =get
P(Actions(M)), where P(A) designates the power set of A. States(M) can contain
states that are never generated by M, and Stimuli(M) can contain groups of actions
that do not fire any rule from M. We assume that state equality is decidable.

Definition 2.2 (Behavior). A behavior of a model M is a function B : Time —
Stimuli(M) x States(M), where B(t) = (a,s) asserts that state s is the effect of stim-
ulus a at time t. If the states of B depend solely on stimuli, and time is irrelevant,
we say that B is static, otherwise, B is fluid.

dom(B) and range(B) stand for the domain and range of B, respectively. If
B(t) = (a,s), we define two selectors: state(B(t)) = s and stimulus(B(t)) = a.

The main relationship between a model M and a behavior B : Time — Stimuli(M) x
States(M) is that B uses the actions and qualities from M. This does not mean that
B can necessarily be generated by M.

Model checking with fluid qualities 29

The behavior B can be represented as a time-ordered set of pairs, B={(¢, (a,s)) |t €

dom(B),(a,s) € range(B),B(t) = (a,s)}. The particular representation of B is an
intensional view of B. The extensional (computational) view of B relates to the ef-
fective computation of B(t), which is done by a program Pg : Time — Stimuli(M) x
States(M). For a given B there are infinitely many programs that compute B. For
instance, assuming that B is represented as a time-ordered, lazy list, containing el-
ements from Time x (Stimuli(M) x States(M)), and that t € dom(B), the value B(r)
can be computed by the program:

Algorithm 2.1 Effective computation of B(r)

1: procedure Pg(t)

2 B '+ B

3 while not null(B’) do

4 h < head(B')

5: if first(h) =t then > ¢ corresponds to the current element
6: return second(h)

7 end if

8 if first(h) > t then >t was already skipped
9: while true do > Empty infinite loop
10: end while

11: end if

12: B’ « tail(B)

13: end while

14: end procedure

If L is a non-empty list, such as {1,2,3}, head(L) returns the first element, 1,
and tail(L) the rest of the list, {2,3}. The components of a lazy list are not evaluated
in advance, but only when required as the computation proceeds. If P is a pair, such
as (1,2), first(P) and second(P) select the two pair members, 1 and 2, respectively.
By convention, if t ¢ dom(B), the computation of B(¢) does not terminate. This is
enforced by the empty infinite loop, in lines 9-10.

Notice that, with a suitable representation of B, the set dom(B) is decidable.
A program can decide if ¢ belongs to B, provided that the latter is represented as a
lazy list, with elements from Time x (Stimuli(M) x States(M)), ordered increasingly
according to time moments. The key here is precisely this ordering, which allows
us to abandon the search for r as soon as we encounter a pair containing a later time
moment.

There is no restriction on the time moments taken for probing the actions and
the states of M. However, assuming that dom(B) is finite and B corresponds to an
evolution graph, as illustrated in Fig. 2, we can have the following interpretation
of a behavior: B = {(t;,(a;,s;)) | 1 <i <n,B(t;) = (a;,s;)}, where t; and #;; are
consecutive time moments in the evolution graph corresponding to B (time moments
when actions occur). Therefore, V¢ € [t;,1;1) @ state(B(t)) = s;.

30 Cristian Giumale, Mihnea Muraru

At'i—l) Ati) AIH'—I) Al‘i+2

to tiq l tit1 Iy

Fig. 2. A pragmatic interpretation of a behavior

3. Models

Definition 3.1 (Behavior sets). Let M be a model. We call Karma(M) the set of
all possible behaviors that are generated by M, starting from the empty behavior,
Buil. We call Behaviors(M) C P(Time x (Stimuli(M) x States(M))) the set of all
behaviors built with actions from Actions(M) and qualities from Qualities(M).

The following relationships hold between the sets above:
(1) Karma(M) C Behaviors(M).
(2) For any model M, Karma(M) contains a void behavior By;;, which can be rep-
resented as the empty set. The action applied on By could be an initial action,
present in any model, which sets the initial state of the model:

1 rule initBehavior
2 action initial_action
3 postcondition <assert the initial state>

Listing 2. Initialization rule

A model M can be viewed as an effectively computable function that com-
putes behaviors: M : Karma(M) x Stimuli(M) x Time — Karma(M). For B € Karma(M)
there must exist a behavior B’ € Karma(M), a group of actions a € Stimuli(M), and
a time ¢ when a occurs, such that B = M(B’,a,r). In fact, B’ is the “prefix” of B,
containing all but the current entry, corresponding to stimulus a. The application
B = M(B,a,t) is thought as

dom(B) = dom(B")\ {t' € Time |t >t}U{t}
(Vt' € dom(B') et' <t = B(t') = B'({')) AB(t) = app(M, B ,a,t),
where app(M,B’,a,t) is the result of applying the applicable rules from M, at time
t, according to the previous evolution of the behavior B’. By convention, if there is

no rule in M to fire for a stimulus a, then M (B, a,t) = B. This implicitly means that
M is total over Karma(M) x Stimuli(M) x Time. For a usual application, the model

Model checking with fluid qualities 31

should contain rules for all actions that can be generated by the application. There-
fore, rule inapplicability could mean either that the model is faulty or incomplete or
that the current actions have no effect on the current state of the model behavior.

What we want is to be able to compute any finite B in Karma(M). Indeed,
it can be proven, by induction, that, for any finite B € Karma(M), there is a se-
quence ((aj,t1),...,(an,ty)), with a; € Stimuli(M) and t; € Time, such that B =
M(M(...(M(M(Byy,a1,t1),a2,1)),--.),an,ty) i.e., any finite behavior from Karma(M)
can be computed by M, starting from B;;. From a more general perspective, the
computation of an arbitrary behavior is confronted, theoretically, with two sources
of undecidability: rule applicability, and non-finiteness of the behavior time span.
The former refers to looping rule preconditions, which make the interpreter unable
to decide if a rule is applicable or not. However, if we consider a restricted set of
models, such that rule applicability can always be decided, this restraint is removed.
If no rule is applicable at a certain time moment, the model interpretation contin-
ues, with or without error messages, and the current behavior. In what follows, we
adhere to this assumption. The latter points out the fact that, even if the application
M(B,a,t) always terminates, according to the above convention, the computation
of the the entire B does not terminate, if B is not finite.

Before asserting the propositions below, we recall two definitions of set prop-
erties, which are well known in the literature [2].

Definition 3.2 (Recursive set). A set is called recursive if there exists a program
that always terminates, and decides if an element belongs to the set. The set is also
said decidable.

Definition 3.3 (Recursively enumerable set). A set is called recursively enumerable
if there exists a program that terminates only when a given element belongs to the
set, and loops otherwise. Alternatively, there exists a generator for the set i.e., a
program that returns a new set element on each invocation. The set is also called
semidecidable.

A recursive set is also recursively enumerable. The converse is usually false.
Proposition 3.1. The set Karma(M) is semidecidable.

Proof. We show that, in the general case, Karma(M) is recursively enumerable,
without being recursive.

(a) Karma(M) is recursively enumerable, as shown by the program GENERATE-
BEHAVIOR, in Algorithm 3.1, which is a generator of behaviors of M (see Def-
inition 3.3). The role of the static keyword is similar to that in C. It declares a
local variable which retains its value among different calls to the procedure.

(b) Karma(M) is not recursive. Assume that Karma(M) is recursive and take
B € Behaviors(M) randomly. By Definition 3.1, B € Karma(M) means that
B can be computed by M, starting from By;. Then, the program TEST, in Al-
gorithm 3.2, must terminate if B € Karma(M). The decision B € Karma(M) is
reduced to deciding the termination of TEST(B, M), which is a semidecidable,

32

Cristian Giumale, Mihnea Muraru

Algorithm 3.1 A generator of behaviors of a model M

1:
2
3
4
5:
6.
7
8
9

10:
11:
12:
13:
14:

procedure GENERATEBEHAVIOR(M)
static Karma < {Bpj }
fort < 0,1,...do
for-each a € Stimuli(M) do
for-each B € Karma do
B + M(B,a,t)
if B’ ¢ Karma then
Karma < Karma U {B'}
return B/
end if
end for
end for
end for
end procedure

but not decidable problem. Observe that, if dom(B) is not finite, the program
does not terminate.
Assuming the general case, according to which any rule precondition is al-
lowed, the undecidability of Karma(M) can be proven using a reduction from
the halting problem to the problem of deciding if a behavior belongs to Karma(M).
We designate the two problems as follows:
e HALTS(P,n): the problem of deciding whether the program P : N — N
halts on input n € N.
e BELONGS(B,M): the problem of deciding, for a model M and a behavior
B € Behaviors(M), whether B € Karma(M).
Given a program P and an input n, we must build the appropriate M and B,
such that HALTS(P,n) < BELONGS(B,M). The model M is described below:
1. The qualities of M are: Qualities(M) = {q}.
2. The actions of M are: Actions(M) = {a}.
3. The rules of M are:

1 rule r

2 precondition not (last_action(x)), P(now()) >= 0
3 action a

4 postcondition q

Listing 3. Rule of the model M, based on the program P

Further on, we construct B = {(n, ({a},{q}))}, which contains a single entry.
Notice that it is indeed possible to choose n as a time moment, since Time is
equipotent to N.

The first precondition in line 2 ensures the absence of any previous action, re-
stricting the applicability of the stimulus {a} only to By;. Also, the second
test in line 2 warrants the termination of P, when applied onto the current time

Model checking with fluid qualities 33

Algorithm 3.2 Deciding if B € Karma(M) i.e., if B can be constructed by M

1: procedure TEST(B,M)

2 B + Bl

3 for-each t € dom(B), in increasing order do
4 (a,s) < B(t)

5: B «— M(B,a,1)
6

7
8:

end for
return B’ = B
end procedure

moment, for the rule to become active. Notice that the nonnegativity condition
is a dummy test: since P produces a natural number when it terminates, the
condition would be automatically satisfied. What we are actually interested
in is the termination itself. If stimulus {a} occurs at time n and P(n) termi-
nates, the quality ¢ is asserted and state {q} is entered, obtaining the behavior
{(n,({a},{q}))} = B. Consequently, we have the following:

e If P(n) terminates, M (Byj,{a},n) = B. Hence, B € Karma(M).

e If P(n) does not terminate, M (By;,{a},n) # B. Hence, B ¢ Karma(M).
Thus, HALTS(P,n) reduces to BELONGS(B,M). Had we come up with a de-
cision procedure for BELONGS, we would have been able to use it to decide
HALTS. Contradiction! Hence, Karma(M) cannot be recursive in the general
case. U

Proposition 3.2. If the behaviors of M are finite then Karma(M) is decidable.

Proof. If, for all B € Behaviors(M), dom(B) is finite, the program TEST always
terminates and decides if B can be computed by M, starting from By i.e., if B €
Karma(M). O

4. Properties

From all the behaviors in Behaviors(M), only a part could be of interest ac-
cording to the modeled application. The focus of interest can be specified as a
property, say Prop, which, if nontrivial, splits Behaviors(M) into nonempty sets
containing behaviors that satisfy Prop and behaviors that do not satisfy Prop, re-
spectively. In a particular case, the truth set of Prop could be a restricted subset of
Karma(M).

Definition 4.1 (Property). A property of a model M is a function Prop : Behaviors(M) X
States(M) x Time — Bool.

Definition 4.2 (Plausibility). The concept is defined with respect to both states and

behaviors, as follows:

(a) The plausibility of a state s € States(M), at a moment t € Time, according to
the property Prop and a behavior B € Behaviors(M), is:

PlausibleState(s, B,t,Prop) =g,rt € dom(B) N\ s = state(B(t)) A\ Prop(B, s,t).

34 Cristian Giumale, Mihnea Muraru

(b) The plausibility of a behavior B € Behaviors(M), according to the property
Prop, is:

Plausible(B, Prop) =4, Vt € dom(B) e PlausibleState(state(B(t)),B,t, Prop)
=Vt € dom(B) e Prop(B, state(B(t)),1).
Notice that, since dom(By;;) = 0, we have that VProp e Plausible(By;, Prop).

Definition 4.3 (Realizability). The concept is defined with respect to both states and
properties, as follows:
(a) The realizability of a state s € States(M), according to the property Prop, is:

Realizable(s, Prop) =g4.r 3B € Behaviors(M) e
(Plausible(B, Prop) A 3p € range(B) e s = state(p)).
(b) The realizability of a property Prop is:
Realizable(Prop) =qer 3B € Behaviors(M) @ B # By A Plausible(B, Prop).

Definition 4.4 (Extension). The extension of a property Prop of a model M is the
set
Ext(Prop) =g4er {B € Behaviors(M) | Plausible(B,Prop)}.

Since VProp e Plausible(By;, Prop), we have that VProp e Ext(Prop) # 0. In
some cases, a property can focus on behaviors from Karma(M) only, as demon-
strated by Prop(B,s,t) = B € Karma(M) A Prop’ (B, s,t). In other cases, it is useful
to consider Prop total over Behaviors(M). Such a case addresses the correctness of
a model.

Definition 4.5 (Correctness). The concept is applied to models and has two flavors,

strong and weak, as described below.

(a) A model M is strongly correct, according to a property Prop : Behaviors(M) X
States(M) x Time — Bool, if Karma(M) C Ext(Prop).

(b) A model M is weakly correct, according to a property Prop, if Karma(M) =
{Bni1} V Karma(M) N Ext(Prop) # {Bui }. See the alternative Definition 5.2 for
more details.

Definition 4.6 (Triviality and extensionality). A property Prop of a model M is:
(a) Trivial, if Ext(Prop) = Behaviors(M).
(b) Extensional, if, for any B € Behaviors(M), the decision B € Ext(Prop) does not
depend on the program used to compute B. More precisely,
VB € Behaviors(M) ¢ VP,R € Programs(B) e
P = R = (B Eysing p Ext(Prop) < B € ing r Ext(Prop)).

P = R designates the computational equivalence of the two programs: for the
same input, either both programs produce the same output or both fail to terminate.

Proposition 4.1. A nontrivial and extensional property Prop of a model is not decid-
able i.e., the set Ext(Prop) is not decidable. The proposition is a particularization
of Rice’s theorem [3].

Model checking with fluid qualities 35

Proof. Let Prop be a nontrivial and extensional property of a model M, and assume
that Prop is decidable. Consider a non-terminating program Pg_,, which effectively
computes the By; behavior i.e., the totally undefined function in Hom(Time, Stimuli(M) x
States(M)), where Hom(A,B) designates the set of functions from A to B. Since
Prop is nontrivial, it splits Behaviors(M) into two nonempty subsets, one cor-
responding to Ext(Prop), the other to Ext(Prop) =gt Behaviors(M) \ Ext(Prop).
Ext(Prop) cannot be empty, since it always contains By;; Ext(Prop) cannot be
empty either since, otherwise, Ext(Prop) = Behaviors(M) and Prop would be triv-
ial.

Let B be a behavior from Ext(Prop). Certainly, we have B # B, since By €
Ext(Prop). Choose, at random, a behavior B’ € Behaviors(M) and 1’ € Time and
build the program:

Algorithm 4.1 Program that computes the behavior B”

1: procedure R(7)
22 Py(t)

3: return Pp(?)
4: end procedure

where Py and Pg are programs that compute B’ and B, respectively. We have
the following:
o If /' & dom(B’) then Py (t") does not terminate and R = Pg
e If ' € dom(B’) then Py (') terminates and R = Pg.
Therefore, the program R computes a behavior B”:
e If Py/(') does not terminate, B” = By;. Hence, by the extensionality of Prop,
we have that B” € Ext(Prop).
e If Py (') terminates, B” = B. Hence, by the extensionality of Prop, we have
that B” & Ext(Prop).
Thus, deciding if P (¢') terminates reduces to deciding if B” € Ext(Prop).
Hence, Prop cannot be decidable, in the general case.]

nil *

Proposition 4.2. Let M be a model with behaviors spanning a finite time interval
At, and Prop a property of M. Prop is decidable.

Proof. Let us first note that “a model with finite behaviors” is different from “‘a
model with behaviors over a finite time interval”. If the model M has behaviors
over a finite time interval then M has finite behaviors; the reciprocal is not true.

Since the time interval is finite, each behavior of M is finite. Assume that 7 is
the number of time points in A¢ (the moments when actions occur), and that m is the
number of actions in M. Then, the number of all possible distinct groups of actions
(the number of distinct nodes that can be part of an evolution graph) is

m
ag = Z (n;) =2"—1.
i=1

The sum starts from 1, as empty groups of actions are not taken into account. A
behavior B of M with |dom(B)| =i, 1 <i < n, corresponds to a permutation of size

36 Cristian Giumale, Mihnea Muraru

i, with repetitions, containing stimuli (groups of actions) from a set of ag elements.
|A| denotes the number of elements in set A. The overall number of behaviors of M,
with length i, is ag' = (2" — 1) < 2™. Thus,

S oomi L= (27)"
|Karma(M)| < I_le < W

Assume that the verification of Prop, at any moment ¢ € Af, takes at most ¢ time
units. Then, verifying a behavior of length n takes, in the worst case, ¢(1 42+
...4n) = O(n?). This is due the fact that, while the behavior unfolds, the property
is checked at each time 7 € [0,n], and for all intermediate time points ¢’ € [0,7].
Verifying all the behaviors of M takes O(n?|Karma(M)|) time units, a finite time.

0

Proposition 4.3. Let REALIZABLEPROP(M, Prop) be the problem “For a model M,
with behaviors spanning a finite time interval, and a property Prop, decide whether
Realizable(Prop)”. REALIZABLEPROP is NP-hard.

Proof. We build a polynomial-time reduction SAT <, REALIZABLEPROP, where
SAT is the well-known boolean satisfiability problem.

Let F=T1 AT, A...\T, be a formula in conjunctive normal form proposi-
tional calculus, Var(F) the variables from F, and m = |Var(F)|. Starting from the
formula F, we build a model MF, in the following way:

(1) The qualities of MF are: Qualities(Mr) = Uycvar(r){qv}. The presence of g,
at time ¢ in a behavior B of Mr means v = 1 at time ¢ and during the time-slice
associated to g,. The absence of g, at time ¢ in a behavior B of Mg means v =10
at time moment 7.

(2) The actions of M are: Actions(Mr) = {initial_action}UUyeyur(p){an1, a0}
The occurrence of a,,; asserts the quality g, i.e., it sets v = 1. The occurrence
of a,(destroys the quality g, i.e., it sets v = 0.

(3) The rules of Mp are given below. For each v € Var(F) there are two rules: v_-
is_land v_is_0. [now(), now ()] designates the unit time interval, con-
taining only the current moment.

1 rule v_is_1 —-— One for each variable v. Sets v = 1.
2 precondition not ([now(), now()] proper_part_of gv)
3 action av, 1

4 postcondition av

5

6 rule v_is_0 —-— One for each variable v. Sets v = 0.
7 precondition [now(), now()] proper_part_of gv

8 action av, 0

9 postcondition destroy qv

10

11 rule doNothing —-— Fires at any t in [0, n]

12 precondition now() <= n

13 action initial action

Model checking with fluid qualities 37

14

15 rule stop

16 precondition now() > n

17 action initial_action
18 postcondition halt

Listing 4. Rules of the model M, based on the formula F

Since initial_action is present at any time in the model environment, Mg
has at least an applicable rule at any moment # in the interval [0,n]. Therefore, each
behavior B € Karma(MF) contains all the intermediate time points 1,2,...,t — 1.
The model unfolds from time O to time n, starting from By, such that, for any
B € Karma(MF), dom(B) = [0,t], with t < n. At time 0, there are no qualities in the
unfolding behavior. Hence, initially, the variables from Var(F') are all bound to 0.

Let B be a behavior in Karma(MF). At time ¢t € dom(B), the state state(B(t))
is a subset of Qualities(MF) and corresponds to particular bindings of the variables
from Var(F), which eventually make 7; = 1, for some i € [1,n], as shown in Fig. 3.

We define the property Propy as follows:

t
Propp(B,s,t) =gert > 0= /\ (\/ gy €s V \/ qv€s>.

i=1 \veT; —vel;
Consequently, we have:
Realizable(Propr) = 3B € Behaviors(M) @ B # By A Plausible(B, Propy),

where
Plausible(B, Propp)

=Vt € dom(B) e Propy (B, state(B(t)),t)

=Vt € dom(B)et >0 = /t\ <\/ qv € state(B(t)) V \/ qv ¢ state(B(t))) .

i=1 \veT; —-veT;
(— 7= |
. [— D=]
— =)
“0 ai a di " time
0 1 2 i n>

Fig. 3. A behavior of Mr such that SAT(F) is true

38 Cristian Giumale, Mihnea Muraru

Observe that g, € state(B(t)) means v = 1, and ¢, & state(B(t)) means v =
0. Then, Plausible(B,Propy) means that, according to the behavior B, at any
time ¢ € dom(B), with t > 0, T; = 1, for 1 <i <t. Hence, if n € dom(B), then
Plausible(B, Propy) means SAT(F) at time n, according to the behavior B. There-
fore, Realizable(Propp) = SAT(F).

Conversely, if SAT(F), there must be some bindings BVar of variables from
Var(F) such that 7; = 1, for 1 <i < n. Imagine that these bindings are performed
incrementally over a time interval [0,n], such that 7; = 1 at any time ¢ € [i,n], for
1 <i < n. Therefore, there must be a behavior B, with dom(B) = [0,n], such that
state(B(n)) contains qualities corresponding to the bindings from BVar. It is easy
to see that Realizable(Propr) holds. Hence, SAT(F) = Realizable(Propy.).

Notice that the model MFr and the property Propy can be built in polynomial
time, function of m and n. Let Constr be a tractable program i.e., with polynomial
complexity, such that the application Constr(F) returns the pair (Mg, Propy). We
have that

SAT(F) < REALIZABLEPROP(Constr(F)).

Since all the behaviors of Mr span the time interval [0,n] and, by Proposi-
tion 4.2, Propy is decidable, the problem REALIZABLEPROP can be effectively
solved i.e., there exists a program that solves the problem.

Since F has been selected randomly, it follows that SAT <, REALIZABLEPROP
i.e., REALIZABLEPROP is NP-hard. UJ

Proposition 4.4. Let M be a model with behaviors spanning a finite time interval,
and Prop : Behaviors(M) x States(M) x Time — Bool a property of M. If Prop can
be decided tractably, then REALIZABLEPROP(M, Prop) is NP-complete.

Proof. Consider that M has finite behaviors that span a time interval [0, n]. Then, the
set Behaviors(M) is finite. Assume that the complexity of deciding Prop is O(P(n)),
were P(n) is a polynomial in n, and build the nondeterministic Algorithm 4.2.

Algorithm 4.2 Nondeterministic algorithm which solves REALIZABLEPROP

1: procedure TEST(M)

2 B < choice(Behaviors(M))

3 for-each t € dom(B) do

4 if ~Prop(B, state(B(t)),t) then
5: fail
6

7

8
9:

end if
end for
success
end procedure

The nondeterministic algorithm employs the following primitives [2]. choice
takes a set as an argument, and splits the execution of the nondeterministic algorithm
into a numbers of threads equal to the number of elements in the set, returning a dif-
ferent element on each thread. fail terminates the current thread only, while success

Model checking with fluid qualities 39

terminates the entire algorithm. The algorithm succeeds if at least one thread suc-
ceeds, and fails if all threads fail. All three operations have O(1) complexity.

It is easy to see that TEST solves REALIZABLEPROP. Since the angelic com-
plexity of TEST is O(nP(n)), it follows that REALIZABLEPROP is in NP. By angelic
complexity [2], we understand the total complexity of the operations on the shortest
path that leads to success. Since, according to Proposition 4.3, REALIZABLEPROP
is NP-hard, it follows that REALIZABLEPROP is NP-complete. O

5. Model Checking

According to Definitions 4.2—4.3, we can define the following predicates,
where M is a model, S C Behaviors(M), S # 0, and Prop : Behaviors(M) x States(M) X
Time — Bool is a property of M.

Definition 5.1 (Satisfiability and realizability). The satisfiability and realizability
of a property Prop, with respect to a set of behaviors S, are:
Satisfiable(Prop,S) =40 VB € S Plausible(B, Prop)
Realizable(Prop,S) =g4.r 3B € S ® Plausible(B, Prop).
The following relation holds trivially:
Satisfiable(Prop,S) = Realizable(Prop,S).
Proposition 5.1. Ler FOCALIZEDREALIZABLEPROP(M, Prop,S) be the problem
“For a model M, with behaviors S C Behaviors(M) spanning a finite time interval,

and a property Prop, decide whether Realizable(Prop,S)”. FOCALIZEDREALIZABLEPROP
is NP-hard.

Proof. The proof is similar to that of Proposition 4.3, by taking S instead of Behaviors(M).
O

Proposition 5.2. Let M be a model, S C Behaviors(M) a set of behaviors spanning a
finite time interval, and Prop : Behaviors(M) x States(M) x Time — Bool a property

of M. If Prop can be decided tractably, then FOCALIZEDREALIZABLEPROP(M, Prop, S)
is NP-complete.

Proof. The proof is similar to that of Proposition 4.4. 0

Definition 5.2 (Correctness). Let M be a model, and Prop : Behaviors(M) x States(M) x
Time — Bool a property of M.
(a) We say that M is strongly correct, according to Prop, if:

StronglyCorrect(M, Prop) = Satisfiable(Prop, Karma(M)).
(b) We say that M is weakly correct, according to Prop, if:
WeaklyCorrect(M,Prop) =ger
Karma(M) = {Byi1 } V Realizable(Prop, Karma(M) \ { By })-

It is easy to see that Definitions 4.5 and 5.2 are equivalent.

40 Cristian Giumale, Mihnea Muraru

Proposition 5.3. We have that:
StronglyCorrect(M, Prop) = WeaklyCorrect(M, Prop).

Proof. We distinguish two cases:
(a) If Karma(M) = {Bup }, we have that:

StronglyCorrect(M, Prop) =qef Satisfiable(Prop, Karma(M))
= Satisfiable(Prop,{ By }) = Plausible(Bpj, Prop) = 1
WeaklyCorrect(M, Prop) =4et Karma(M) = {Bp} V... = 1.

Thus, the proposition becomes 1 = 1.
(b) If Karma(M) # {Bpi }, we have that:

StronglyCorrect(M, Prop)
=def Satisfiable(Prop, Karma(M)) = 3B € Karma(M) \ {By1 } ® Plausible(B, Prop)

= Realizable(Prop,Karma(M) \ {Byi1 }) = WeaklyCorrect(M, Prop).
UJ

Definition 5.3 (Static checking). The concept has two flavors, strong and weak:
(a) The weak static checking of a model M, with respect to a property Prop, means
deciding WeaklyCorrect(M, Prop).
(b) The strong static checking of a model M, with respect to a property Prop, means
deciding StronglyCorrect(M, Prop).

Proposition 5.4. Let M be a model, and Prop a property of M.
(a) If the behaviors of M span a finite time interval, then the weak static checking
of M, with respect to Prop, is NP-hard.
(b) If the behaviors of M span a finite time interval, and Prop can be decided
tractably, then the weak static checking of M is NP-complete.

Proof. The facts derive trivially from Propositions 5.1 and 5.2, by taking S = Karma(M) \
{Bnil}-]

Proposition 5.5. Let M be a model, and Prop a property of M. If the behaviors of
M span a finite time interval, and Prop can be decided tractably, then the strong
static checking of M, with respect to Prop, is in NP.

Proof. Consider that M has finite behaviors that span a time interval [0, #]. Then, the
set Karma(M) is finite. Assume that the complexity of deciding Prop is O(P(n)),
were P(n) is a polynomial in n, and build the nondeterministic Algorithm 5.1. Since
the angelic complexity of TEST is O(nP(n)), it follows that the strong static check-
ing is in NP. U

Proposition 5.6. Let M be a model, and Prop a property of M. If the behaviors of
M span a finite time interval, and Prop cannot be decided tractably, then the strong
static checking of M, with respect to Prop, is not in NP.

Model checking with fluid qualities 41

Algorithm 5.1 Nondeterministic algorithm for strong static checking

1: procedure STRONGLYCORRECT(M, Prop)
2: return —TEST(M, Prop)
end procedure

W

4: procedure TEST(M, Prop)

5 B < choice(Karma(M) \ {Bni })

6: for-each r € dom(B) do

7 if =Prop(B,state(B(t)),t) then
8
9

success
end if

10: end for

11: fail

12: end procedure

Proof. The angelic complexity of STRONGLYCORRECT in Algorithm 5.1 is supra-
polynomial in n. Moreover, the algorithm adds to the complexity of the model
checking a fringe polynomial complexity only i.e., there is no “faster” strong static
checking algorithm. 0J

Definition 5.4 (Dynamic correctness). Let M be a model, Prop a property of M,
and B € Karma(M) a behavior that can be generated by M. We say that M is
dynamically correct, with respect to B and Prop, if Prop(B, state(B(t)),t) holds for
any t € dom(B), while the behavior B unfolds:

DynamicallyCorrect(M,B, Prop) = g.r Plausible(B, Prop).

Definition 5.5 (Dynamic checking). Let M be a model, Prop a property of M, and
B € Karma(M) a behavior that can be generated by M. We call dynamic checking
of M the process of deciding whether M is dynamically correct, with respect to B
and Prop.

Proposition 5.7. Let M be a model, and Prop a property of M. If Prop can be
decided tractably, and M has behaviors spanning a finite time interval, then the
dynamic checking of M is tractable.

Proof. Assume that the current unfolding behavior, B, has dom(B) = [0,n]. More-
over, consider that testing Prop(B,s,t) has the complexity O(n®), where c is a pos-
itive constant. In the worst case, at time ¢ € [0,n], the property Prop is tested for
B(0),B(1),...,B(t). Therefore, the time spent is 1O(n¢). The overall time spent for
testing B is:

42 Cristian Giumale, Mihnea Muraru

6. Conclusions

Proposition 4.1 applies to the static model checking without any restriction on
the finiteness of model behaviors. Proposition 4.2 applies to the static checking of
models with behaviors over a finite time interval, as usually encountered in practice.
Propositions 5.4, 5.5 and 5.6 show that there is no foreseeable hope for the tractable
static checking of a model, unless restrictions are enforced on the properties.

Unfortunately, even dynamic checking means investigating incrementally be-
haviors that span a finite time interval, which grows during the model interpretation.
Therefore, in the general case, the dynamic checking of model behavior complies
to Proposition 4.3. A possible solution is to encode the checked property, Prop, di-
rectly in the model rules, such that the behavior is guaranteed to satisfy Prop. Nev-
ertheless, the application of rules will implicitly do the part required for checking
Prop, according to the current state of the evolution graph. The process is similar to
the explicit checking of Prop. Hence, even this solution is NP-hard. The hope is that
the complexity of the dynamic checking of a property Prop could be reduced if the
checking is focused on the recent past of the evolving behavior, or if the checking
process can preserve its status from one model interpretation cycle to the next. A
trivial way out, that complies to Proposition 5.7, is to hope for a tractable property
used for the dynamic model checking.

Some of the observations above address the ambitious endeavor of checking
whether a property Prop of a model M is realizable according to Karma(M). In
other words, we are trying to answer the question “Could M generate a behavior B
that is plausible according to Prop?”, which means to predict the evolution of M.
This kind of processing is required in an application where the model is used to
control the current state of the application in function of both the past evolution and
of what might happen in the future. The model interpreter has to unfold plausible
future behaviors and choose a particular “application-suitable” one as the way for
extending the current model behavior.

Acknowledgement

The work has been funded by the Sectorial Operational Programme Human
Resources Development 2007-2013, of the Romanian Ministry of Labour, Family
and Equal Opportunities, through the Financial Agreement POSDRU/88/1.5/S/61178.

REFERENCES

[1] C. Giumale, L. Negreanu, M. Muraru, M. Popovici, A. Agache and C. Dobre, “Modeling with
fluid qualities”, Proc. of the 18th International Conference on Control Systems and Computer
Science (CSCS-18), 2011, pp. 693-698.

[2] C. Giumale, “Introducere in Analiza Algoritmilor: Teorie si Aplicatie” (“Introduction to Anal-
ysis of Algorithms: Theory and Applications”), Polirom, Iagi, Roméania, 2004.

[3] H. G. Rice, “Classes of recursively enumerable sets and their decision problems”, Trans. Amer.
Math. Soc., vol. 74, 1953, pp. 358-366.

