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ON VARIOUS REPRESENTATIONS OF A CLASS OF ANALYTIC

FUNCTIONS ASSOCIATED WITH SUBORDINATION

Poonam Sharma1, Ravinder Krishna Raina2, Janusz Sokó l3

By means of subordination, we introduce a new class M (n, µ, [ϕ]) of analytic

functions defined in the open unit disk. We present various representations for this

class and point out some of their main consequences. Also, a sufficient class condition

for a function f to be in the class M (1, µ, [ϕ]) is studied by using the Briot-Bouquet

differential subordination and its representation is considered by choosing an open door

function. Some applications of this result (Theorem 3 below) are also considered.

Keywords: Starlike function; close-to-convex functions; subordination; Briot-Bouquet

differential subordination
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1. Introduction

Let H(U) represents a linear space of all analytic functions defined in the open unit

disk U = {z ∈ C : |z| < 1} . For a ∈ C, k ∈ N = {1, 2, . . .} , let

H [a, k] =
{
f ∈ H(U) : f(z) = a+ akz

k + ak+1z
k+1 + . . .

}
.

We denote the subclass H [0, 1] with a1 = 1 by A. Further, let S denote a class of functions

f ∈ A which are univalent and let S∗ denote the subclass of S whose members are starlike

in U satisfying the analytic condition that

ℜ
{
zf ′(z)

f(z)

}
> 0 ( z ∈ U) .

A class of close-to-convex functions f ∈ A satisfying for some g ∈ S∗ and some α ∈
(−π/2, π/2) the condition that

ℜ
{

zf ′(z)

eiαg(z)

}
> 0 (z ∈ U) , (1)

is denoted by C, see [1].

For two functions p, q ∈ H(U), we say that p is subordinate to q in U and write

p(z) ≺ q(z), z ∈ U, if there exists a Schwarz function ω (analytic in U with ω(0) = 0, and

|ω(z)| ≤ |z| , z ∈ U) such that p(z) = q(ω(z)),
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z ∈ U. Furthermore, if the function q is univalent in U, then we have the following equiva-

lence:

p(z) ≺ q(z) ⇔ p(0) = q(0) and p(U) ⊂ q(U).

Let P be a class of functions ϕ(z) which are analytic with positive real part in U satisfying

ϕ(0) = 1.

In terms of the concept of subordination, we define in this paper a new classM (n, µ, [ϕ])

by

M (n, µ, [ϕ]) =

{
f ∈ A :

zf ′(z)

f1−µ(z)gµ(z)
≺ ϕ(zn) (ϕ ∈ P; z ∈ U)

}
,

for some n ∈ N, µ ≥ 0 and for some g ∈ S∗ with f(z)
z ̸= 0 in U, where only principal values

of the powers are considered.

On the other hand, if f ∈ A satisfies

ℜ
{

zf ′(z)

f1−β(z)gβ(z)

}
> 0 (z ∈ U)

for some g ∈ S∗, and f(z)
z ̸= 0 in U for some β ∈ (0,∞), then f is said to be a Bazilevic̆

function of type β ([3], see also [4]) and is denoted by f ∈ B(β).

We denote the class M (n, 1, [ϕ]) by C (n, [ϕ]) and the class M (n, 0, [ϕ]) by S∗ (n, [ϕ]) .

We note that if ϕ ∈ P is such that ϕ (U) is symmetrical with respect to the real axis and

starlike with respect to 1, then we have the following obvious relationships:

C (1, [ϕ]) = C [ϕ] and S∗ (1, [ϕ]) = S∗ [ϕ] .

The classes S∗ [ϕ] and C [ϕ] are, respectively, the Ma-Minda type classes of starlike and

close-to-convex functions [2].

It may be noted here that the class S∗
(
n,
[

1+Az
1+Bz

])
= S∗ (n,A,B) was earlier studied

in [5] (see also [6]) for complex A and B (B ̸= 0, |A| ≤ 1, |B| ≤ 1). For real values of A

and B, S∗
[

1+Az
1+Bz

]
= S∗ (A,B) (−1 ≤ B < A ≤ 1) is the Janowski class of starlike functions

studied by many authors (see, for example, [7], [8], [9] and also [10], [11]). The function
1+Az
1+Bz was studied by Kuroki et al. [12] for complex numbers A and B satisfying one of

following conditions:

(i) |A| ≤ 1, |B| < 1, A ̸= B, ℜ
(
1−AB

)
≥ |A−B| ;

(ii) |A| ≤ 1, |B| = 1, A ̸= B, 1−AB > 0.

Further, for −1 ≤ A ≤ 1, −1 ≤ B ≤ 1 with A ̸= B, the bilinear transformation 1+Az
1+Bz

was considered in [13] for additional conditions that (in case B ̸= 0) B and B − A are of

same sign.

Based on the superordinate function ϕ(zn) involved in the definition of the class

M (n, µ, [ϕ]), we obtain various representations for this class and consider also some of its

consequences. By using the Briot-Bouquet differential subordination, a class L (n, α, µ, [ϕ])

is further defined and a representative of this class is obtained with the use of an open door

function.

2. The Class M (n, µ, [ϕ]) and its Consequences

We first prove the following lemma when the superordinate function ϕ has complex

coefficients.
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Lemma 2.1. Let ϕ be of the form:

ϕ(z) = 1 +
Hz

1 +Bz
(z ∈ U) , (2)

where H and B (B ̸= 0, |B| ≤ 1) are complex numbers. Then

ϕ(zn) =
1

n

n−1∑
j=0

ϕj(z), n ∈ N, (3)

where

ϕj(z) = 1 +
Hjz

1 +Bjz
(4)(

Bj = −ϵ−1
j

n
√
B, ϵj = e

(2j+1)πi
n ,

BjH

B
= Hj , j = 0, 1, . . . , n− 1

)
.

Proof. Let ϕ be of the form (2), then on writing B = bn in (2) with

ϵj = e
(2j+1)πi

n , j = 0, 1, . . . , n− 1,

we get

ϕ(zn) = 1 +
H

bn

(
1− 1

1 + (bz)
n

)
= 1 +

H

bn

(
1− 1

(bz − ϵ0) (bz − ϵ1) . . . (bz − ϵn−1)

)

= 1 +
H

bn

1−
n−1∑
j=0

1

nϵn−1
j (bz − ϵj)

 = 1 +
H

bn

1− 1

n

n−1∑
j=0

1

1− bϵ−1
j z


= 1 +

H

nbn

n−1∑
j=0

(
1− 1

1− bϵ−1
j z

)

=
1

n

n−1∑
j=0

[
1 +

−bϵ−1
j Hz

bn

(
1

1− bϵ−1
j z

)]
(5)

=
1

n

n−1∑
j=0

ϕj(z),

where, we put −bϵ−1
j = Bj and BjH/B = Hj , since bn = B. This proves the result. �

In view of (5), for a given Schwarz function w(z), we find Schwarz functions

wj(z) = −ϵ−1
j w (z)

(
ϵj = e

(2j+1)πi
n , j = 0, 1, . . . , n− 1

)
such that

ϕ (wn (z)) =
1

n

n−1∑
j=0

ϕj(w (z)) =
1

n

n−1∑
j=0

Φ(wj (z)), (6)

where

Φ(z) = 1 +
hz

1 + bz

(
B = bn, h =

bH

B
; z ∈ U

)
. (7)

Theorem 2.1. Let f ∈ M (n, µ, [ϕ]), then there exists an analytic function p(z) :

p(z) ≺ ϕ(zn) (z ∈ U) (8)
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such that

f(z) =


z

[
µ

1∫
0

p(xz)Gµ(xz)xµ−1dx

]1/µ

, if µ > 0,

z exp
z∫
0

p(t)−1
t dt, if µ = 0,

(9)

where G(z) = g(z)
z for some g ∈ S∗. Furthermore, if f ∈ A with f(z)

z ̸= 0 in U, is represented
by (9) for some analytic function p(z) satisfying (8) and for some G(z) = g(z)

z , where g ∈ S∗,

then f ∈ M (n, µ, [ϕ]) .

Proof. Let f ∈ M (n, µ, [ϕ]) , then

zf ′(z)

f1−µ(z)gµ(z)
≺ ϕ(zn) (z ∈ U)

for some g ∈ S∗. Let

p(z) =
zf ′(z)

f1−µ(z)gµ(z)
, (10)

then p(z) is an analytic function satisfying (8) and

(f(z)/z)µ−1f ′(z) = p(z)(g(z)/z)µ. (11)

Hence, on integrating (11), we get

fµ(z)− zµ = µ

z∫
0

p(t)gµ(t)− tµ

t
dt, if µ > 0

and

log
f(z)

z
=

z∫
0

p(t)− 1

t
dt, if µ = 0,

which on simplification gives the representation (9). Furthermore, if f(z) is represented by

(9), then from it (for both the cases µ = 0, µ > 0), we get (10). Hence, from (8), we have

zf ′(z)

f1−µ(z)gµ(z)
≺ ϕ(zn) (z ∈ U) ,

which evidently implies that f ∈ M (n, µ, [ϕ]) . �

If we choose µ = 1 in (10) of Theorem 2.1, then we get the following result for the

class C (n, [ϕ]) .

Corollary 2.1. Let ϕ ∈ P and f ∈ C (n, [ϕ]). Then there exists an analytic function s(z)

satisfying the condition that

s(z) ≺ ϕ(zn) (z ∈ U) , (12)

where f(z) is given by

f(z) =

z∫
0

g(t)s(t)

t
dt (13)

for some g ∈ S∗. Furthermore, if an analytic function s(z) satisfies (12), then f(z) repre-

sented by (13) (with f(z)
z ̸= 0 in U) belongs to the class C (n, [ϕ]) .
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Theorem 2.2. If f ∈ M (n, µ, [ϕ]), where ϕ(z) is of the form (2), then there exist functions

fj ∈ M (1, µ, [Φ]) , j = 0, 1, . . . , n− 1 for which Φ(z) is given by (7) and

fj(z) =


z

[
µ

1∫
0

Φ(wj (xz))G
µ(xz)dx

]1/µ

, if µ > 0,

z exp
z∫
0

Φ(wj(t))−1
t dt, if µ = 0,

(14)

where G(z) = g(z)
z for some g ∈ S∗ and

wj(z) = −ϵ−1
j w (z)

(
ϵj = e

(2j+1)πi
n , j = 0, 1, . . . , n− 1

)
for some Schwarz function w(z). Moreover,

f(z) =


(

1
n

∑n−1
j=0 fµ

j (z)
)1/µ

, if µ > 0,(
n−1∏
j=0

fj(z)

)1/n

, if µ = 0.
(15)

Proof. If f ∈ M (n, µ, [ϕ]) such that ϕ(z) is of the form (2), then for a Schwarz function

w(z), we find the Schwarz functions wj(z) of the form:

wj(z) = −ϵ−1
j w (z) ϵj = e

(2j+1)πi
n , j = 0, 1, . . . , n− 1.

Thus from (6), we get

p(z) =
zf ′(z)

f1−µ(z)gµ(z)
=

1

n

n−1∑
j=0

Φ(wj (z)),

where Φ(z) is given by (7). Hence, on replacing p(z) by 1
n

∑n−1
j=0 Φ(wj (z)) in the representa-

tion (9) (for both the cases), we get (15), where fj(z) is represented by (14) with
fj(z)
z ̸= 0

(j = 0, 1, . . . , n− 1) in U and belongs to the class M (1, µ, [Φ]) for Φ(z) given by (7). This

proves Theorem 2.2. �

Setting µ = 1 in Theorem 2.2, we get the following result for the class C (n, [ϕ]) .

Corollary 2.2. If f ∈ C (n, [ϕ]) , where ϕ(z) is of the form (2), then there exist functions

Fj ∈ C [Φ] , j = 0, 1, . . . , n− 1, and

f(z) =
1

n

n−1∑
j=0

Fj(z), (16)

where for a given Schwarz function w(z), we find Schwarz functions

wj(z) = −ϵ−1
j w (z)

(
ϵj = e

(2j+1)πi
n , j = 0, 1, . . . , n− 1

)
such that

Fj(z) =

z∫
0

g(t)Φ(wj (t))

t
dt (17)

and Φ(z) is given by (7).
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For a complex number A (̸= B, |A| ≤ 1) and H = A − B in (2), we get ϕ(z) =
1+Az
1+Bz (z ∈ U) and the class M (n, µ, [ϕ]) then reduces to the class M (n, µ,A,B) . We thus

get the following results (Corollaries 2.3 and 2.4) as worthwhile consequences from the results

(3), (6) and (15) .

Corollary 2.3. Let A and B (B ̸= 0) be complex numbers such that

|A| ≤ 1, |B| ≤ 1. Then

1 +Azn

1 +Bzn
=

1

n

n−1∑
j=0

1 +Ajz

1 +Bjz(
Bj = −ϵ−1

j
n
√
B, ϵj = e

(2j+1)πi
n , Aj =

BjA

B
, j = 0, 1, . . . , n− 1

)
and hence, for a given Schwarz function w(z), we find Schwarz functions

wj(z) = −ϵ−1
j w (z)

(
ϵj = e

(2j+1)πi
n , j = 0, 1, . . . , n− 1

)
such that

1 +Awn (z)

1 +Bwn (z)
=

1

n

n−1∑
j=0

1 + awj (z)

1 + bwj (z)

(
b =

n
√
B, a =

bA

B
; z ∈ U

)
.

Corollary 2.4. If f ∈ M (n, µ,A,B), then there exist functions gj ∈ M (1, µ, a, b) ,

j = 0, 1, . . . , n− 1, and

f(z) =


(

1
n

∑n−1
j=0 gµj (z)

)1/µ

, if µ > 0,(
n−1∏
j=0

gj(z)

)1/n

, if µ = 0,
(18)

where for a given Schwarz function w(z), we find Schwarz functions

wj(z) = −ϵ−1
j w (z)

(
ϵj = e

(2j+1)πi
n , j = 0, 1, . . . , n− 1

)
such that

gj(z) =


z

[
µ

1∫
0

1+awj(xz)
1+bwj(xz)G

µ(xz)xµ−1dx

]1/µ

, if µ > 0,

z exp
z∫
0

(
1+awj(t)
1+bwj(t) − 1

)
dt
t , if µ = 0,

(19)

where G(z) = g(z)
z for some g ∈ S∗ and b = n

√
B, a = bA/B, z ∈ U.

3. The Classes L (n, α, µ, [ϕ]) and M (1, µ, [ϕ])

In this section, we obtain a sufficiency condition for a function f to be in the class

M (1, µ, [ϕ]) by using its representation and by adopting the methods of the Briot-Bouquet

differential subordination. For this purpose, we define a class L (n, α, µ, [ϕ]) of functions

f ∈ A satisfying the condition that

zf ′(z)

f1−µ(z)gµ(z)
+ α

(
1 +

zf ′′(z)

f ′(z)
− (1− µ)

zf ′(z)

f(z)
− µ

zg′(z)

g(z)

)
≺ ϕ(zn), (20)
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for some n ∈ N, µ ≥ 0 and for some g ∈ S∗ with f ′(z) f(z)
z ̸= 0 in U, where only principal

values of the powers are considered and ϕ ∈ P is of the form

ϕ(z) = 1 +
Hz

1 +Bz
(−1 ≤ B < 1, 0 < H ≤ 1−B) . (21)

Obviously, for ϕ(z) given by (21), we have

ϕ(zn) ≺ ϕ(z) (−1 ≤ B < 1, 0 < H ≤ 1−B,n ∈ N; z ∈ U) , (22)

and we also note that L (n, α, µ, [ϕ]) ⊂ L (1, α, µ, [ϕ]) . We need the following results which

are special cases of the results mentioned in [14, Th. 3.2a, p.81 and Th. 3.2d, p. 86].

Lemma 3.1. Let h be convex in U with ℜ (βh(z)) > 0. If q is analytic in U with

q(0) = h(0), then

q(z) +
zq′(z)

βq(z)
≺ h(z) ⇒ q(z) ≺ h(z).

Lemma 3.2. Let h be analytic in U with h(0) = 1, and let α > 0 be finite. If

h(z) ≺ αR1/α,1(z) =
1 + z

1− z
+

2αz

1− z2
, (23)

then the solution q of the Briot-Bouquet differential equation:

q(z) +
αzq′(z)

q(z)
= h(z) (z ∈ U) (24)

with q(0) = 1 is analytic in U such that ℜ (q(z)) > 0, and is given by

q(z) =
αF 1/α(z)
z∫
0

F 1/α(t)
t dt

, (25)

where

F (z) = z exp

z∫
0

h(t)− 1

t
dt.

-

6

ℜ

ℑ

q
1s

−γi

sγi

Fig.1. R1/α,1(U), γ =
√
1 + 2/α.
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Theorem 3.1. If f ∈ L (n, α, µ, [ϕ]) , then f ∈ M (1, µ, [ϕ]) . Furthermore, f(z) is given by

the representation (9) with f(z)
z ̸= 0 in U, where for some Schwarz function w(z):

p(z) =
zf ′(z)

f1−µ(z)gµ(z)
=

αz1/α exp 1
α

z∫
0

(ϕ(wn(t)− 1) dt
t

z∫
0

t
1
α−1 exp

(
1
α

t∫
0

(ϕ(wn(u)− 1) du
u

)
dt

(z ∈ U) . (26)

Proof. Let f ∈ L (n, α, µ, [ϕ]) and let p(z) be defined by (10). Then the condition (20)

becomes

p(z) +
αzp′(z)

p(z)
≺ ϕ(zn).

By putting

p(z) +
αzp′(z)

p(z)
= h(z) (z ∈ U) , (27)

and using the class conditions (20) and (22), we get

h(z) ≺ ϕ(zn) ≺ ϕ(z) (z ∈ U) , (28)

where ϕ(z) is given by (21), which by Lemma 3.1 implies that p(z) ≺ ϕ(z), z ∈ U and hence,

f ∈ M (1, µ, [ϕ]) . Also, from (28), we have for some Schwarz function w(z) that

ℜ{h(z)} = ℜ{ϕ(wn(z))} > 0 (z ∈ U) . (29)

Since Rβ,n(z) = β 1+z
1−z + 2nz

1−z2 , z ∈ U is the open door function and is univalent in U for

every β > 0 and n ∈ N, hence the set Rβ,n(U) is the complex plane with slits along the

half-lines ℜ{w} = 0 and |ℑ {w}| ≥ γ = n
√
1 + 2β/n; (see Fig. 1 above). We note that

the condition (29) verifies the subordinate condition h(z) ≺ αR1/α,1(z), z ∈ U of Lemma

3.2, since h(U) ⊂ αR1/α,1(U). Moreover, h(U) is contained in a circle in the right half-plane

when B ≠ −1. Again, if h(z) satisfies the Briot-Bouquet differential equation (27), then by

Lemma 3.2, p(z) is the solution of (27) with ℜ{p(z)} > 0 and is given by (26). Therefore

for this p(z), the representation of f(z) is given by (9) for the cases when µ > 0 and when

µ = 0. This proves Theorem 3.1. �

Before concluding this paper, we deem it worthwhile to consider some applications of

the result Theorem 3.1. If we set ϕ(z) = 1+z
1−z (z ∈ U) and choose µ = α = 1 in Theorem 3.1,

we then arrive at the following consequences of Theorem 3.1 by specializing, respectively,

the function g(z) as g(z) = z
1−z and g(z) = z (which are starlike in U).

Corollary 3.1. If f ∈ A satisfies the condition that

(1− z) f ′(z) +
zf ′′(z)

f ′(z)
− z

1− z
≺ 1 + zn

1− zn
(n ∈ N; z ∈ U) ,

then

(1− z) f ′(z) ≺ 1 + zn

1− zn
≺ 1 + z

1− z
(n ∈ N; z ∈ U) (30)

and the function f satisfying (30) is of the form:

f(z) =

z∫
0

t

(1− t) (1− tn)
2/n

In,t
dt,
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where

In,t =

t∫
0

du

(1− un)
2/n

. (31)

In particular, if n = 1, then f(z) = z
1−z .

Corollary 3.2. If f ∈ A satisfies the condition that

f ′(z) +
zf ′′(z)

f ′(z)
≺ 1 + zn

1− zn
(n ∈ N; z ∈ U) ,

then

f ′(z) ≺ 1 + zn

1− zn
≺ 1 + z

1− z
(n ∈ N; z ∈ U) (32)

and the function f satisfying (32) is of the form:

f(z) =

z∫
0

t

(1− tn)
2/n

In,t
dt,

where In,t is given by (31) and in particular, if n = 1, then f(z) = log 1
1−z (z ∈ U) .

Lastly, if we set ϕ(z) = 1+z
1−z (z ∈ U) and choose µ = 0 in Theorem 3.1, then we get

the following obvious result showing that every convex function is starlike in U.

Corollary 3.3. If f ∈ A satisfies the condition that

1 +
zf ′′(z)

f ′(z)
≺ 1 + zn

1− zn
(n ∈ N; z ∈ U) ,

then
zf ′(z)

f(z)
≺ 1 + zn

1− zn
≺ 1 + z

1− z
(n ∈ N; z ∈ U) (33)

and the function f satisfying (15) is of the form:

f(z) = z exp


z∫

0

(
t

(1− tn)
2/n

In,t
− 1

)
dt

t

 ,

where In,t is given by (31) and in particular, if n = 1, then f(z) = z
1−z .
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