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ON VARIOUS REPRESENTATIONS OF A CLASS OF ANALYTIC
FUNCTIONS ASSOCIATED WITH SUBORDINATION

Poonam Sharma!, Ravinder Krishna Raina?, Janusz Sokét

By means of subordination, we introduce a new class M (n, p, [¢]) of analytic
functions defined in the open unit disk. We present various representations for this
class and point out some of their main consequences. Also, a sufficient class condition
for a function f to be in the class M (1, pu, [¢]) is studied by using the Briot-Bouquet
differential subordination and its representation is considered by choosing an open door
function. Some applications of this result (Theorem 3 below) are also considered.
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1. Introduction

Let H(U) represents a linear space of all analytic functions defined in the open unit
diskU={z€C:|z|]<1}.ForaeC, ke N={1,2,...}, let

Hla, k] = {f € H(U) : f(z) = a+ arz" + aps1 2"+ ..}
We denote the subclass H [0, 1] with a; = 1 by A. Further, let 8§ denote a class of functions

f € A which are univalent and let 8* denote the subclass of § whose members are starlike
in U satisfying the analytic condition that
2f'(2) }
R { >0 (z€U).
7 g0 (el
A class of close-to-convex functions f € A satisfying for some g € 8" and some «a €
(—=m/2,7/2) the condition that

%{M}>O(ZEU), (1)
e'g(z)
is denoted by €, see [1].

For two functions p, ¢ € H(U), we say that p is subordinate to ¢ in U and write
p(z) < q(z), z € U, if there exists a Schwarz function w (analytic in U with w(0) = 0, and

w(z)] < |z], 2 € U) such that p(z) = g(w(2)),
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z € U. Furthermore, if the function ¢ is univalent in U, then we have the following equiva-
lence:
p(2) < q(2) < p(0) = ¢(0) and p(U) C ¢(U).

Let P be a class of functions ¢(z) which are analytic with positive real part in U satisfying
$(0) = 1.

In terms of the concept of subordination, we define in this paper a new class M (n, p, [¢])
by

2f'(2)

frr(z)g"(2)

for some n € N, u > 0 and for some g € 8* with @ = 0 in U, where only principal values

M(nju,[¢>})={fefl: =< p(z") (¢€fP;zeU)}7

of the powers are considered.
On the other hand, if f € A satisfies

27(2) )
%{f“ﬁ(zw(z)} >0zl

for some g € 8%, and @ # 0 in U for some S € (0,00), then f is said to be a Bazilevi¢
function of type S ([3], see also [4]) and is denoted by f € B(p).

We denote the class M (n, 1, [¢]) by € (n, [¢]) and the class M (n, 0, [¢]) by 8* (n, [¢]) .
We note that if ¢ € P is such that ¢ (U) is symmetrical with respect to the real axis and
starlike with respect to 1, then we have the following obvious relationships:

C(L[o)) =Clg] and 8" (L,[¢]) =8 [¢].

The classes 8* [¢] and C[¢] are, respectively, the Ma-Minda type classes of starlike and
close-to-convex functions [2].

It may be noted here that the class 8* (n, [ﬂ'gﬂ) = 8* (n, A, B) was earlier studied
in [5] (see also [6]) for complex A and B (B #0,|A| <1,|B| <1). For real values of A

and B, 8* [M} =8*(A4,B) (-1 < B < A<1) is the Janowski class of starlike functions

1+Bz
studied by many authors (see, for example, 7], [8], [9] and also [10], [11]). The function
}igz was studied by Kuroki et al. [12] for complex numbers A and B satisfying one of

following conditions:
(i) [A]<1,|B|<1,A# B, R(1-AB) > |A - B[;
(i) |A| <1,|B|=1,A#B,1—-AB > 0.
Further, for -1 < A <1, -1 < B <1 with A # B, the bilinear transformation %j_g'z
was considered in [13] for additional conditions that (in case B # 0) B and B — A are of

same sign.

Based on the superordinate function ¢(z") involved in the definition of the class
M (n, p, [¢]), we obtain various representations for this class and consider also some of its
consequences. By using the Briot-Bouquet differential subordination, a class £ (n, a, , [¢])
is further defined and a representative of this class is obtained with the use of an open door
function.

2. The Class M (n, u1, [¢]) and its Consequences

We first prove the following lemma when the superordinate function ¢ has complex
coefficients.
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Lemma 2.1. Let ¢ be of the form:

B =1+ (€ D), 2)
where H and B (B # 0,|B| < 1) are complex numbers. Then
=
6" =23 6;(), meN, Q
=0
where
00 =1+ 1 (4)
ei+v~i B;H

—1n (2it+l)mi
(Bj:—ev B,ej=e n

; :Hj,jzo,l,...,n—l).

B
Proof. Let ¢ be of the form (2), then on writing B = b™ in (2) with

(=e . j=0,1,...,n—1,
we get
H 1 H 1
o) =1+ ( 1+(bz)") T ( bz — ) (bz—el)...(bz—en_1)>
n—1 n—1
H 1 H 1 1
=1+ 11 s nrasnrell HEl S vl N Sl P
b" = ne; bz —¢)) b n; 1 — be; 1z
H = 1
nb" j=0 ( 1= bﬁj_lg)
1t —be:'Hz 1
nz * bm (1—1)6712')] ®)
7=0 J
1 n—1
= n Z¢J(Z)’
j=0
where, we put —bejfl = Bj and B;H/B = Hj, since b" = B. This proves the result. O

In view of (5), for a given Schwarz function w(z), we find Schwarz functions

(2j+ )i

wj(z):—ej_lw(z) (ej:e n ,j:(),l,...,nfl)

such that

o () = 2T ) = 15 by ), ()
where ~ ~

(I>(Z):1+1sz <B—b”7h—bg;z€U>. (7)

Theorem 2.1. Let f € M (n,u, [¢]), then there exists an analytic function p(z) :
p(2) < 6(z") (2€0) (8)
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such that
1 1/n
z |\p [ p(xz)GH(xz)zt e , if u>0,
f(z) = 0 . (9)
zexp [ p(t)%ldt, if p=0,
0
where G(z) = @ for some g € 8*. Furthermore, if f € A with @ # 0 in U, is represented
by (9) for some analytic function p(z) satisfying (8) and for some G(z) = @, where g € 8*,
then f € M (n, 1, [6])
Proof. Let f € M (n,u, [¢]), then
2f'(2)
——— < P(z") (€U
g O el
for some g € 8*. Let
2f'(z
p() = g D (10)

- Pr(R)gn (=)

then p(z) is an analytic function satisfying (8) and

(f(2)/2)" 71 (2) = p(2)(9(2)/2)" (11)
Hence, on integrating (11), we get
fH(z)— 2" = u/pi(t)g“it) — tuda if u>0
0

and
z

log 1) = /p(t) — 1dt, if =0,

z t
0

which on simplification gives the representation (9). Furthermore, if f(z) is represented by
(9), then from it (for both the cases p =0, u > 0), we get (10). Hence, from (8), we have

2f'(2)
fri(2)g(2)
which evidently implies that f € M (n, u, [¢]) . a

<¢(z") (z€ 1),

If we choose pr = 1 in (10) of Theorem 2.1, then we get the following result for the
class € (n, [@]).

Corollary 2.1. Let ¢ € P and f € C(n,[¢]). Then there exists an analytic function s(z)
satisfying the condition that

s(z) < ¢(z") (2 € 1), (12)
where f(z) is given by
_ [ 9s)
i) = 0/ LY (13

for some g € 8*. Furthermore, if an analytic function s(z) satisfies (12), then f(z) repre-
sented by (13) (with @ # 0 in U) belongs to the class C(n,[¢]) .
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Theorem 2.2. If f € M (n, p, [¢]), where ¢(z) is of the form (2), then there exist functions
€M, [®]),5=0,1,...,n—1 for which &(z) is given by (7) and

1 1/p
z {uoffl)(wj (zz))G”(xz)dx} . if p>0,

fi(z) = . (14)
zexpof wdt, if u=0,
where G(z) = @ for some g € 8* and
w;(z) = —eglw(z) (ej = e@#j)m,j =0,1,...,n— 1)
for some Schwarz function w(z). Moreover,
e 1/p )
(455 @) L ifu>o,
f(z) = (15)

o1 1/n
<H fj(z)> ’ if p=0.
7=0

Proof. It f € M (n,p,[¢]) such that ¢(z) is of the form (2), then for a Schwarz function
w(z), we find the Schwarz functions w;(z) of the form:

(2i+1D)mi
n

Thus from (6), we get

AR N g (s
p(z) = Fln(z)gh(z) = njgoq)( i ( ))s

where ®(z) is given by (7). Hence, on replacing p(z) by %Z;:Ol ®(wj (2)) in the representa-
tion (9) (for both the cases), we get (15), where f;(z) is represented by (14) with LT(Z) #0
(7=0,1,...,n—1) in U and belongs to the class M (1, u, [®]) for ®(z) given by (7). This
proves Theorem 2.2. O

Setting ¢ = 1 in Theorem 2.2, we get the following result for the class € (n, [¢]).
Corollary 2.2. If f € C(n,[¢]), where ¢(z) is of the form (2), then there exist functions
F;ecl[®],j=0,1,....,n—1, and

F;(2), (16)

where for a given Schwarz function w(z), we find Schwarz functions

(2j+1)wi
n

wj(z):—ej*lw(z)<ej:e ,ij,l,...,n—l)

such that

t

F(2) :/Mdt (17)
0

and ®(z) is given by (7).
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For a complex number A (# B,|A| <1) and H = A — B in (2), we get ¢(z) =
}Igz (z € U) and the class M (n, i, [¢]) then reduces to the class M (n, u, A, B) . We thus
get the following results (Corollaries 2.3 and 2.4) as worthwhile consequences from the results

(3), (6) and (15) .

Corollary 2.3. Let A and B (B # 0) be complex numbers such that
|A| < 1,|B| < 1. Then

1+ Bzn 1 + sz
(2j+1)wi B B;A

(Bjej_l"B,ejen,Aj I ,jO,l,...,nl)

and hence, for a given Schwarz function w(z), we find Schwarz functions

w;(z) = —e{lw (2) (ej = e(2j+v@1)7ri,j =0,1,...,n— 1)

such that

1+ Aw™ (2) 1= 1+ aw;j (2) = bA
1+ Bw" (2) njgol—i—bwj(z) ¢ B’ZEIU

Corollary 2.4. If f € M (n, p, A, B), then there exist functions g; € M (1, p,a,b),
7=0,1,....n—1, and

(A5 gt >)”", >0
F={ " fe A\ (18)
(1:[0 gj(Z)) ; if =0,

where for a given Schwarz function w(z), we find Schwarz functions

(2j+ )i

wj(z)z—ej_lw(z) (ej:e n ,j:O,l,...,n—l)

such that
) 1/p
Juf Bpegeraad L itaso,

9i(2) = (19)

zexpf (iizzjgi - 1) e, if 1 =0,
0
where G(z) = @ for some g € 8* and b= {Y/B,a =bA/B,z € U.

3. The Classes £ (n,a, p, [¢]) and M (1, u, [¢])

In this section, we obtain a sufficiency condition for a function f to be in the class
M (1, u, [¢]) by using its representation and by adopting the methods of the Briot-Bouquet
differential subordination. For this purpose, we define a class £ (n,a, p, [¢]) of functions
f € A satisfying the condition that

SE) (), )
Fr (g (“ 7(2)

) 2g(2)
SRE —ug()><¢( M (o)
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for some n € N, u > 0 and for some g € 8* with f’(z)@ # 0 in U, where only principal
values of the powers are considered and ¢ € P is of the form

Hz

o) =14 1B

(-1<B<1,0<H<1-1B). (21)
Obviously, for ¢(z) given by (21), we have
d(z") <¢(2) (-1<B<1,0<H<1-B,neN;zel), (22)

and we also note that £ (n, «, u, [¢]) C L (1, a, p, [¢]) . We need the following results which
are special cases of the results mentioned in [14, Th. 3.2a, p.81 and Th. 3.2d, p. 86].

Lemma 3.1. Let h be convex in U with R (Bh(z)) > 0. If q is analytic in U with
q(0) = h(0), then

< h(z) = q(z) < h(z2).

Lemma 3.2. Let h be analytic in U with h(0) = 1, and let « > 0 be finite. If

_1+z 200z
S l—z 1-—2%

then the solution q of the Briot-Bouquet differential equation:

h(z) < aRy/a1(2)

azq'(z) o
o(2) + L =he) (e ) (24

with q(0) =1 is analytic in U such that R (q(z)) > 0, and is given by
Fl/a
z) = ?7(2), (25)
Fl/a
J—T@w

where
z

F(z) = zexp/mdt.

t
0
\

R}

Yi

_»YZ

Fig.].. Rl/a,l(U)v Y= \/14’2/0{.
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Theorem 3.1. If f € L (n,a,p,[d]), then f € M(1,u,[¢]). Furthermore, f(z) is given by

the representation (9) with % # 0 in U, where for some Schwarz function w(z):

az/*exp é z (p(w™(t) — 1) %

= X (zeU). (26

Zté*l exp (i [ (¢(w™(u) — 1) "Z*) dt

0

Proof. Let f € L (n,a,p,[¢]) and let p(z) be defined by (10). Then the condition (20)
becomes

0+ L <o)
By putting
0z _,
p(2) + O h(z) (z€U), (27)
and using the class conditions (20) and (22), we get
h(z) < ¢(z") < (2) (z€U), (28)

where ¢(z) is given by (21), which by Lemma 3.1 implies that p(z) < ¢(z), z € U and hence,
feM(1,p,[¢]). Also, from (28), we have for some Schwarz function w(z) that

R{h(z)} = R{d(w"(2))} >0 (€ U). (29)

Since R p(z) = ﬁ}fz + fjfz,z € U is the open door function and is univalent in U for
every S > 0 and n € N, hence the set Rg,,(U) is the complex plane with slits along the
half-lines R{w} = 0 and [S{w}| > v = ny/1+28/n; (see Fig. 1 above). We note that
the condition (29) verifies the subordinate condition h(z) < aR/4,1(2),2 € U of Lemma
3.2, since h(U) C aRy/4,1(U). Moreover, h(U) is contained in a circle in the right half-plane
when B # —1. Again, if h(z) satisfies the Briot-Bouquet differential equation (27), then by
Lemma 3.2, p(z) is the solution of (27) with R {p(z)} > 0 and is given by (26). Therefore
for this p(z), the representation of f(z) is given by (9) for the cases when p > 0 and when

= 0. This proves Theorem 3.1. |

Before concluding this paper, we deem it worthwhile to consider some applications of

the result Theorem 3.1. If we set ¢(z) = 122 (2 € U) and choose 1 = a = 1 in Theorem 3.1,

we then arrive at the following consequences of Theorem 3.1 by specializing, respectively,

z
1—=z

the function g(z) as g(z) = and g(z) = z (which are starlike in U).

Corollary 3.1. If f € A satisfies the condition that

-7+ L -2 < menzev),

then

1+ 2" 1+2
1_ !

A=) ) =1 <1,

and the function f satisfying (30) is of the form:

(neN;zeU) (30)

z

t

" / D00 g,

n,t
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where

du
0

z
1—z"

In particular, if n =1, then f(z) =

Corollary 3.2. If f € A satisfies the condition that

s 14an
P+ f'(2) <1—z”

(neN;zel),

then Tt 14

, z z
F(z) < 1—2n 1-2

and the function f satisfying (32) is of the form:

z

t
= PEE——
f(Z) 0/ (1 . t")2/n Inﬁt tv

where I, ; is given by (31) and in particular, if n = 1, then f(z) = log == (2 € U).

1—=z

(neN;zelU) (32)

Lastly, if we set ¢(z) = 22 (2 € U) and choose p = 0 in Theorem 3.1, then we get

the following obvious result showing that every convex function is starlike in U.

Corollary 3.3. If f € A satisfies the condition that
2f"(z)  1+2"

1 .
+ 70 <1 n (neN;zeU),
then fe) 1 )
z2f'(z + 2" + z
8 T S 1S (neN;zel) (33)
and the function f satisfying (15) is of the form:
/ t dt
f(z) = zexp / — 1| — 3,
SN (=) t

z
—z"

where I, ; is given by (31) and in particular, if n =1, then f(z) = 1
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