

ON VARIOUS REPRESENTATIONS OF A CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH SUBORDINATION

Poonam Sharma¹, Ravinder Krishna Raina², Janusz Sokól³

By means of subordination, we introduce a new class $\mathcal{M}(n, \mu, [\phi])$ of analytic functions defined in the open unit disk. We present various representations for this class and point out some of their main consequences. Also, a sufficient class condition for a function f to be in the class $\mathcal{M}(1, \mu, [\phi])$ is studied by using the Briot-Bouquet differential subordination and its representation is considered by choosing an open door function. Some applications of this result (Theorem 3 below) are also considered.

Keywords: Starlike function; close-to-convex functions; subordination; Briot-Bouquet differential subordination

MSC2010: 30C45; 30C50.

1. Introduction

Let $\mathcal{H}(\mathbb{U})$ represents a linear space of all analytic functions defined in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For $a \in \mathbb{C}$, $k \in \mathbb{N} = \{1, 2, \dots\}$, let

$$\mathcal{H}[a, k] = \{f \in \mathcal{H}(\mathbb{U}) : f(z) = a + a_k z^k + a_{k+1} z^{k+1} + \dots\}.$$

We denote the subclass $\mathcal{H}[0, 1]$ with $a_1 = 1$ by \mathcal{A} . Further, let \mathcal{S} denote a class of functions $f \in \mathcal{A}$ which are univalent and let \mathcal{S}^* denote the subclass of \mathcal{S} whose members are starlike in \mathbb{U} satisfying the analytic condition that

$$\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in \mathbb{U}).$$

A class of close-to-convex functions $f \in \mathcal{A}$ satisfying for some $g \in \mathcal{S}^*$ and some $\alpha \in (-\pi/2, \pi/2)$ the condition that

$$\Re \left\{ \frac{zf'(z)}{e^{i\alpha} g(z)} \right\} > 0 \quad (z \in \mathbb{U}), \quad (1)$$

is denoted by \mathcal{C} , see [1].

For two functions $p, q \in \mathcal{H}(\mathbb{U})$, we say that p is subordinate to q in \mathbb{U} and write $p(z) \prec q(z)$, $z \in \mathbb{U}$, if there exists a Schwarz function ω (analytic in \mathbb{U} with $\omega(0) = 0$, and $|\omega(z)| \leq |z|$, $z \in \mathbb{U}$) such that $p(z) = q(\omega(z))$,

¹ Department of Mathematics & Astronomy, University of Lucknow, Lucknow 226007 India, e-mail: sharma_poonam@lkuoniv.ac.in

² M.P. University of Agri. and Technology, Udaipur, Rajasthan, India

Present address: 10/11 Ganpati Vihar, Opposite Sector 5, Udaipur 313002, India, e-mail: rkraina_7@hotmail.com

³ University of Rzeszów, Faculty of Mathematics and Natural Sciences, ul. Prof. Pigozzi 1, 35-310 Rzeszów, Poland, e-mail: jsokol@prz.edu.pl

$z \in \mathbb{U}$. Furthermore, if the function q is univalent in \mathbb{U} , then we have the following equivalence:

$$p(z) \prec q(z) \Leftrightarrow p(0) = q(0) \text{ and } p(\mathbb{U}) \subset q(\mathbb{U}).$$

Let \mathcal{P} be a class of functions $\phi(z)$ which are analytic with positive real part in \mathbb{U} satisfying $\phi(0) = 1$.

In terms of the concept of subordination, we define in this paper a new class $\mathcal{M}(n, \mu, [\phi])$ by

$$\mathcal{M}(n, \mu, [\phi]) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f^{1-\mu}(z)g^\mu(z)} \prec \phi(z^n) \quad (\phi \in \mathcal{P}; z \in \mathbb{U}) \right\},$$

for some $n \in \mathbb{N}$, $\mu \geq 0$ and for some $g \in \mathcal{S}^*$ with $\frac{f(z)}{z} \neq 0$ in \mathbb{U} , where only principal values of the powers are considered.

On the other hand, if $f \in \mathcal{A}$ satisfies

$$\Re \left\{ \frac{zf'(z)}{f^{1-\beta}(z)g^\beta(z)} \right\} > 0 \quad (z \in \mathbb{U})$$

for some $g \in \mathcal{S}^*$, and $\frac{f(z)}{z} \neq 0$ in \mathbb{U} for some $\beta \in (0, \infty)$, then f is said to be a Bazilevič function of type β ([3], see also [4]) and is denoted by $f \in \mathcal{B}(\beta)$.

We denote the class $\mathcal{M}(n, 1, [\phi])$ by $\mathcal{C}(n, [\phi])$ and the class $\mathcal{M}(n, 0, [\phi])$ by $\mathcal{S}^*(n, [\phi])$. We note that if $\phi \in \mathcal{P}$ is such that $\phi(\mathbb{U})$ is symmetrical with respect to the real axis and starlike with respect to 1, then we have the following obvious relationships:

$$\mathcal{C}(1, [\phi]) = \mathcal{C}[\phi] \quad \text{and} \quad \mathcal{S}^*(1, [\phi]) = \mathcal{S}^*[\phi].$$

The classes $\mathcal{S}^*[\phi]$ and $\mathcal{C}[\phi]$ are, respectively, the Ma-Minda type classes of starlike and close-to-convex functions [2].

It may be noted here that the class $\mathcal{S}^* \left(n, \left[\frac{1+Az}{1+Bz} \right] \right) = \mathcal{S}^*(n, A, B)$ was earlier studied in [5] (see also [6]) for complex A and B ($B \neq 0$, $|A| \leq 1$, $|B| \leq 1$). For real values of A and B , $\mathcal{S}^* \left[\frac{1+Az}{1+Bz} \right] = \mathcal{S}^*(A, B)$ ($-1 \leq B < A \leq 1$) is the Janowski class of starlike functions studied by many authors (see, for example, [7], [8], [9] and also [10], [11]). The function $\frac{1+Az}{1+Bz}$ was studied by Kuroki *et al.* [12] for complex numbers A and B satisfying one of following conditions:

- (i) $|A| \leq 1$, $|B| < 1$, $A \neq B$, $\Re(1 - A\bar{B}) \geq |A - B|$;
- (ii) $|A| \leq 1$, $|B| = 1$, $A \neq B$, $1 - A\bar{B} > 0$.

Further, for $-1 \leq A \leq 1$, $-1 \leq B \leq 1$ with $A \neq B$, the bilinear transformation $\frac{1+Az}{1+Bz}$ was considered in [13] for additional conditions that (in case $B \neq 0$) B and $B - A$ are of same sign.

Based on the superordinate function $\phi(z^n)$ involved in the definition of the class $\mathcal{M}(n, \mu, [\phi])$, we obtain various representations for this class and consider also some of its consequences. By using the Briot-Bouquet differential subordination, a class $\mathcal{L}(n, \alpha, \mu, [\phi])$ is further defined and a representative of this class is obtained with the use of an open door function.

2. The Class $\mathcal{M}(n, \mu, [\phi])$ and its Consequences

We first prove the following lemma when the superordinate function ϕ has complex coefficients.

Lemma 2.1. *Let ϕ be of the form:*

$$\phi(z) = 1 + \frac{Hz}{1+Bz} \quad (z \in \mathbb{U}), \quad (2)$$

where H and B ($B \neq 0, |B| \leq 1$) are complex numbers. Then

$$\phi(z^n) = \frac{1}{n} \sum_{j=0}^{n-1} \phi_j(z), \quad n \in \mathbb{N}, \quad (3)$$

where

$$\phi_j(z) = 1 + \frac{H_j z}{1+B_j z} \quad (4)$$

$$\left(B_j = -\epsilon_j^{-1} \sqrt[n]{B}, \epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, \frac{B_j H}{B} = H_j, j = 0, 1, \dots, n-1 \right).$$

Proof. Let ϕ be of the form (2), then on writing $B = b^n$ in (2) with

$$\epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, \quad j = 0, 1, \dots, n-1,$$

we get

$$\begin{aligned} \phi(z^n) &= 1 + \frac{H}{b^n} \left(1 - \frac{1}{1+(bz)^n} \right) = 1 + \frac{H}{b^n} \left(1 - \frac{1}{(bz-\epsilon_0)(bz-\epsilon_1)\dots(bz-\epsilon_{n-1})} \right) \\ &= 1 + \frac{H}{b^n} \left(1 - \sum_{j=0}^{n-1} \frac{1}{n\epsilon_j^{n-1}(bz-\epsilon_j)} \right) = 1 + \frac{H}{b^n} \left(1 - \frac{1}{n} \sum_{j=0}^{n-1} \frac{1}{1-b\epsilon_j^{-1}z} \right) \\ &= 1 + \frac{H}{nb^n} \sum_{j=0}^{n-1} \left(1 - \frac{1}{1-b\epsilon_j^{-1}z} \right) \\ &= \frac{1}{n} \sum_{j=0}^{n-1} \left[1 + \frac{-b\epsilon_j^{-1}Hz}{b^n} \left(\frac{1}{1-b\epsilon_j^{-1}z} \right) \right] \\ &= \frac{1}{n} \sum_{j=0}^{n-1} \phi_j(z), \end{aligned} \quad (5)$$

where, we put $-b\epsilon_j^{-1} = B_j$ and $B_j H/B = H_j$, since $b^n = B$. This proves the result. \square

In view of (5), for a given Schwarz function $w(z)$, we find Schwarz functions

$$w_j(z) = -\epsilon_j^{-1} w(z) \left(\epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, j = 0, 1, \dots, n-1 \right)$$

such that

$$\phi(w^n(z)) = \frac{1}{n} \sum_{j=0}^{n-1} \phi_j(w(z)) = \frac{1}{n} \sum_{j=0}^{n-1} \Phi(w_j(z)), \quad (6)$$

where

$$\Phi(z) = 1 + \frac{hz}{1+bz} \quad \left(B = b^n, h = \frac{bH}{B}; z \in \mathbb{U} \right). \quad (7)$$

Theorem 2.1. *Let $f \in \mathcal{M}(n, \mu, [\phi])$, then there exists an analytic function $p(z)$:*

$$p(z) \prec \phi(z^n) \quad (z \in \mathbb{U}) \quad (8)$$

such that

$$f(z) = \begin{cases} z \left[\mu \int_0^1 p(xz) G^\mu(xz) x^{\mu-1} dx \right]^{1/\mu}, & \text{if } \mu > 0, \\ z \exp \int_0^z \frac{p(t)-1}{t} dt, & \text{if } \mu = 0, \end{cases} \quad (9)$$

where $G(z) = \frac{g(z)}{z}$ for some $g \in \mathcal{S}^*$. Furthermore, if $f \in \mathcal{A}$ with $\frac{f(z)}{z} \neq 0$ in \mathbb{U} , is represented by (9) for some analytic function $p(z)$ satisfying (8) and for some $G(z) = \frac{g(z)}{z}$, where $g \in \mathcal{S}^*$, then $f \in \mathcal{M}(n, \mu, [\phi])$.

Proof. Let $f \in \mathcal{M}(n, \mu, [\phi])$, then

$$\frac{zf'(z)}{f^{1-\mu}(z)g^\mu(z)} \prec \phi(z^n) \quad (z \in \mathbb{U})$$

for some $g \in \mathcal{S}^*$. Let

$$p(z) = \frac{zf'(z)}{f^{1-\mu}(z)g^\mu(z)}, \quad (10)$$

then $p(z)$ is an analytic function satisfying (8) and

$$(f(z)/z)^{\mu-1} f'(z) = p(z)(g(z)/z)^\mu. \quad (11)$$

Hence, on integrating (11), we get

$$f^\mu(z) - z^\mu = \mu \int_0^z \frac{p(t)g^\mu(t) - t^\mu}{t} dt, \quad \text{if } \mu > 0$$

and

$$\log \frac{f(z)}{z} = \int_0^z \frac{p(t)-1}{t} dt, \quad \text{if } \mu = 0,$$

which on simplification gives the representation (9). Furthermore, if $f(z)$ is represented by (9), then from it (for both the cases $\mu = 0, \mu > 0$), we get (10). Hence, from (8), we have

$$\frac{zf'(z)}{f^{1-\mu}(z)g^\mu(z)} \prec \phi(z^n) \quad (z \in \mathbb{U}),$$

which evidently implies that $f \in \mathcal{M}(n, \mu, [\phi])$. \square

If we choose $\mu = 1$ in (10) of Theorem 2.1, then we get the following result for the class $\mathcal{C}(n, [\phi])$.

Corollary 2.1. *Let $\phi \in \mathcal{P}$ and $f \in \mathcal{C}(n, [\phi])$. Then there exists an analytic function $s(z)$ satisfying the condition that*

$$s(z) \prec \phi(z^n) \quad (z \in \mathbb{U}), \quad (12)$$

where $f(z)$ is given by

$$f(z) = \int_0^z \frac{g(t)s(t)}{t} dt \quad (13)$$

for some $g \in \mathcal{S}^*$. Furthermore, if an analytic function $s(z)$ satisfies (12), then $f(z)$ represented by (13) (with $\frac{f(z)}{z} \neq 0$ in \mathbb{U}) belongs to the class $\mathcal{C}(n, [\phi])$.

Theorem 2.2. *If $f \in \mathcal{M}(n, \mu, [\phi])$, where $\phi(z)$ is of the form (2), then there exist functions $f_j \in \mathcal{M}(1, \mu, [\Phi])$, $j = 0, 1, \dots, n-1$ for which $\Phi(z)$ is given by (7) and*

$$f_j(z) = \begin{cases} z \left[\mu \int_0^1 \Phi(w_j(xz)) G^\mu(xz) dx \right]^{1/\mu}, & \text{if } \mu > 0, \\ z \exp \int_0^z \frac{\Phi(w_j(t)) - 1}{t} dt, & \text{if } \mu = 0, \end{cases} \quad (14)$$

where $G(z) = \frac{g(z)}{z}$ for some $g \in \mathcal{S}^*$ and

$$w_j(z) = -\epsilon_j^{-1} w(z) \left(\epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, j = 0, 1, \dots, n-1 \right)$$

for some Schwarz function $w(z)$. Moreover,

$$f(z) = \begin{cases} \left(\frac{1}{n} \sum_{j=0}^{n-1} f_j^\mu(z) \right)^{1/\mu}, & \text{if } \mu > 0, \\ \left(\prod_{j=0}^{n-1} f_j(z) \right)^{1/n}, & \text{if } \mu = 0. \end{cases} \quad (15)$$

Proof. If $f \in \mathcal{M}(n, \mu, [\phi])$ such that $\phi(z)$ is of the form (2), then for a Schwarz function $w(z)$, we find the Schwarz functions $w_j(z)$ of the form:

$$w_j(z) = -\epsilon_j^{-1} w(z) \epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, j = 0, 1, \dots, n-1.$$

Thus from (6), we get

$$p(z) = \frac{zf'(z)}{f^{1-\mu}(z)g^\mu(z)} = \frac{1}{n} \sum_{j=0}^{n-1} \Phi(w_j(z)),$$

where $\Phi(z)$ is given by (7). Hence, on replacing $p(z)$ by $\frac{1}{n} \sum_{j=0}^{n-1} \Phi(w_j(z))$ in the representation (9) (for both the cases), we get (15), where $f_j(z)$ is represented by (14) with $\frac{f_j(z)}{z} \neq 0$ ($j = 0, 1, \dots, n-1$) in \mathbb{U} and belongs to the class $\mathcal{M}(1, \mu, [\Phi])$ for $\Phi(z)$ given by (7). This proves Theorem 2.2. \square

Setting $\mu = 1$ in Theorem 2.2, we get the following result for the class $\mathcal{C}(n, [\phi])$.

Corollary 2.2. *If $f \in \mathcal{C}(n, [\phi])$, where $\phi(z)$ is of the form (2), then there exist functions $F_j \in \mathcal{C}([\Phi])$, $j = 0, 1, \dots, n-1$, and*

$$f(z) = \frac{1}{n} \sum_{j=0}^{n-1} F_j(z), \quad (16)$$

where for a given Schwarz function $w(z)$, we find Schwarz functions

$$w_j(z) = -\epsilon_j^{-1} w(z) \left(\epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, j = 0, 1, \dots, n-1 \right)$$

such that

$$F_j(z) = \int_0^z \frac{g(t)\Phi(w_j(t))}{t} dt \quad (17)$$

and $\Phi(z)$ is given by (7).

For a complex number A ($\neq B, |A| \leq 1$) and $H = A - B$ in (2), we get $\phi(z) = \frac{1+Az}{1+Bz}$ ($z \in \mathbb{U}$) and the class $\mathcal{M}(n, \mu, [\phi])$ then reduces to the class $\mathcal{M}(n, \mu, A, B)$. We thus get the following results (Corollaries 2.3 and 2.4) as worthwhile consequences from the results (3), (6) and (15).

Corollary 2.3. *Let A and B ($B \neq 0$) be complex numbers such that*

$|A| \leq 1, |B| \leq 1$. *Then*

$$\frac{1+Az^n}{1+Bz^n} = \frac{1}{n} \sum_{j=0}^{n-1} \frac{1+A_jz}{1+B_jz}$$

$$\left(B_j = -\epsilon_j^{-1} \sqrt[n]{B}, \epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, A_j = \frac{B_j A}{B}, j = 0, 1, \dots, n-1 \right)$$

and hence, for a given Schwarz function $w(z)$, we find Schwarz functions

$$w_j(z) = -\epsilon_j^{-1} w(z) \left(\epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, j = 0, 1, \dots, n-1 \right)$$

such that

$$\frac{1+Aw^n(z)}{1+Bw^n(z)} = \frac{1}{n} \sum_{j=0}^{n-1} \frac{1+aw_j(z)}{1+bw_j(z)} \quad \left(b = \sqrt[n]{B}, a = \frac{bA}{B}; z \in \mathbb{U} \right).$$

Corollary 2.4. *If $f \in \mathcal{M}(n, \mu, A, B)$, then there exist functions $g_j \in \mathcal{M}(1, \mu, a, b)$, $j = 0, 1, \dots, n-1$, and*

$$f(z) = \begin{cases} \left(\frac{1}{n} \sum_{j=0}^{n-1} g_j^\mu(z) \right)^{1/\mu}, & \text{if } \mu > 0, \\ \left(\prod_{j=0}^{n-1} g_j(z) \right)^{1/n}, & \text{if } \mu = 0, \end{cases} \quad (18)$$

where for a given Schwarz function $w(z)$, we find Schwarz functions

$$w_j(z) = -\epsilon_j^{-1} w(z) \left(\epsilon_j = e^{\frac{(2j+1)\pi i}{n}}, j = 0, 1, \dots, n-1 \right)$$

such that

$$g_j(z) = \begin{cases} z \left[\mu \int_0^1 \frac{1+aw_j(xz)}{1+bw_j(xz)} G^\mu(xz) x^{\mu-1} dx \right]^{1/\mu}, & \text{if } \mu > 0, \\ z \exp \int_0^z \left(\frac{1+aw_j(t)}{1+bw_j(t)} - 1 \right) \frac{dt}{t}, & \text{if } \mu = 0, \end{cases} \quad (19)$$

where $G(z) = \frac{g(z)}{z}$ for some $g \in \mathcal{S}^*$ and $b = \sqrt[n]{B}, a = bA/B, z \in \mathbb{U}$.

3. The Classes $\mathcal{L}(n, \alpha, \mu, [\phi])$ and $\mathcal{M}(1, \mu, [\phi])$

In this section, we obtain a sufficiency condition for a function f to be in the class $\mathcal{M}(1, \mu, [\phi])$ by using its representation and by adopting the methods of the Briot-Bouquet differential subordination. For this purpose, we define a class $\mathcal{L}(n, \alpha, \mu, [\phi])$ of functions $f \in \mathcal{A}$ satisfying the condition that

$$\frac{zf'(z)}{f^{1-\mu}(z)g^\mu(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - (1-\mu) \frac{zf'(z)}{f(z)} - \mu \frac{zg'(z)}{g(z)} \right) \prec \phi(z^n), \quad (20)$$

for some $n \in \mathbb{N}, \mu \geq 0$ and for some $g \in \mathcal{S}^*$ with $f'(z) \frac{f(z)}{z} \neq 0$ in \mathbb{U} , where only principal values of the powers are considered and $\phi \in \mathcal{P}$ is of the form

$$\phi(z) = 1 + \frac{Hz}{1+Bz} \quad (-1 \leq B < 1, 0 < H \leq 1 - B). \quad (21)$$

Obviously, for $\phi(z)$ given by (21), we have

$$\phi(z^n) \prec \phi(z) \quad (-1 \leq B < 1, 0 < H \leq 1 - B, n \in \mathbb{N}; z \in \mathbb{U}), \quad (22)$$

and we also note that $\mathcal{L}(n, \alpha, \mu, [\phi]) \subset \mathcal{L}(1, \alpha, \mu, [\phi])$. We need the following results which are special cases of the results mentioned in [14, Th. 3.2a, p.81 and Th. 3.2d, p. 86].

Lemma 3.1. *Let h be convex in \mathbb{U} with $\Re(\beta h(z)) > 0$. If q is analytic in \mathbb{U} with $q(0) = h(0)$, then*

$$q(z) + \frac{zq'(z)}{\beta q(z)} \prec h(z) \Rightarrow q(z) \prec h(z).$$

Lemma 3.2. *Let h be analytic in \mathbb{U} with $h(0) = 1$, and let $\alpha > 0$ be finite. If*

$$h(z) \prec \alpha \mathcal{R}_{1/\alpha, 1}(z) = \frac{1+z}{1-z} + \frac{2\alpha z}{1-z^2}, \quad (23)$$

then the solution q of the Briot-Bouquet differential equation:

$$q(z) + \frac{\alpha z q'(z)}{q(z)} = h(z) \quad (z \in \mathbb{U}) \quad (24)$$

with $q(0) = 1$ is analytic in \mathbb{U} such that $\Re(q(z)) > 0$, and is given by

$$q(z) = \frac{\alpha F^{1/\alpha}(z)}{\int_0^z \frac{F^{1/\alpha}(t)}{t} dt}, \quad (25)$$

where

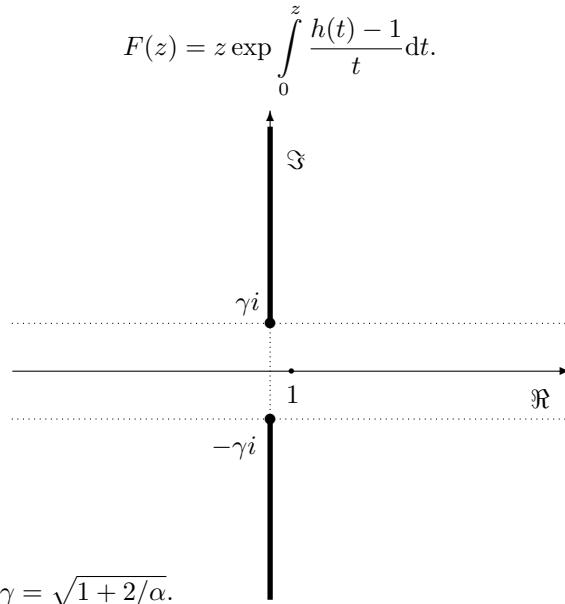


Fig.1. $\mathcal{R}_{1/\alpha, 1}(\mathbb{U}), \gamma = \sqrt{1 + 2/\alpha}$.

Theorem 3.1. *If $f \in \mathcal{L}(n, \alpha, \mu, [\phi])$, then $f \in \mathcal{M}(1, \mu, [\phi])$. Furthermore, $f(z)$ is given by the representation (9) with $\frac{f(z)}{z} \neq 0$ in \mathbb{U} , where for some Schwarz function $w(z)$:*

$$p(z) = \frac{zf'(z)}{f^{1-\mu}(z)g^\mu(z)} = \frac{\alpha z^{1/\alpha} \exp \frac{1}{\alpha} \int_0^z (\phi(w^n(t) - 1) \frac{dt}{t})}{\int_0^z t^{\frac{1}{\alpha}-1} \exp \left(\frac{1}{\alpha} \int_0^t (\phi(w^n(u) - 1) \frac{du}{u}) \right) dt} \quad (z \in \mathbb{U}). \quad (26)$$

Proof. Let $f \in \mathcal{L}(n, \alpha, \mu, [\phi])$ and let $p(z)$ be defined by (10). Then the condition (20) becomes

$$p(z) + \frac{\alpha z p'(z)}{p(z)} \prec \phi(z^n).$$

By putting

$$p(z) + \frac{\alpha z p'(z)}{p(z)} = h(z) \quad (z \in \mathbb{U}), \quad (27)$$

and using the class conditions (20) and (22), we get

$$h(z) \prec \phi(z^n) \prec \phi(z) \quad (z \in \mathbb{U}), \quad (28)$$

where $\phi(z)$ is given by (21), which by Lemma 3.1 implies that $p(z) \prec \phi(z)$, $z \in \mathbb{U}$ and hence, $f \in \mathcal{M}(1, \mu, [\phi])$. Also, from (28), we have for some Schwarz function $w(z)$ that

$$\Re\{h(z)\} = \Re\{\phi(w^n(z))\} > 0 \quad (z \in \mathbb{U}). \quad (29)$$

Since $\mathcal{R}_{\beta,n}(z) = \beta \frac{1+z}{1-z} + \frac{2nz}{1-z^2}$, $z \in \mathbb{U}$ is the open door function and is univalent in \mathbb{U} for every $\beta > 0$ and $n \in \mathbb{N}$, hence the set $\mathcal{R}_{\beta,n}(\mathbb{U})$ is the complex plane with slits along the half-lines $\Re\{w\} = 0$ and $|\Im\{w\}| \geq \gamma = n\sqrt{1+2\beta/n}$; (see Fig. 1 above). We note that the condition (29) verifies the subordinate condition $h(z) \prec \alpha \mathcal{R}_{1/\alpha,1}(z)$, $z \in \mathbb{U}$ of Lemma 3.2, since $h(\mathbb{U}) \subset \alpha \mathcal{R}_{1/\alpha,1}(\mathbb{U})$. Moreover, $h(\mathbb{U})$ is contained in a circle in the right half-plane when $B \neq -1$. Again, if $h(z)$ satisfies the Briot-Bouquet differential equation (27), then by Lemma 3.2, $p(z)$ is the solution of (27) with $\Re\{p(z)\} > 0$ and is given by (26). Therefore for this $p(z)$, the representation of $f(z)$ is given by (9) for the cases when $\mu > 0$ and when $\mu = 0$. This proves Theorem 3.1. \square

Before concluding this paper, we deem it worthwhile to consider some applications of the result Theorem 3.1. If we set $\phi(z) = \frac{1+z}{1-z}$ ($z \in \mathbb{U}$) and choose $\mu = \alpha = 1$ in Theorem 3.1, we then arrive at the following consequences of Theorem 3.1 by specializing, respectively, the function $g(z)$ as $g(z) = \frac{z}{1-z}$ and $g(z) = z$ (which are starlike in \mathbb{U}).

Corollary 3.1. *If $f \in \mathcal{A}$ satisfies the condition that*

$$(1-z)f'(z) + \frac{zf''(z)}{f'(z)} - \frac{z}{1-z} \prec \frac{1+z^n}{1-z^n} \quad (n \in \mathbb{N}; z \in \mathbb{U}),$$

then

$$(1-z)f'(z) \prec \frac{1+z^n}{1-z^n} \prec \frac{1+z}{1-z} \quad (n \in \mathbb{N}; z \in \mathbb{U}) \quad (30)$$

and the function f satisfying (30) is of the form:

$$f(z) = \int_0^z \frac{t}{(1-t)(1-t^n)^{2/n} I_{n,t}} dt,$$

where

$$I_{n,t} = \int_0^t \frac{du}{(1-u^n)^{2/n}}. \quad (31)$$

In particular, if $n = 1$, then $f(z) = \frac{z}{1-z}$.

Corollary 3.2. *If $f \in \mathcal{A}$ satisfies the condition that*

$$f'(z) + \frac{zf''(z)}{f'(z)} \prec \frac{1+z^n}{1-z^n} \quad (n \in \mathbb{N}; z \in \mathbb{U}),$$

then

$$f'(z) \prec \frac{1+z^n}{1-z^n} \prec \frac{1+z}{1-z} \quad (n \in \mathbb{N}; z \in \mathbb{U}) \quad (32)$$

and the function f satisfying (32) is of the form:

$$f(z) = \int_0^z \frac{t}{(1-t^n)^{2/n} I_{n,t}} dt,$$

where $I_{n,t}$ is given by (31) and in particular, if $n = 1$, then $f(z) = \log \frac{1}{1-z}$ ($z \in \mathbb{U}$).

Lastly, if we set $\phi(z) = \frac{1+z}{1-z}$ ($z \in \mathbb{U}$) and choose $\mu = 0$ in Theorem 3.1, then we get the following obvious result showing that every convex function is starlike in \mathbb{U} .

Corollary 3.3. *If $f \in \mathcal{A}$ satisfies the condition that*

$$1 + \frac{zf''(z)}{f'(z)} \prec \frac{1+z^n}{1-z^n} \quad (n \in \mathbb{N}; z \in \mathbb{U}),$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1+z^n}{1-z^n} \prec \frac{1+z}{1-z} \quad (n \in \mathbb{N}; z \in \mathbb{U}) \quad (33)$$

and the function f satisfying (33) is of the form:

$$f(z) = z \exp \left\{ \int_0^z \left(\frac{t}{(1-t^n)^{2/n} I_{n,t}} - 1 \right) \frac{dt}{t} \right\},$$

where $I_{n,t}$ is given by (31) and in particular, if $n = 1$, then $f(z) = \frac{z}{1-z}$.

REFERENCES

- [1] P. L. Duren, *Univalent functions*, Springer-Verlag, New York 1983.
- [2] W. C. Ma and D. A. Minda, Unified treatment of some special classes of univalent functions, Proc. of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, International Press, Cambridge, MA, 1994.
- [3] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc. **38**(1973), 261–271.
- [4] H. Irmak, T. Bulboaca and N. Tuneski, Some relations between certain classes consisting of α -convex type and Bazilevič type functions, Appl. Math. Letters, **24**(12), (2011), 2010–2014.
- [5] R. Jurasińska and J. Stankiewicz, Coefficients in some classes defined by subordination to multivalent majorants, in: Proceedings of Conference on Complex Analysis (Bielsko-Biała, 2001), Ann. Polon. Math., **80**(2003), 163–170.
- [6] R. Jurasińska and J. Sokół, Some problems for certain family of starlike functions, Math. Comput. Modelling, **55**(2012), 2134–2140.

- [7] *W. Janowski*, Some extremal problems for certain families of analytic functions, *Bulletin of the Polish Academy of Sciences, Mathematics*, **21**(1973), 17–25.
- [8] *R. M. Goel and B. S. Mehrok*, On the coefficients of a subclass of starlike functions, *Indian J. Pure Appl. Math.*, **12**(1981), 634–647.
- [9] *G. S. Salagean and T. Yaguchi*, Modified Hadamard product on certain classes of analytic functions, *Carpathian J. Math.*, **26**(2)(2010), 259–264.
- [10] *G. S. Salagean*, Subclasses of univalent functions, *Lecture Notes in Math.*, Springer-Verlag, **1013**(1983), 362–372.
- [11] *H. M. Srivastava and Shigeyoshi Owa* (Editors), *Current Topics in Analytic Function Theory*, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
- [12] *K. Kuroki, S. Owa and H. M. Srivastava*, Some subordination criteria for analytic functions, *Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations*, **52**(2007), 27–36.
- [13] *Poonam Sharma, J. K. Prajapat and R. K. Raina*, Certain subordination results for p -valent functions involving a generalized multiplier transformation operator, *J. Classic. Anal.*, **2**(1) (2013), 85–106.
- [14] *S. S. Miller and P. T. Mocanu*, *Differential subordinations: theory and applications*, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York / Basel 2000.