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FIXED POINT STABILITY FOR ¢,-y-CONTRACTION
MAPPINGS

Muhammad Usman ALI*, Quanita KIRAN ?

Choudhury and Bandyopadhyay [17] discussed the stability of fixed point
sets of mappings satisfying the notion of multivalued « -y -contraction and raised

an open problem: can « - -contractions extended to multivalued case in some

other way and in those case whether the stability of fixed point sets still holds? As an
answer to this problem, in this paper, we study the stability of fixed point sets of
mappings satisfying a new multivalued generalization of « - -contractive

mappings.
Keywords: Gauge function; « -y -almost contraction; .-y - O -almost contraction.

1. Introduction

Banach initiated the study of fixed points through iterative sequences,
which appeared as a base for metric fixed point theory. Many authors continue
this pattern of finding fixed points, see for eaxmple [1]-[29]. Samet etal. [1]
introduced the ideas of « -y -contractive and « -admissible mappings and got

fixed points of the mappings through iterative sequence satisfying these ideas on
complete metric space. Some generalizations of these ideas are available in [2-13].

The stability of fixed point sets have a vital role in fixed point theory and
other branches of mathematics like in differential equations and integral equations
etc. Some basis results about the stability of fixed point sets for multivalued
mappings are available in [14, 15]. Lim [16] gave some classical stability results
without assuming the restricted conditions like, the domain of the mappings being
closed convex bounded subset of a Hilbert space, or, the image of each point
under each map being a closed convex subset. Recently Choudhury and
Bandyopadhyay [17] introduced the notion of multivalued « -y -contraction and

discussed fixed points and stability of fixed point sets for such mappings. They
also raised an open problem, that is, can « -y -contraction extended to
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multivalued case in some other way and in those case whether the stability of
fixed point sets still holds? This paper is a positive answer to their open problem.

2. Preliminaries

Here, we recollect some basis definitions and results for completeness. We
denote by N(X) the space of all nonempty subsets of X, by B(X) the space of

all nonempty bounded subsets of X and by CL(X) the space of all nonempty
closed subsets of X. For AeN(X) and xe X, d(x,A)=inf{d(x,a):ae A}.
For every A,BeB(X), 6(A B)=sup{d(a,b):ac A,beB}. When A={x} we
denote 5(A,B) by &6(x,B). Forevery A,BeCL(X), let
max{sup d(x, B),supd(y, A)} if the maximum exists;
H (A, B) = xeA yeB
0 otherwise.

Suchamap H is called generalized Hausdorff metric induced by d .

Lim [16] introduced the basic stability result as follows.

Lemma 2.1 [16] Let (X,d) be a complete metric space, let T, and T,
are contractions from X into CL(X) with same contraction constant A. Then

H (Fix(T)), Fix(T,)) < %sup H (T, X, T,X),

- xe X

where 1€[0,1) .

Theorem 2.2 [16] Let (X,d) be a complete metric space, let
T,: X ->CL(X) be a sequence of contractions, ieNuU{0}. If
imise HMX,T,X) =0  uniformly for each xeX, then we have

lim .. H (Fix(T), Fix(T,)) = 0.

Throughout this paper J =[0,0) and S, (t) denotes the polynomial

S,(t)=1+t+...+t"" foreach neN and S, =0. We use the abbreviation "
for the nth iterate of a function w:J — J.

Definition 2.3 [19] A nondecreasing function y :J — J is said to be a
Bianchini-Grandolfi gauge function [19] on J if
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Dy (t) <o, forallt e J. (2.1)

n=0

Definition 2.4 [18] A function y : J — J is said to be a gauge function of
order r >1 on J if it satisfies the following conditions:

() w(t) <Ay (t) forall 2€(01) andteJ;

(i) w () <t forall teJ—{0}.

Remark 2.5 [18] Every gauge function of order r>10n J isa
Bianchini-Grandolfi gauge function on J .

Lemma 2.6 [18] Let y be a gauge function of order r>1on J.If ¢ isa
nonnegative and nondecreasing function on J satisfying
w(t) =tg(t) forall teJ, (2.2)
then it has the following properties:
(i) 0<g(t)<1lforall ted;

(i) p(At) <A 'g(t) forall 1e(0,1) and teJ.
Moreover, for each n>0 we have
(i) w"(t) <tg(t)*" forall teJ,

(iv) gw" () <) forall ted.

Samet etal. [1] defined « -y -contractive and o -admissible mappings in
the following way:

Definition 2.7 [1] Let (X,d) be a metric space and « : X x X — [0, ) be
a function. A mapping T:X —>X is called «-admissible if for each
X,y € X with a(x,y)>1, we have «(Tx,Ty)>1. Amapping T: X — X is called
o -y -contractive if for each x,ye Xwe have «a(x,y)d(Tx,Ty) <w(d(X,y)),
where y is a Bianchini Grandolfi gauge function.

Asl etal. [3] extended these notions to multivalued mappings as follow:

Definition 2.8 [3] Let (X,d) be a metric space and a: X x X —[0,) be
a fucntion. A mapping T:X — CL(X) is called «,-admissible if for each
X,y € X with a(x,y) =21, we have «,(Tx,Ty) =inf{a(a,b):acTx,beTy}>1.
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Definition 2.9 [3] Let (X,d) be a metric space and «: X x X — [0, ) be
a function. A mapping T : X — CL(X) is called «,-y -contractive if for each
X,y € X we have

a, (TXTY)H(TX,Ty) <w(d(x,y))
where y is a Bianchini Grandolfi gauge function.

Choudhury and Bandyopadhyay [17] introduced the notion of multivalued
a -y -contraction and proved a stability result for the fixed point sets of a

sequence of mappings satisfying multivalued « -y -contraction.

Definition 2.10 [17] Let (X,d) be a metric space, a: X x X —[0,o) be
a mapping and T:X —2* be a closed valued multifunction. Let y, be a
nondecreasing and continuous function with Zl//j (t) <o and w,(t) <t for each
t>0.Wesaythat T is a multivalued « -y -contraction if

a(X, YYHTX,Ty)<w.(d(x,y)) VX yeX.

Theorem 2.11 [17] Let (X,d) be a complete metric space, let {T.} is a
sequence of multivalued « -y -contractions which are also « -admissible with
same « . Further, for all ieN for any xe F(T,), we have a(x,y)>1 whenever
yeTx and for any xeF(T), we have a(x,y)>1 whenever yeTX. Then
limi_. H (Fix(T;), Fix(T)) = 0, that is, the fixed point sets of T, are stable.

3. Main results

We begin this section with the following definition.

Definition 3.1 Let (X,d) be a metric space and a: X x X —[0,x) be a
function. A mapping T :X — CL(X) is called « -y -almost contraction if for
each x,y e X we have

a, (TX,TY)H (TX, Ty) <y (d(x, y)) + Ld(y, TX) (3.1)
with strict inequality holds when x = y.Where L>0and y is a gauge function of
order r>1 on an interval J.
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Theorem 3.2 Let (X,d) be a complete metric space, y is a gauge
function of order r>1 on an interval J, and let T be an « -y -almost
contraction satisfying the following conditions:

(i) T is a,-admissible;

(i) there exists x, € X such that «,(x,,TX,) =1;

(iif) (@) T is continuous;
or

(b) for any sequence {x,} in X with X —>Xx as n—oo and
a(x,,,X,) =1 foreach neN, then a(x,,x)>1 foreach neN.
Then T has a fixed point.

Proof. By hypothesis, we have «,(X,,TX,)=1. Suppose x, €Tx, and
X, # X,, otherwise x, is a fixed point of T. Thus, a(x,,%)=1, by «,-
admissibility of T, we have «,(Tx,,Tx,) >1. From (3.1) we have

H (Mo, TX) < e, (TXo, TX ) H (TXo, T, ) <wr(d (%, %)) + Ld (%, TX,).
Thus there exists an g >0 such that
H (Mo, TX) + & < (d (X, X,))-
Then we have x, e Tx, such that
d (%, %) <d (X, TX)) + & <H(TX,, TX) + & <y (d (X, X))
By applying y in the above inequality we have
p(d (%, %)) <y (d (%, %)),
As T is a,-admissible, we have a(x,x,)=>1 implies «,(Tx,Tx,)>1. By
continuing in the same way we get a sequence {x,} in X such that x, €Tx, ,,
a(X, 4, X%,)=1and
d(X,, X,.1) <w"(d(X,, %)) foreachneN.

For each m > n, we have

m-1 m-1
d(X,, X,) < Zd (X Xi41) < Zl//l (d (%o, X,))-
Since y is a gauge function of order r>1, it follows that {x.} is a Cauchy
sequence in X . There exists x" € X such that x, — x". If T is continuous then

Tx, > Tx". Thus we have x"eTx". We assume (iii)-(b) holds. By using the
triangular inequality and «, -admissibility of T , we have
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d(x",Tx") <d (X", X,,,) + H(TX,,TX") <d (X, X, ;) + . (TX,, TX)H (Tx,, Tx")
<d(X Xg) + (A (%, X))+ LA (X", X,.).

Letting n — o in the above inequality, we have d(x",Tx")=0. Thus, x" is a
fixed point T .

We use following lemma in our next result.
Lemma 3.3 Let (X,d) be a complete metric space, yw is a gauge
function of order r>1 on an interval J, ¢:J — J is a nondecreasing function

defined by (2.2), and let T, and T, be «-w-almost contractions satisfying
following conditions:
(i) T, is «,-admissible;
(i) there exists x, € Fix(T,) such that «,(x,,T,X,) >1;
(iii) (a) T, is continuous;
or
(b) for any sequence {x,} in X with x,—>x as n—>o and
a(X, 4, X,) =1 foreach neN, then a(x,,x) =1 for each neN.
Then we have

H (Fix(T,), Fix(T,)) < %sup H (T, T, %),

- xeX

where A = @(d(x,, %)) with x, € Fix(T,) and for any x, € T,X, .

Proof. Suppose that 7 =sup,_, H(T,x,T,x). By hypothesis, we have
X, € Fix(T;) such that «,(X,,T,X,) 21. As H(T,X,,T,X,) <77, then for some fixed
&>0 we have x, eT,x, and X, # x,, otherwise X, is a fixed point of T, such that

d(Xy, %) <d (X, ToX) +& < H(T X, T,X) + & <n+e.
As a,(X,,T,X) =1, then a(X,,%x)=1, by «, -admissibility of T,, we have
o, (T,%,,T,%) =1. From (3.1) we have
H(T,%0, To%) < e, (TyXo, T,x ) H (To%0, To %) < w(d (%, %)) + Ld (%, T %)
Thus there exists an & >0 such that
H(T%0, T,%) + & <y (d(Xy, %))

Then we have X, € T,x, such that

d (X, X,) <d (X, To%) + & < H(TX, ToX) + & <y (d (X, X))
By applying y in the above inequality we have
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w(d (x4, %,)) <p* (d (%, %,)).

As T, is o, -admissible, we have a(x,x,)=1 implies «,(T,x,T,x,)=>1. By

continuing in the same way we get a sequence {X } in X such that x, eT,x ,,
a(X, 4, X%,)=1and

d(X,, X,.1) <w"(d(X,, %)) foreachneN.
For each m > n, we have

m-1 m-1
d (X, Xy) < Zd (X1 Xi11) < Zl//i (d (X, %))-

Since y is a gauge function of order r>1, it follows that {x.} is a Cauchy
sequence in X . There exists x" € X such that x, — x". If T, is continuous then
T,x, > T,x". Thus we have X" eT,x". We assume (iii)-(b) holds. By the
triangular inequality and e, -admissibility of T,, we have
d(x", T,x") <d (X", x,,,) + H(T,X,, T,x) <d (X", X,.,) + . (T,X,, T,XYH (T,x,,T,x")

<d (X7 X))+ (d (X, X)) + Ld (X7, X,.)-
Letting n — oo in the above inequality, we have d(x",T,x") =0. Moreover,

4%, X) < 2(A 0%, %) < D (0%, )) <Ak [+ A1 4477 4]

= 400 ) DA77 < d (%, )3 = 7 d (%, %),
i=0 i=0 1-4
since S;(r)>1i. Hence, we have

. A A
d(XO,X )Smd(xo,xl) Sm(?]‘f‘g)
Thus,

xeX

H (Fix(T,), Fix(T,)) < %sup H (T, T,%).

Lemma 3.4 Let (X,d) be a complete metric space, y is a gauge
function of order r>1 on an interval J, ¢:J — J is a nondecreasing function

defined by (2.2), and let T, and T, be «-w-almost contractions satisfying
following conditions:

(i) T, is a,-admissible;
(i) there exists x, € Fix(T,) such that o, (X,,T;X,) =1;

(iii) (@) T, is continuous;
or
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(b) for any sequence {x.,} in X with x —->x a n—>c and
a(x,,,X,) =1 foreach neN, then a(x,,x)>1 foreach neN.
Then we have

H (Fix(T,), Fix(T,)) < %sup H (T,x, T, %),

- xeX

where A = @(d(x,, %)) with x, € Fix(T,) and for any x, € T,X, .

Theorem 3.5 Let (X,d) be a complete metric space, y is a gauge
function of order r>1 on an interval J, ¢:J — J is a nondecreasing function

defined by (2.2), and let {T,},_, be a sequence of « -y -almost contractions under
same o and v, satisfying the following conditions:

(i) T, is «,-admissible for each neN;

(1) [im noe H (T, X, TyX) = 0 uniformly for each x e X ;

(ii1) there exists x, € Fix(T,) such that «, (X,,T,X,) =1 for each neN;

(iv) (a) T, is continuous for each neN;

or
(b) for any sequence {x,} in X with x,—>Xx as n—>o and

a(X, 4, X,) =1 foreach neN, then a(x,,x)>1 foreach neN.
Then we have lim,_,.. H(Fix(T,), Fix(T,)) =0.

Proof. By hypothesis (ii), for any %g* >0, where 1 =¢(d(x,,0)),

with x, € Fix(T,) and p T, x, for some n, such that
d (%, p) = max{d (X,, X;) : X, € Fix(Ty) and x; € T x, for any n},

we can find N such that sup,_, H(T,x,T;x) < %g* for each n> N . Hence by

using Lemma 3.4 we have H (Fix(T,), Fix(T,)) <&, foreach n> N .

Example 3.6 Let X =[0, ) be endowed with the usual metric d . Define
{T, : X = CL(X)},-, such that

X+3, .
Tyx= [O'T] if x<1

n

[x?,e*] otherwise
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and T, : X —> CL(X) by

0

{0} if x<1
{[xz,ex] otherwise
and a: X x X —[0,) by
1if x,ye[01]]

0 otherwise.

a(x,y) ={

First we show that each T, is « -y -almost contraction with y (t) :% for each

t>0and L=0.If x=ye[01], then

1 1
a*(TnX’Tny)H (TnX’Tny) = Hl X=y |< El X=y |: l//(d (X, y))!

otherwise
a, (TXTY)HTXTY) <w(d(X,y)).

. . . . t
It is easy to see that T, is also an « -y -almost contraction with w(t) = 5

for each t>0 and L=0. Further, for each neN, T, is «,-admissible and for
X, =0 Fix(T,) we have «,(X,,T,X,)=1. Also, T, >T, as n—c. For any
sequence {X.} in X with x, > x as n—oo and a(x,,,X,) =1 for each neN,
we have a(X,,X)=1 for each neN. Therefore, by Theorem 3.5, we have
H (Fix(T,), Fix(T,)) >0 as n > .

Definition 3.7 Let (X,d) be a metric space and «: X x X —[0,) be a
function. A mapping T : X — B(X) is called «,-y - -almost contraction if for
each x,y e X we have

o, (Tx,TY)o(Tx, Ty) <y (d(x, y)) + Ld(y, TX) 3.2)
where L>0and  is a gauge function of order r>1 on an interval J .

Theorem 3.8 Let (X,d) be a complete metric space, y is a gauge
function of order r>1 on an interval J, and let T be an «,-y-J -almost
contraction satisfying following conditions:

(1) T is a,-admissible;

(i) there exists x, € X such that «,(x,,TX,) =1;

(iii) (@) T is continuous;
or
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(b) for any sequence {x,} in X with X —Xx as n—oo and
a(x,,,X,) =1 foreach neN, then a(x,,x)>1 foreach neN.
Then T has an end point.

Proof. By hypothesis, we have «,(x,,TX,)>1, suppose X, €Tx,, then
a(Xy, %) =1, by e, -admissibility of T, «,(Tx,,Tx,) >1. From (3.2) we have
(T, TX,) < . (TXg, TX)S(TXo, TX,) < 1 (d (X, X)) + L (%, T,).
Thus, for each x, e Tx, we have
d (X, %;) < 6(TX,, Tx;) <y (d (X, X,))-
By applying y in the above inequality we have
w(d(X, X)) < w*(d (%01 %))
As T is a,-admissible, we have a(x,X,)>1 implies «,(Tx,Tx,)=>1. By
continuing in the same way we get a sequence {x,} in X such that x, €Tx, ,,
a(x, ,,%X,)>1and
d(X,,X,.1) <w"(d(x%,, X)) foreachneN.
For each m > n, we have

0%y %) < 3006, < S0 (@06 )

Since y is a gauge function of order r>1, it follows that {x,} is a Cauchy
sequence in X . There exists x" € X such that x, — x". If T is continuous then
Tx, > Tx". Thus we have x"eTx". We assume (iii)-(b) holds. By using the
triangular inequality and «,-admissibility of T , we have
O, TX") <d (X', x,,,)+o(Tx,, Tx") <d (X", x,,,) + e, (Tx,, Tx)o(Tx,, TX")
<d (X%, X,,,) +w(d(x,, X))+ Ld (X", X,,,)-
Letting n — oo in the above inequality, we have 6(x*,Tx*)=0. Thus {xX"}=Tx".

Lemma 3.9 Let (X,d) be a complete metric space, w is a gauge
function of order r>1 on an interval J, ¢:J —R" is a nondecreasing function

defined by (2.2), and let T, and T, be «,-w -¢ -almost contractions satisfying the
following conditions:

(i) T, is a,-admissible;

(i) there exists x, € End(T,) such that «,(x,,T,X,) >1;

(iii) (@) T, is continuous;
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or
(b) for any sequence {x,} in X with x,—>x as n—>o and
a(X, 4, X,) =1 foreach neN, then a(x,,x)>1 foreach neN.
Then we have

S(End(T,), End(T,)) < ﬁsup STX,T,),

- xeX

where A = ¢(d(X,, %)) with x, € End(T,) and for any x, eT,X,.

Proof. Suppose that 7 =sup, ,d(T;x,T,x). By hypothesis, we have
X, € End(T,) such that «,(x,,T,X,)=1. As O(T,x,,T,X,) <7, then for each
X, € T,X, we have
d(Xo, %) < (T %, T, %) < 7.
As  a,(X,T,%)=1, then «a(X,,x)=1, by o,-admissibility of T,,
o, (T,%,,T,%) =1. From (3.2) we have
S(Ty%o ToXy) < o (To%0, To% )6 (TyXg, TpX,) <y (d (%o, X)) + Ld (%, TX).
Thus for each x, eT,x, we have
d (%, %) < 5(T, %, T,%) <y (d (%, ).
By applying y in the above inequality we have
w(d(X, %)) < w*(d (%01 %)).
As T, is o, -admissible, we have a(x,X,)=>1 implies «,(T,x,T,X,)=1. By
continuing in the same way we get a sequence {x,} in X such that x, eT,X, ,,
a(x, ,,%,)>1and
d(X,,X,.1) <w"(d(x%,, X)) foreachneN.
For each m > n, we have

A%, %) < S A% %) < S (A (%, ).

Since y is a gauge function of order r>1, it follows that {x.} is a Cauchy
sequence in X . There exists x" € X such that x, — x". If T, is continuous then
T,x, > T,x". Thus we have X" eT,x". We assume (iii)-(b) holds. By the
triangular inequality and o, -admissibility of T, , we have
O(X", T, X)) <d (X', X, 1) +O(T,X,, T,x") <d (X", X,,,) + ., (T,X,, T,x)o(T,x,, T,X")
<A(X, Xy0) + (A (%, X))+ LA (X, X,,).
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Letting n—oco in the above inequality, we have &(x*,T,x")=0, that is,
{x’}=T,x". By using the triangular inequality, we get

00X € 00, %,) € 39 (A0 %)) €A Ot 1)+ AX7 4227 4.
i=0 i=0

0 (r 0 i /1
=d 06 x) 24" <d 0, 0) DA = 7 d 0%, %),
i=0 i=0

since S,(r) >i. Hence, we have
A A
d(X,, X)) <——d(X,,%) <——(n).
(%, X7) 1_2(0 1) 1_/1(77)
Thus,
S(End(T,), End(T,)) < ﬁsup S(TX,T,X).

- xeX

Theorem 3.10 Let (X,d) be a complete metric space, y is a gauge
function of order r>1 on an interval J, ¢:J — J is a nondecreasing function
defined by (2.2), and let {T.} be a sequence of a.-w-J -almost contractions
under same « and y . Further, assume that the following conditions:

(i) T, is «,-admissible for each neN;

(i) lim ne O (T, X, T,x) =0 uniformly for each xe X ;

(iii) there exists x, € End(T,) such that e, (x,,T,X,) =1 for each neN;

(iv) (a) T, is continuous for each neN;

or

(b) for any sequence {x,} in X with X —>Xx as n—oo and
a(x,,,X,) =1 foreach neN, then a(x,,x)>1 for each neN.
Then we have lim ._,..0(End(T,),End(T,))=0.

1-4
A
X, € End(T,) and p €T, x, for some n, such that

d (%, 0) = max{d(x,,X;) : X, € End(T,) and x; €T x, for any n},

Proof. By hypothesis (ii), for any g, >0, where 1 =¢(d(x,,0)) with

we can find N such that sup,_, o(T, X, ToX) < g, for each n> N, Hence by

using Lemma 3.9 we have o(Fix(T,), Fix(T,)) <&, foreach n> N .
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