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STABILIZATION OF A TWO-WHEELED INVERTED
PENDULUM ROBOT

Mihai Valentin PREDOI'*, Sergiu STRATILAZ, Catalina-Ilinca DAN?,
Roxana-Alexandra PETRE*, Daniel-Eugeniu CRUNTEANU?

In recent years, the interest in sending exploration robots on other planets,
satellites or smaller celestial bodies, has increased considerably. While the now
classical configuration with six wheels remains as primary option for such missions,
we investigate in the present paper a simpler exploration robot, moving on only two
wheels. The advantages of higher mobility in narrow spaces and lower mass come
with an inconvenience: the stability of such a robot. In the present paper is
investigated the stability problem of such a robot.

Keywords: Stabilized inverted pendulum, two-wheeled robot.
1. Introduction

Nowadays, mobile robots are becoming a common presence, even in space
missions. They are used for various tasks, such as exploration, object manipulation,
search and rescue in hard-to-reach human-accessible spaces, and entertainment,
especially among young people. Legged robots have more degrees of freedom than
other types of robots, making them more challenging to design and control, even
though they can overcome some obstacles.

Wheeled robots require less dynamics and energy than legged robots to establish
contact with the ground and provide propulsion, given their direct contact with it
[1]. They also have a simpler mechanical structure, which allows for significant
size reduction and higher energy efficiency.
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Due to their advantages, such as the ability to make zero-radius turns and agility
in tight and crowded spaces, the two-wheeled inverted pendulum (TWIP) robot has
become a significant research subject in recent decades [2]. In recent years, an
TWIP robot has become an attractive option for urban patrols or daily commuting,
such as Segways, due to the increasing severity of urban traffic congestion. By
improving their mobility and requiring less space, TWIP robots, like Anybots QB
[3], can also be selected as service robot platforms. An TWIP robot can be used as
a learning tool or as a research object for various experiments that can help future
space missions, given that it represents an underactuated and nonlinear system [2].

Being underactuated, the robot has more degrees of freedom than control inputs.
Dynamics can be greatly simplified by having robots with at least three wheels,
which allows for static stability. A four-wheel design is also widespread; this is
particularly noticeable in vehicles, as the larger support plane improves stability at
high speeds [1]. However, when there are more than three wheels, the mechanism
becomes too restricted, and except for flat terrain, a suspension system is necessary.
Therefore, the statically unstable type of two-wheeled robots is the subject of this
research. Due to their two coaxial wheels positioned on each side of an intermediate
body and their center of mass being above the wheel axles, these robots are at risk
of toppling over and therefore need to be actively stabilized [4].

Two-wheeled robots are still much easier to maneuver than legged ones, even
though they pose a greater operational challenge than statically stable wheeled
robots. Due to their wheel arrangement, which allows them to make quick turns like
differential drive robots, they are extremely maneuverable [5], [1]. Their ability to
spin on the spot compensates for their unstable nature. Through active stabilization,
even a robot with a larger center of mass can compensate for any disturbances that
could otherwise cause a statically stable robot to topple over. Due to their ability to
navigate tight spaces and short hallways, two-wheeled robots can be taller and have
a smaller footprint, making them ideal for indoor environments.

The manuscript is organized as follows: from the classical inverted Kapitsa
pendulum studied in paragraph 2, to which we replace the controlled vertical
displacement of the hinge by a controlled force, we investigate the inverted
pendulum with horizontal motion of the hinge which is acted by a harmonic force,
and we deduce the stability domains in paragraph 3. In paragraph 4 is investigated
the two-wheels robot which is acted by controlled motor torques. The Proportional-
Differential- Integral (PID) controller is described, and the practical obtained results
are presented in the 5-th paragraph. All mechanical models are followed by
numerical examples using Partial-Differential-Equations (PDE) solvers applied to
our systems of PDE.

One objective of this study on two-wheeled robots is their motion in
environments with obstacles, where robots need to accomplish additional actions.
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2. The inverted pendulum stabilized by forced vertical motion

An inverted mathematical pendulum made of a material point of mass m at
the end of a mass-less rod, stabilized by a harmonic vertical motion of the hinge
was first investigated by P.L Kapitsa [6]. Many researchers developed this problem,
e.g. refs. [7], [8], [9].

In this paragraph is studied an inverted physical pendulum, which is made of
a rigid rod of mass m and length /, having the pivot joint moving along the vertical
direction. The rod is hinged to a slider on mass M, which is moved by an applied
vertical force F(¢) (Fig. 1). This is a generalization of the classical Kapitsa
pendulum, with forces acting the slider instead of imposed displacements.
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Fig. 1. The inverted pendulum with vertical hinge motion. OgX¢yo is a fixed frame, Oxy is a
moving frame

Using as generalized parameters the position y(z) of the hinge and the angle 6(z) of
the rod with the vertical direction, the kinetic energy of the mechanical system is:

2
T=%(m+M)y'2+%éz—%zy'ésme : (1)
The generalized forces associated to the selected parameters are :
I .
Q,=F(t)-(m+M)g; Qezmgasmﬁ (2)

The Lagrange equations [10] for this mechanical system can be written:

Z—Ié—j)sinﬁz gsinf
> . 3)
Mz—ésin@ = 6? cos@+2F(t)_(m+M)g
m / ml
The classical Kapitsa approach is to consider the hinge displacement

y(t) =esin pt , with a small amplitude e and angular frequency p and denoting by
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@y = \/% , the angular frequency of the equivalent simple pendulum. With these

notations, the first of eq. (3) becomes :

2
é—ia)g 1-42_sin pt |sin0 =0. 4)
2 / wg
Considering small angles 6, the usual approximation sin@[1 & holds and the
previous equation takes the form of a classical Kapitsa pendulum differential

equation [11]:
2
é—wg{l—fl’—zsmpt]ko. 5)
lw

Clearly, one condition for stability applies to the hinge motion: ep? > iw?.

In the following are used the differential equations (3), which are considering an
applied force F (t)= F, sin pt moving the system and not an imposed displacement,
taking into account the mass M of the slider. The nonlinear differential equations
are numerically integrated using the ode45 function of Matlab [12] for the following
numerical values: M = 0.3 kg , m=0.3 kg, /=0.12 m and a harmonic vertical force
F = F, sin pt with Fy € [0.2 5] N and p = 2=xf, in which the forced motion frequency
is in the range f = 0.25 — 5 Hz. The initial conditions used for the numerical
integration are: 6(0)=1°=0.0175 rad; 9(0) =0 rad/s; x(0)=0m; x(0)=0m/s.

The numerical solutions shown on Fig. 2 represent an unstable motion Fy=2N,

f= 1Hz (a) and a stabilized motion for Fy=2N, /= 2Hz (b). Since the mechanical
system has no damping, the motion cannot be asymptotically stable. Consequently,
the system is considered stable if it corresponds to a quasi-stationary motion during
the integration lapse of time.
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Fig. 2 The angular displacement for an inverted pendulum with Fo=2N: unstable for f=1Hz (a) and
stable for f=2Hz (b)
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It is interesting to note that the spectral analysis of the signal in Fig. 2b includes
peaks at 0.4 Hz, 1.6 Hz and 2.4 Hz which indicates a sort of beat phenomenon
around f=2 Hz. The dependency of the stability, considered as oscillations with
bounded limits, on the set of parameters (f, Fy) is shown on Fig. 3 for two initial
angles 0y =1° and 5°. The stability boundary is a smooth curve and the stability sets
are marked by dots, showing a weak influence of the initial angle.

a) . ’ b 7 .
Fig. 3 Stability domain (dots) in the frequency-force analysis: initial angle 8y =1° (a); 6y =5° (b)

The stability problem for the horizontal motion of the slider will be studied in the
next paragraph.

3. The inverted pendulum stabilized by forced horizontal motion

The inverted pendulum with horizontal motion of the hinge was less studied, and
only a few references can be found, among which it is mentioned ref. [13].
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Fig. 4. The inverted pendulum with horizontal hinge forced motion. OgXoyo is a fixed frame, Oxy
is a moving frame.
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For the mechanical system shown on Fig. 4 in which the mechanical parameters
are the same as in the previous paragraph, the kinetic energy is:
T:%(m+M)x2+mleéz+%lx9cos9. (6)
The generalized forces associated to the selected parameters are :
0, =F(t); ngmgésinﬁ, (7)
in which F (¢) = F, sin pt , with Fo [N] the amplitude of the harmonic stabilizing

force and p [rad/s] its angular frequency. The Lagrange equations [10] deduced for
this mechanical system can be written as:

(M+m))'é+m71¢§cos€:F(t)+m7192sin0

) @®)

lmb’c‘cost9+ﬂt§ =mg—sin @
2 3 2

We keep the nonlinear terms in the system and the temporal solution is obtained
by numerical integration using the ode45 function in Matlab [12].

As a numerical example, the same parameters were taken: M = 0.3 kg, m=0.3
kg, I=0.12 m and a harmonic horizontal force F = Fjsin ptwith Fp=0.2 ... 5N
and p = 2xf, in which the forced motion frequency is in the range f=0.01 — 0.5 Hz.
The initial conditions used for the numerical integration are:
0(0)=1°=0.0175 rad; 6?(0) =0rad/s; x(0)=0m; x(0)=0m/s.

For the particular case Fp =2N and frequency f; = 0.05 Hz, a stabilized motion

was obtained, as shown on Fig. 5a. On the contrary, for £y =2N and />=0.15 Hz, the
motion becomes unstable (Fig. 5b).

Fig. 5 Pendulum angle evolution in time: stable motion (a), unstable motion (b)

This unusual behavior, indicates the existence of stability domains influenced by
the applied force and of its frequency. On Fig. 6 are plotted the stabile solutions as
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a dot for each pair (Fy, f). It can be remarked that the system can be stabilized by
small forces over a wider range of frequencies. As the amplitude of the force
increases, the instability domain (without dots) widens, but not in a regular manner:
the instability boundary a rugged curve. Moreover, the influence of the initial 8
angle from 1° in Fig. 6a increased to 5° in Fig. 6b, is not important, the widening
of the instability domain is limited.
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Fig. 6 Stability domain (dotted) in the frequency-force analysis: initial 6 angle 1°(a) and 5°(b).

One important remark concerns the spectral analysis of the stabilized signals. For
the motion shown on Fig. 5a there are two dominant frequencies: f= 0.05 Hz and
fp»=0.12 Hz. The first one is the excitation frequency, which is expected. However,
the second frequency f,, is an interesting result since this mechanical system has as
natural frequency f,=2.23 Hz for the free oscillations, which do not correspond to
the identified frequency f,.

4. The two-wheeled robot with active control

In the previous two paragraphs, was studied the stability of mechanical structures
exhibiting inverted physical pendulums. However, this is a passive stabilization,
requiring a permanent oscillatory acting force, which implies a large energy
consumption. In view of space robots applications, a structure with two wheels and
the robot body like an inverted physical pendulum is an interesting option. It
requires less space for maneuvers and less energy consumption if the stability is
actively controlled, acting only when possible loss of balance is detected.

The two-wheeled robot can be associated with more or less simplified models.
We consider the 2-DOF model shown on Fig. 7: Two identical wheels (radius » and
mass m) can roll without sliding on the horizontal surface Oxo, with sliding
coefficient x4 and rolling friction coefficient s, under the action of two identical
motors, each giving a torque M,.. The robot body is defined by its weight Mg,
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applied at the mass center OC = d and its mechanical moment of inertia about the
central axis Oz: Jc.

The positional parameters are the position x(z) of the wheels centers, relative to
the fixed frame (Ooxoyo) and the pitch angle 8(?) of the robot’s body, relative to the
vertical direction (Ooyo).

x(D)_ | 4.5

b)

Fig. 7. The two-wheeled robot in perspective drawing (a) and the mechanical model (b). Ogxoyo is
a fixed frame, Oxy is a moving frame. The motor moment My, is in a control loop with an inertial
measurement unit (IMU) and a microcontroller ATmega328.

It is assumed that the wheels are rolling without sliding, so that the wheels
rotations ¢(?) are linked to the displacements of their centers: x(7)=rp(¢). The

kinetic energy of the robot is:

T=M+3’"x2 +Mx9dcos€+%(Md2+JC)€’2 ©

The generalized forces are obtained from the virtual work of applied forces and
moments oW = [sz -s(M +2m)g—st(9"2 cos 6+ sin 9)}Q+(Mgd sin@ —2M,, )30 .
r

It has been included, using the principle of d’ Alembert, the influence of robot pitch
motion on the normal reaction. However, for the slow motions around equilibrium
positions, this term can be neglected. Consequently:
_2M,, —s(M +2m)g

O = ; (10)

Oy =Mgdsinf-2M,,
The Lagrange equations for this model of robot become:
2M,, (9)—S(M+2m)g

; (11)

(M+3m)5é+Md(écos0—92 sinH) =
(Je +Md® )+ Mdicos 0 = Mgd sin 0 —2M,, (6)

This system of nonlinear differential equations was integrated using an algorithm
written in MATLAB. The two electric motors with reduction gears have a linear
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characteristic torque-angular velocity as: M, (f) =M, [1 S J in which Minax
r VW ax

= 0.438 Nm and wnx=36.65 rad/s, taken as numerical examples from the existing
robot investigated in the following.

The robot is controlled by a proportional-differential (PD) control loop. The
information @ and @ are provided by an inertial measurement unit (IMU) fixed to

the robot chassis. These information are used by microcontroller ATmega328 on
which was programmed the code which controls the voltage applied to the two
motors, providing the corresponding torque M:

M,=M,, Gj[kpé‘(t) +k,0(1)]. (12)

The two constants of the PD controller are determined by successive tests, since
the available torque already depends on the instantaneous angular velocity of the
wheels. The mechanical properties of the robot are similar to those used in the
previous paragraphs. A sliding friction coefficient x>0.1 is sufficient to provide
rolling without sliding for both wheels. For the existing robot, the constructive data
are summarized in Table 1.

Table 1

Robot constructive data
Wheels radius (mm) | Wheel mass (g) | Chassy mass (kg)
25 80 0.445

We determined using the CAD model shown on Fig. 7a the central moment of
inertia about an axis parallel to the wheel’s axis: Jc = 0.0041 kg.m? and we used an
estimated rolling friction coefficient s=0.5 mm. The initial conditions are: 6(0) =

5°; 9(0)=0;x=0; x=0.

b) .

Fig. 8 Robot’s inclination as function of time, for two values of k.
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The following numerical tests were the most suggestive, for a simulation time of
3s. Using k,=0.5 Nm/rad; k4=0.001 Nms/rad was obtained the dependency shown
on Fig. 8a.

Doubling the proportionality constant to k,=1 Nm/rad produces the plot in Fig.
8b which indicates an increased frequency of oscillation of the robot, but the final
values remains relatively constant.

The differential constant ks was changed to k=0.01 Nms/rad for the same £,
values and the results are shown on Fig. 9. The strong damping effect of 4y is
apparent. It can be considered that practically after 2s the robot is stabilized, which
is an acceptable duration.

Moreover, the influence of k&, can be seen on the asymptotic value of the
inclination, which is decreasing form 0.3° to 0.1°. It can be considered that as a
minimal requirement k,=1 Nm/rad and £,=0.01 Nms/rad, are providing acceptable
results. Certainly, higher values can get the final value of the inclination closer to
zero and much faster.

(vea)

z
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Fig. 9 Robot’s inclination as function of time, for two values of k..

W\

Fig. 10 Simulation of the accepted robot inclination vs. time
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For example on Fig. 10 is shown the obtained 6(z) for £,=2 Nm/rad and £,~=0.05
Nms/rad, which is the selected set of parameters implemented on the physical robot.

5. Conclusions

The possible use of two wheeled robots for space exploration has the
advantage of less space for maneuvers and less energy consumption if the stability
is actively controlled. In this work was investigated the inverted physical pendulum
with vertical and horizontal forced motion of the slider on which is hinged the body
of the robot. The Lagrange equations for these cases were deduced and numerical
examples were provided. Stability domains are determined for sets frequency-force
for both the vertical and horizontal harmonic forced motions.

However, rendering stable an inverted pendulum -like robot is not energy
efficient and we have developed a mechanical model for a robot stabilized by a
control loop.

In the case of a two-wheeled robot with controlled torque applied to the
wheels, were deduced the nonlinear differential equations of motion. The PD
controller was introduced in the numerical simulation and several examples were
investigated. We have shown that the frequency of oscillation of the motor increases
with increasing &, and the damping of oscillations is increasing with increasing kq.
For practical reasons, were selected for the real robot, higher values for &, and k4
which produce a strong damping (final value of the inclination is close to zero and
is reached after 0.6s).

The investigated case of a TWIP robot opens the perspective of further
studies for the controlled forward-backward motions and for rotations around the
vertical axis.
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