

ERRATUM TO: ON OBSTINATE IDEALS IN MV-ALGEBRAS

Mohammad Sina Asadzadeh¹, Gholam Reza Rezaei², Javad Jamalzadeh³

The paper referred to in the title was published in Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 76(2014), 53-62, contains a crucial unclarity, which makes some results are either obvious or wrong. This erratum is devoted to clarify some gaps in the concept of obstinate ideals in MV-algebras which studied in the original version of this article.

Keywords: MV-algebra, obstinate ideal, supermaximal ideal, bipartite MV-algebra.

MSC2010: 03B50, 06D35.

The notion of obstinate ideals in MV-algebras were introduced and investigated in [3, 1] under the name of supermaximal ideals. Let us recall that, a proper ideal I of an MV-algebra A is called *obstinate* if $A = I \cup \neg I$, where $\neg I = \{\neg x : x \in I\}$. As an immediate consequence of the definition, the proper ideal $\{0\}$ of an MV-algebra A is an obstinate ideal if and only if $A = \{0, 1\}$. The simplest non-trivial Boolean algebra $\mathbf{2} = \{0, 1\}$ is simple and locally finite, hence:

Fact 1. Theorem 2.3, Lemmata 2.2, 2.3 and Corollary 2.4 of [4] are obvious.

Example. Let $A = \{0, a, b, 1\}$, where $0 < a, b < 1$. Define \oplus, \neg as follows:

\oplus	0	a	b	1
0	0	a	b	1
a	a	a	1	1
b	b	1	b	1
1	1	1	1	1

\neg	0	a	b	1
	1	b	a	0

Then $(A; \oplus, \neg, 0)$ is a Boolean algebra. The set $I = \{0, a\}$ is an obstinate ideal of A , but $\{0\}$ is not an obstinate ideal.

According to the above example we have the following:

Fact 2. The implications $(i) \Rightarrow (ii)$ and $(i) \Rightarrow (iii)$ of Corollary 2.3 of [4] are wrong.

¹Corresponding author: Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran, e-mail: msina.asadzadeh@pgs.usb.ac.ir

²Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran

³Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran

An MV-alegbra A is called *bipartite* if there exists a maximal ideal M of A which generates A (see [2]). Every obstinate ideal is maximal, so if I is an obstinate ideal of A , then the quotient algebra of A by the ideal I is isomorphic to $\mathbf{2}$, by Theorem 4.9 of [2]. Thus:

Fact 3. Corollary 2.2 and Theorem 2.4 of [4] are immediate.

Furthermore we have have the following fact:

Fact 4. Theorems 3.1, 3.2 and Corollary 3.1 of [4] are immediate from the implications $(vii) \Rightarrow (v)$, $(vi) \Rightarrow (vii)$ and $(ii) \Rightarrow (vii)$ of Theorem 5.1 of [2], respectively.

REF E R E N C E S

- [1] *L. P. Belluce, A. Di Nola and B. Gerla*, Perfect MV-algebras and their Logic, *Appl. Categ. Struct.*, **15**(2007), 135-151 (DOI 10.1007/s10485-007-9069-4).
- [2] *A. Di Nola, F. Liguori and S. Sessa*, Using maximal ideals in the classification of MV-algebras, *Port. Math.*, **50**(1993), 87-102.
- [3] *A. Di Nola, A. Lettieri and P. Belluce*, On symmetric MV-polynomials, In: *Proceedings of 26th Linz Seminar on Fuzzy Set Theory*, Linz, Austria, pp 40-44, 2005.
- [4] *F. Forouzesh, E. Eslami and A. Borumand Saeid*, On obstinate ideals in MV-algebras, *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.*, **76**(2014), 53-62.