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ERRATUM TO: ON OBSTINATE IDEALS IN MV-ALGEBRAS
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The paper referred to in the title was published in Politehn.
Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 76(2014), 53-62,
contains a crucial unclarity, which makes some results are either obvious
or wrong. This erratum is devoted to clarify some gaps in the concept of
obstinate ideals in MV-algebras which studied in the original version of this
article.
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The notion of obstinate ideals in MV-algebras were introduced and in-
vestigated in [3, 1] under the name of supermaximal ideals. Let us recall that,
a proper ideal I of an MV-algebra A is called obstinate if A = I ∪ ¬I, where
¬I = {¬x : x ∈ I}. As an immediate consequence of the definition, the proper
ideal {0} of an MV-algebra A is an obstinate ideal if and only if A = {0, 1}.
The simplest non-trivial Boolean algebra 2 = {0, 1} is simple and locally finite,
hence:

Fact 1. Theorem 2.3, Lemmata 2.2, 2.3 and Corollary 2.4 of [4] are obvious.

Example. Let A = {0, a, b, 1}, where 0 < a, b < 1. Define ⊕,¬ as follows:

⊕ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

¬ 0 a b 1
1 b a 0

Then (A;⊕,¬, 0) is a Boolean algebra. The set I = {0, a} is an obstinate ideal
of A, but {0} is not an obstinate ideal.

According to the above example we have the following:

Fact 2. The implications (i) ⇒ (ii) and (i) ⇒ (iii) of Corollary 2.3 of [4] are
wrong.
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An MV-alegbra A is called bipartite if there exists a maximal ideal M of
A which generates A (see [2]). Every obstinate ideal is maximal, so if I is an
obstinate ideal of A, then the quotient algebra of A by the ideal I is isomorphic
to 2, by Theorem 4.9 of [2]. Thus:

Fact 3. Corollary 2.2 and Theorem 2.4 of [4] are immediate.

Furthermore we have have the following fact:

Fact 4. Theorems 3.1, 3.2 and Corollary 3.1 of [4] are immediate from the
implications (vii) ⇒ (v), (vi) ⇒ (vii) and (ii) ⇒ (vii) of Theorem 5.1 of [2],
respectively.
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