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OSCILLATORY BEHAVIOR OF A CLASS OF FRACTIONAL

DIFFERENTIAL EQUATIONS WITH DAMPING

Da-Xue Chen1

This paper deals with the oscillatory behavior of the fractional differ-

ential equation with damping

(D1+α
− y)(t)− p(t)(Dα

−y)(t) + q(t)f

(∫ ∞

t

(v − t)−αy(v)dv

)
= 0 for t > 0,

where Dα
−y is the Liouville right-sided fractional derivative of order α ∈ (0, 1)

of y. We obtain some sufficient conditions for the oscillatory behavior of the

equation by employing a generalized Riccati transformation technique and certain

parameter functions. Examples are given to show the significance of our results.

To the best of our knowledge, nothing is known regarding the oscillatory behavior

of the equation, so this paper initiates the study.
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1. Introduction

In this paper, we discuss the oscillatory behavior of the fractional differential
equation with damping

(D1+α
− y)(t)− p(t)(Dα

−y)(t) + q(t)f

(∫ ∞

t
(v − t)−αy(v)dv

)
= 0 for t > 0, (1.1)

where α ∈ (0, 1) is a constant, Dα
−y is the Liouville right-sided fractional derivative

of order α of y defined by (Dα
−y)(t) := − 1

Γ(1−α)
d
dt

∫∞
t (v − t)−αy(v)dv for t ∈ R+ :=

(0,∞), here Γ is the gamma function defined by Γ(t) :=
∫∞
0 vt−1e−vdv for t ∈ R+,

and the following conditions are assumed to hold:

(S) p ≥ 0 and q > 0 are continuous functions on [t0,∞) for a certain t0 > 0,
f : R → R is a continuous function such that f(u)/u ≥ K for a certain

constant K > 0 and for all u ̸= 0, and
∫∞
t0

exp
(
−

∫ t
t0
p(v)dv

)
dt = ∞.

By a solution of (1.1) we mean a nontrivial function y ∈ C(R+,R) such that∫∞
t (v − t)−αy(v)dv ∈ C1(R+,R), Dα

−y ∈ C1(R+,R) and satisfying (1.1) on R+.
Our attention is restricted to those solutions of (1.1) which exist on R+ and satisfy
sup{|y(t)| : t > t∗} > 0 for any t∗ ≥ 0. A solution y of (1.1) is said to be oscillatory if
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it is neither eventually positive nor eventually negative; otherwise it is nonoscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Fractional differential equations are generalizations of classical differential
equations of integer order and have gained considerable popularity and importance
during the past three decades or so, due mainly to their demonstrated applications in
numerous seemingly diverse and widespread fields of science and engineering. Nowa-
days the number of scientific and engineering problems involving fractional calculus
is already very large and still growing. It was found that various, especially inter-
disciplinary applications can be elegantly modeled with the help of the fractional
derivatives. Fractional differentials and integrals provide more accurate models of
systems under consideration. Some of the areas of present applications of fractional
calculus include fluid flow, rheology, dynamical processes in self-similar and porous
structures, diffusive transport akin to diffusion, electrical networks, probability and
statistics, control theory of dynamical systems, viscoelasticity, electrochemistry of
corrosion, chemical physics, optics and signal processing, economics and so on; for
example, see [1–6] and the references cited therein.

Recently, there have been some books on the subject of fractional calculus
and fractional differential equations, such as the books [7–11]. Many papers have
investigated some aspects of fractional differential equations, such as the existence
and uniqueness of solutions to Cauchy type problems, the methods for explicit and
numerical solutions, and the stability of solutions, and we refer to [12–19].

However, to the best of our knowledge very little is known regarding the oscil-
latory behavior of fractional differential equations up to now. Especially, nothing is
known regarding the oscillatory behavior of (1.1) up to now. To develop the qualita-
tive properties of fractional differential equations, it is of great interest to study the
oscillatory behavior of (1.1). In this paper, we establish several oscillation criteria
for (1.1) by applying a generalized Riccati transformation technique and certain pa-
rameter functions. Our results are essential new. We also provide several examples
to illustrate the results.

2. Preliminaries and lemmas

In this section, we present the definitions of fractional integrals and fractional
derivatives, which are used throughout this paper. More details can be found in
[7–11]. We also give several lemmas, which are useful in the proof of our results.

There are several kinds of definitions of fractional integrals and fractional
derivatives, such as the Riemann-Liouville definition, the Caputo definition, the Li-
ouville definition, the Grünwald-Letnikov definition, the Erdélyi-Kober definition
and the Hadamard definition. We adopt the Liouville right-sided definition on the
half-axis R+ for the purpose of this paper.

Definition 2.1. (Kilbas et al. [10]) The Liouville right-sided fractional integral of
order β > 0 of a function g : R+ → R on the half-axis R+ is given by

(Iβ−g)(t) :=
1

Γ(β)

∫ ∞

t
(v − t)β−1g(v)dv for t > 0, (2.1)
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provided the right hand side is pointwise defined on R+, where Γ is the gamma
function.

Definition 2.2. (Kilbas et al. [10]) The Liouville right-sided fractional derivative
of order β > 0 of a function g : R+ → R on the half-axis R+ is given by

(Dβ
−g)(t) := (−1)⌈β⌉

d⌈β⌉

dt⌈β⌉
(I

⌈β⌉−β
− g)(t)

= (−1)⌈β⌉
1

Γ(⌈β⌉ − β)

d⌈β⌉

dt⌈β⌉

∫ ∞

t
(v − t)⌈β⌉−β−1g(v)dv for t > 0, (2.2)

provided the right hand side is pointwise defined on R+, where ⌈β⌉ := min{z ∈ Z :
z ≥ β} is the ceiling function.

Lemma 2.1. If y is a solution of (1.1), then (D1+α
− y)(t) = −(Dα

−y)
′(t) for α ∈ (0, 1)

and t > 0.

Proof. From (2.2), for α ∈ (0, 1) and t > 0 we have

(D1+α
− y)(t)

= (−1)⌈1+α⌉ 1

Γ(⌈1 + α⌉ − (1 + α))

d⌈1+α⌉

dt⌈1+α⌉

∫ ∞

t
(v − t)⌈1+α⌉−(1+α)−1y(v)dv

= −(−1)⌈α⌉
1

Γ(⌈α⌉ − α)

d⌈α⌉+1

dt⌈α⌉+1

∫ ∞

t
(v − t)⌈α⌉−α−1y(v)dv

= − d

dt

[
(−1)⌈α⌉

1

Γ(⌈α⌉ − α)

d⌈α⌉

dt⌈α⌉

∫ ∞

t
(v − t)⌈α⌉−α−1y(v)dv

]
= −(Dα

−y)
′(t).

The proof is complete. �

Lemma 2.2. Let y be a solution of (1.1) and

G(t) :=

∫ ∞

t
(v − t)−αy(v)dv for α ∈ (0, 1) and t > 0, (2.3)

then

G′(t) = −Γ(1− α)(Dα
−y)(t) for α ∈ (0, 1) and t > 0. (2.4)

Proof. From (2.3) and (2.2), for α ∈ (0, 1) and t > 0 we obtain

G′(t) = Γ(1− α)
1

Γ(1− α)

d

dt

∫ ∞

t
(v − t)−αy(v)dv

= −Γ(1− α)

[
(−1)⌈α⌉

1

Γ(⌈α⌉ − α)

d⌈α⌉

dt⌈α⌉

∫ ∞

t
(v − t)⌈α⌉−α−1y(v)dv

]
= −Γ(1− α)(Dα

−y)(t).

The proof is complete. �
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Lemma 2.3. Let a ≥ 0, b,X ∈ R, then b
√
aX − aX2 ≤ b2

4 .

Proof. b
√
aX − aX2 = b2

4 −
(√

aX − b
2

)2 ≤ b2

4 . The proof is complete. �

3. Main results

Theorem 3.1. Suppose that (S) holds and that there exists a positive function
r ∈ C1[t0,∞) such that

lim sup
t→∞

∫ t

t0

[
Kr(s)q(s)V (s)− µr′+(s)

]
ds = ∞ (3.1)

for any constant µ > 0, where r′+(s) := max{r′(s), 0} and

V (s) := exp

(∫ s

t0

p(v)dv

)
for s ≥ t0. (3.2)

Then every solution of (1.1) is oscillatory.

Proof. Suppose that y is a nonoscillatory solution of (1.1). Without loss of gener-
ality, we may assume that y is an eventually positive solution of (1.1). Then there
exists t1 ∈ [t0,∞) such that

y(t) > 0 and G(t) > 0 for t ∈ [t1,∞), (3.3)

where G is defined as in (2.3). Hence, from Lemma 2.1, (3.2) and (1.1) it follows
that [

(Dα
−y)(t)V (t)

]′
= −(D1+α

− y)(t)V (t) + (Dα
−y)(t)p(t)V (t)

= q(t)f(G(t))V (t) > 0 for t ∈ [t1,∞). (3.4)

Thus (Dα
−y)(t)V (t) is strictly increasing on [t1,∞) and is eventually of one sign.

Since V (t) > 0 for t ∈ [t0,∞), we see that (Dα
−y)(t) is eventually of one sign. We

now claim

(Dα
−y)(t) < 0 for t ∈ [t1,∞). (3.5)

If not, then (Dα
−y)(t) is eventually positive and there exists t2 ∈ [t1,∞) such that

(Dα
−y)(t2) > 0. Since (Dα

−y)(t)V (t) is strictly increasing on [t1,∞), it is clear that
(Dα

−y)(t)V (t) ≥ (Dα
−y)(t2)V (t2) := c1 > 0 for t ∈ [t2,∞). Therefore, from (2.4) we

have

− G′(t)

Γ(1− α)
= (Dα

−y)(t) ≥ c1V
−1(t) = c1 exp

(
−

∫ t

t0

p(v)dv
)

for t ∈ [t2,∞).

Integrating both sides of the last inequality from t2 to t, we get∫ t

t2

exp
(
−

∫ s

t0

p(v)dv
)
ds ≤ −G(t)−G(t2)

c1Γ(1− α)
<

G(t2)

c1Γ(1− α)
for t ∈ [t2,∞).

Letting t → ∞, we see
∫∞
t2

exp
(
−

∫ s
t0
p(v)dv

)
ds ≤ G(t2)

c1Γ(1−α) < ∞. This contradicts

the assumption
∫∞
t0

exp
(
−
∫ t
t0
p(v)dv

)
dt = ∞ in (S). Hence, (3.5) holds. Define the
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function w by the generalized Riccati substitution

w(t) = r(t)
−(Dα

−y)(t)V (t)

G(t)
for t ∈ [t1,∞).

It is easy to see that w(t) > 0 for t ∈ [t1,∞). Since 0 < −(Dα
−y)(t)V (t) ≤

−(Dα
−y)(t1)V (t1) and G(t) ≥ G(t1) > 0 for t ∈ [t1,∞), from (3.4), (2.4) and (S) we

have

w′(t) = r′(t)
−(Dα

−y)(t)V (t)

G(t)
+ r(t)

[
−(Dα

−y)(t)V (t)

G(t)

]′
≤ r′+(t)

−(Dα
−y)(t)V (t)

G(t)
+ r(t)

[
[−(Dα

−y)(t)V (t)]′

G(t)
+

(Dα
−y)(t)V (t)G′(t)

G2(t)

]
≤ r′+(t)

−(Dα
−y)(t1)V (t1)

G(t1)

+ r(t)

[
−q(t)f(G(t))V (t)

G(t)
+

(Dα
−y)(t)V (t)[−Γ(1− α)(Dα

−y)(t)]

G2(t)

]
< r′+(t)

−(Dα
−y)(t1)V (t1)

G(t1)
+ r(t)

−q(t)f(G(t))V (t)

G(t)

≤ µr′+(t)−Kr(t)q(t)V (t) for t ∈ [t1,∞),

where µ :=
−(Dα

−y)(t1)V (t1)

G(t1)
> 0. Integrating both sides of the last inequality from t1

to t, we obtain∫ t

t1

[
Kr(s)q(s)V (s)− µr′+(s)

]
ds ≤ w(t1)− w(t) < w(t1) for t ∈ [t1,∞).

Letting t → ∞, we get lim supt→∞
∫ t
t1

[
Kr(s)q(s)V (s) − µr′+(s)

]
ds ≤ w(t1) < ∞,

which implies a contradiction to (3.1). The proof is complete. �

Theorem 3.2. Assume that (S) holds and that there exists a positive function
r ∈ C1[t0,∞) such that

lim sup
t→∞

∫ t

t0

[
Kr(s)q(s)−

M2
+(s)

4Γ(1− α)r(s)

]
ds = ∞, (3.6)

where M+(s) := max{0, r′+(s)−r(s)p(s)} and r′+ is defined as in Theorem 3.1. Then
all solutions of (1.1) are oscillatory.

Proof. Suppose that y is a nonoscillatory solution of (1.1). Without loss of gener-
ality, we may assume that y is an eventually positive solution of (1.1). Proceeding
as in the proof of Theorem 3.1, we see that (3.3) and (3.5) hold. Define the function
w by the generalized Riccati substitution

w(t) = r(t)
−(Dα

−y)(t)

G(t)
for t ∈ [t1,∞). (3.7)
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Then we have w(t) > 0 for t ∈ [t1,∞). From Lemma 2.1, (1.1), (2.4), (3.7) and (S),
it follows that

w′(t) = r′(t)
−(Dα

−y)(t)

G(t)
+ r(t)

[
−(Dα

−y)(t)

G(t)

]′
≤ r′+(t)

−(Dα
−y)(t)

G(t)
+ r(t)

[
(D1+α

− y)(t)

G(t)
+

(Dα
−y)(t)G

′(t)

G2(t)

]
= r′+(t)

−(Dα
−y)(t)

G(t)

+ r(t)

[
p(t)(Dα

−y)(t)− q(t)f(G(t))

G(t)
+

(Dα
−y)(t)[−Γ(1− α)(Dα

−y)(t)]

G2(t)

]
≤ r′+(t)

w(t)

r(t)
− p(t)w(t)−Kr(t)q(t)− Γ(1− α)

r(t)
w2(t)

= −Kr(t)q(t) +
r′+(t)− r(t)p(t)

r(t)
w(t)− Γ(1− α)

r(t)
w2(t)

≤ −Kr(t)q(t) +
M+(t)

r(t)
w(t)− Γ(1− α)

r(t)
w2(t) for t ∈ [t1,∞), (3.8)

where M+ is defined as in Theorem 3.2. Taking b = M+(t)/
√

Γ(1− α)r(t) and
a = Γ(1− α)/r(t), from (3.8) and Lemma 2.3 we conclude

w′(t) ≤ −Kr(t)q(t) +
M2

+(t)

4Γ(1− α)r(t)
for t ∈ [t1,∞).

Integrating both sides of the last inequality from t1 to t, we get∫ t

t1

[
Kr(s)q(s)−

M2
+(s)

4Γ(1− α)r(s)

]
ds ≤ w(t1)− w(t) < w(t1) for t ∈ [t1,∞).

Letting t → ∞, we have lim supt→∞
∫ t
t1

[
Kr(s)q(s) − M2

+(s)

4Γ(1−α)r(s)

]
ds ≤ w(t1) < ∞,

which contradicts (3.6). The proof is complete. �

Theorem 3.3. Suppose that (S) holds. Furthermore, assume that there exist a
positive function r ∈ C1[t0,∞) and a function H ∈ C(D,R), where D := {(t, s) : t ≥
s ≥ t0}, such that

H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 for (t, s) ∈ D0,

where D0 := {(t, s) : t > s ≥ t0}. Suppose also that H has a nonpositive continuous

partial derivative H ′
s(t, s) := ∂H(t,s)

∂s on D0 with respect to the second variable and
that there exists a function h ∈ C(D,R) such that

H ′
s(t, s) +H(t, s)

M+(s)

r(s)
=

h(t, s)

r(s)

√
H(t, s) for (t.s) ∈ D (3.9)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
r(s)q(s)H(t, s)−

h2+(t, s)

4KΓ(1− α)r(s)

]
ds = ∞, (3.10)
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where M+ is defined as in Theorem 3.2 and h+(t, s) := max{0, h(t, s)}. Then all
solutions of (1.1) are oscillatory.

Proof. Suppose that y is a nonoscillatory solution of (1.1). Without loss of gener-
ality, we may assume that y is an eventually positive solution of (1.1). We proceed
as in the proof of Theorem 3.2 to get that (3.8) holds. Multiplying (3.8) by H(t, s)
and integrating from t1 to t, we get for t ∈ [t1,∞),∫ t

t1

Kr(s)q(s)H(t, s)ds ≤ −
∫ t

t1

H(t, s)w′(s)ds+

∫ t

t1

H(t, s)
M+(s)

r(s)
w(s)ds

−
∫ t

t1

H(t, s)
Γ(1− α)

r(s)
w2(s)ds. (3.11)

Using the integration by parts formula, we obtain for t ∈ [t1,∞),

−
∫ t

t1

H(t, s)w′(s)ds =
[
−H(t, s)w(s)

]s=t

s=t1
+

∫ t

t1

H ′
s(t, s)w(s)ds

= H(t, t1)w(t1) +

∫ t

t1

H ′
s(t, s)w(s)ds. (3.12)

Substituting (3.12) in (3.11), for t ∈ [t1,∞) we have

K

∫ t

t1

r(s)q(s)H(t, s)ds

≤ H(t, t1)w(t1)

+

∫ t

t1

{[
H ′

s(t, s) +H(t, s)
M+(s)

r(s)

]
w(s)− Γ(1− α)

H(t, s)

r(s)
w2(s)

}
ds.

In view of (3.9), from the last inequality we get

K

∫ t

t1

r(s)q(s)H(t, s)ds

≤ H(t, t1)w(t1) +

∫ t

t1

[
h(t, s)

r(s)

√
H(t, s)w(s)− Γ(1− α)

H(t, s)

r(s)
w2(s)

]
ds

≤ H(t, t1)w(t1) +

∫ t

t1

[
h+(t, s)

r(s)

√
H(t, s)w(s)− Γ(1− α)

H(t, s)

r(s)
w2(s)

]
ds (3.13)

for t ∈ [t1,∞), where h+ is defined as in Theorem 3.3. Taking b = h+(t,s)√
Γ(1−α)r(s)

and

a = Γ(1− α)H(t,s)
r(s) , by using Lemma 2.3 and (3.13), we obtain for t ∈ [t1,∞),

∫ t

t1

r(s)q(s)H(t, s)ds ≤ K−1H(t, t1)w(t1) +K−1

∫ t

t1

h2+(t, s)

4Γ(1− α)r(s)
ds. (3.14)
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Since H ′
s(t, s) ≤ 0 for t > s ≥ t0, we have 0 < H(t, t1) ≤ H(t, t0) for t > t1 ≥ t0.

Therefore, from (3.14) we get for t ∈ [t1,∞),∫ t

t1

[
r(s)q(s)H(t, s)−

h2+(t, s)

4KΓ(1− α)r(s)

]
ds ≤ K−1H(t, t1)w(t1)

≤ K−1H(t, t0)w(t1). (3.15)

Since 0 < H(t, s) ≤ H(t, t0) for t > s ≥ t0, we have 0 < H(t,s)
H(t,t0)

≤ 1 for t > s ≥ t0.

Hence, it follows from (3.15) that

1

H(t, t0)

∫ t

t0

[
r(s)q(s)H(t, s)−

h2+(t, s)

4KΓ(1− α)r(s)

]
ds

=
1

H(t, t0)

∫ t1

t0

[
r(s)q(s)H(t, s)−

h2+(t, s)

4KΓ(1− α)r(s)

]
ds

+
1

H(t, t0)

∫ t

t1

[
r(s)q(s)H(t, s)−

h2+(t, s)

4KΓ(1− α)r(s)

]
ds

≤ 1

H(t, t0)

∫ t1

t0

r(s)q(s)H(t, s)ds+
1

H(t, t0)
K−1H(t, t0)w(t1)

≤
∫ t1

t0

r(s)q(s)ds+K−1w(t1) for t ∈ [t1,∞).

Letting t → ∞, we obtain

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
r(s)q(s)H(t, s)−

h2+(t, s)

4KΓ(1− α)r(s)

]
ds

≤
∫ t1

t0

r(s)q(s)ds+K−1w(t1) < ∞,

which yields a contradiction to (3.10). The proof is complete. �

Remark 3.1. From Theorems 3.1–3.3, we can obtain many different sufficient con-
ditions for the oscillatory behavior of (1.1) with different choices of the functions r
and H.

For example, let r(s) = 1, then from Theorem 3.2 we obtain the following
result.

Corollary 3.1. Assume that (S) and the following condition hold:∫ ∞

t0

q(t)dt = ∞. (3.16)

Then all solutions of (1.1) are oscillatory.

Let r(s) = 1. Then Theorem 3.1 yields the following result.
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Corollary 3.2. Suppose that (S) and the following condition hold:∫ ∞

t0

[
q(t) exp

(∫ t

t0

p(v)dv

)]
dt = ∞. (3.17)

Then every solution of (1.1) is oscillatory.

Note that, since q(t) exp
( ∫ t

t0
p(v)dv

)
≥ q(t) for t ≥ t0, Corollary 3.1 can also

be derived from Corollary 3.2. Obviously, Corollary 3.2 is better than Corollary 3.1.

Let r(s) = s. Then from Theorem 3.2 we conclude the following result.

Corollary 3.3. Assume that (S) and the following condition hold:

lim sup
t→∞

∫ t

t0

[
sq(s)− (max{0, 1− sp(s)})2

4KΓ(1− α)s

]
ds = ∞. (3.18)

Then all solutions of (1.1) are oscillatory.

Let r(s) = 1 and H(t, s) = (t−s)m, where m ≥ 2 is a constant. Then Theorem
3.3 implies the following result.

Corollary 3.4. Suppose that (S) holds and that there exists a constant m ≥ 2 such
that

lim sup
t→∞

1

tm

∫ t

t0

q(s)(t− s)mds = ∞.

Then every solution of (1.1) is oscillatory.

4. Examples

Example 4.1. Consider the fractional differential equation

(D1+α
− y)(t)− 1

t2
(Dα

−y)(t) +
1

t

∫ ∞

t
(v − t)−αy(v)dv = 0 for t > 0, (4.1)

where α ∈ (0, 1). In (4.1), p(t) = 1
t2
, q(t) = 1

t and f(u) = u. Take t0 > 0 and K = 1.
Since ∫ ∞

t0

exp

(
−

∫ t

t0

p(v)dv

)
dt =

∫ ∞

t0

exp

(
−

∫ t

t0

1

v2
dv

)
dt

=

∫ ∞

t0

exp

(
1

t
− 1

t0

)
dt ≥

∫ ∞

t0

exp

(
− 1

t0

)
dt = ∞,

we see that (S) holds. Furthermore, we have
∫∞
t0

q(t)dt =
∫∞
t0

1
t dt = ∞, which

implies that (3.16) holds. Therefore, by Corollary 3.1 all solutions of (4.1) are oscil-
latory.
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Example 4.2. Consider the fractional differential equation

(D1+α
− y)(t)− 1

t
(Dα

−y)(t)

+
1

t2

[
2 + exp

(∫ ∞

t
(v − t)−αy(v)dv

)]∫ ∞

t
(v − t)−αy(v)dv = 0 (4.2)

for t > 0, where α ∈ (0, 1). In (4.2), p(t) = 1
t , q(t) =

1
t2

and f(u) = (2 + eu)u. Take
t0 > 0 and K = 2. Since∫ ∞

t0

exp

(
−

∫ t

t0

p(v)dv

)
dt =

∫ ∞

t0

exp

(
−

∫ t

t0

1

v
dv

)
dt =

∫ ∞

t0

t0
t
dt = ∞,

we find that (S) holds. On the other hand, we have∫ ∞

t0

[
q(t) exp

(∫ t

t0

p(v)dv

)]
dt =

∫ ∞

t0

1

t2
t

t0
dt =

∫ ∞

t0

1

t0t
dt = ∞,

which yields that (3.17) holds. Hence, by Corollary 3.2 every solution of (4.2) is
oscillatory.

Remark 4.1. In Example 4.2, we get
∫∞
t0

q(t)dt =
∫∞
t0

1
t2
dt = 1

t0
< ∞, which shows

that (3.16) doesn’t hold. Hence, Corollary 3.1 cannot be applied to (4.2).

Example 4.3. Consider the fractional differential equation

(D1+α
− y)(t)− 1

t3
(Dα

−y)(t)

+
1

t2

[
1

4
+

(∫ ∞

t
(v − t)−αy(v)dv

)2] ∫ ∞

t
(v − t)−αy(v)dv = 0 (4.3)

for t > 0, where α ∈ (0, 1) satisfies Γ(1 − α) > 1. In (4.3), p(t) = 1
t3
, q(t) = 1

t2
and

f(u) = (14 + u2)u. Take t0 = 1 and K = 1
4 . Since∫ ∞

t0

exp

(
−

∫ t

t0

p(v)dv

)
dt =

∫ ∞

1
exp

(
−

∫ t

1

1

v3
dv

)
dt

=

∫ ∞

1
exp

(
1

2t2
− 1

2

)
dt ≥

∫ ∞

1
exp

(
− 1

2

)
dt = ∞,

we see that (S) holds. Since

lim
s→∞

[
1

s
−

(1− 1
s2
)2

Γ(1− α)s

]/(1
s

)
= 1− 1

Γ(1− α)
> 0 and

∫ ∞

1

1

s
ds = ∞,

we obtain

lim sup
t→∞

∫ t

t0

[
sq(s)− (max{0, 1− sp(s)})2

4KΓ(1− α)s

]
ds

= lim sup
t→∞

∫ t

1

[
1

s
−

(1− 1
s2
)2

Γ(1− α)s

]
ds = ∞,
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which implies that (3.18) holds. Therefore, by Corollary 3.3 all solutions of (4.3) are
oscillatory when Γ(1− α) > 1.

Remark 4.2. In Example 4.3, we have
∫∞
t0

q(t)dt =
∫∞
1

1
t2
dt = 1 < ∞, which

implies that (3.16) doesn’t hold. Thus, Corollary 3.1 cannot be applied to (4.3).
Furthermore, we get∫ ∞

t0

[
q(t) exp

(∫ t

t0

p(v)dv

)]
dt =

∫ ∞

1

1

t2
exp

(
1

2
− 1

2t2

)
dt

≤
∫ ∞

1

1

t2
e

1
2dt = e

1
2 < ∞,

which yields that (3.17) doesn’t hold. Hence, Corollary 3.2 cannot also be applied
to (4.3).
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