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A NOTE ON EXACT EXPLICIT TRAVELING WAVE SOLUTIONS

FOR THE GENERALIZED B-EQUATION

Xijun Deng1, Yuqiu Sun2, Dahai Xu3

Liu [Liu Rui, Coexistence of multifarious exact nonlinear wave solutions
for generalized b-equation, Inter. J. Bifurcation and Chaos, 20, pp. 3193-3208,
2010] investigated the coexistence of multifarious exact traveling wave solutions
of the generalized b-equation, and also presented three conjectures and two ques-
tions. In this note, by using the method of complete discrimination system for
polynomial, it is shown that some general exact explicit solutions of the gener-
alized b-equation can be obtained directly. Moreover, the above conjectures and
questions are confirmed/corrected and clarified, respectively.

Keywords: Generalized b-equation, method of complete discrimination system
for polynomial, traveling wave solutions.

MSC2010: 35Q51, 35Q53, 37K10.

1. Introduction

Recently, Liu [1,2] studied the nonlinear wave solutions of the following gen-
eralized b-equation

ut − uxxt + (1 + b)u2ux = buxuxx + uuxxx (1)

He used the dynamical system approach combined with phase analysis to studied
the coexistence and explicit expressions of various nonlinear wave solutions, which
include smooth solitary wave solution, peakon wave solution, smooth periodic wave
solution, singular wave solution. Also, the author [2] presented three conjectures
and two questions.

The aim of this paper is to further solve the explicit travelling wave solutions
of the generalized b-equation, and analyze the above conjectures and questions pro-
posed by Liu [2].

This paper is organized as follows. In section 2 we give the general travelling
wave solutions of the generalized b-equation, by applying the method of complete
discrimination system for polynomial [3,4]. In section 3 we analyze the explicit
nonlinear wave solutions of the generalized b-equation by Liu [2] and demonstrate
that almost all solutions from the list by Liu [2] can be obtained by our general
solutions. In section 4 we analyze the related conjectures and questions presented
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by Liu [2]. Not only his conjectures are confirmed or corrected, but his questions
are clarified. Finally, some conclusions are summarized in section 5.

2. Some general explicit solutions of the generalized b-equation

In fact, some general explicit solutions for Eq.(1) can be obtained by using the
method of complete discrimination system for polynomial [3,4]. Let us demonstrate
it below. Making the travelling wave transformation in Eq.(1)

u(x, t) = ϕ(ξ), ξ = x− ct. (2)

and integrating with respect to ξ, we have the following first-order ordinary differ-
ential equation(ODE)

ϕ′2 =
2(b+ 1)

3(b+ 2)

[
ϕ3 +

3c

b+ 1
ϕ2 +

3(2c2 − 2c− bc)

b(b+ 1)
ϕ+

C1

(ϕ− c)b−1
+ C2

]
, (3)

where C1, C2 are arbitrary integral constants, b ̸= 0,−1,−2. Noticing that in the
case C1 ̸= 0, it seem to us that the exact explicit solutions for Eq.(1) can not be
obtained. Thus we assume that C1 = 0 throughout the whole paper. We would
focus on the study of the first-order ODE as follows

ϕ′2 =
2(b+ 1)

3(b+ 2)

[
ϕ3 +

3c

b+ 1
ϕ2 +

3(2c2 − 2c− bc)

b(b+ 1)
ϕ+ C2

]
. (4)

For convenience we first assume that 2(b+1)
3(b+2) > 0, and let

d2 =
3c

b+ 1
, d1 =

3(2c2 − 2c− bc)

b(b+ 1)
, d0 = C2, (5)

then Eq.(4) becomes∫
dϕ√

ϕ3 + d2ϕ2 + d1ϕ+ d0
= ±

√
2(b+ 1)

3(b+ 2)
(ξ − ξ0) (6)

Denote that F (ϕ) = ϕ3 + d2ϕ
2 + d1ϕ + d0, whose complete discrimination

system is given by [3,4]

△ = −27(
2d32
27

+ d0 −
d1d2
3

)2 − 4(d1 −
d22
3
)3, D = d1 −

d22
3
, (7)

According to the method of complete discrimination system for polynomial
[3,4], we can obtain some corresponding explicit exact solutions for Eq.(1) in the
following four cases.

Case 1. ∆ = 0, D < 0. In this case, we have F (ϕ) = (ϕ− α)2(ϕ− β), α ̸= β.
If ϕ > β, Eq.(1) admits three types of exact explicit solutions as follows

u1(x, t) = β + (α− β) tanh2

[√
(b+ 1)(α− β)

6(b+ 2)
(x− ct− ξ0)

]
, α > β, (8)

u2(x, t) = β + (α− β) coth2

[√
(b+ 1)(α− β)

6(b+ 2)
(x− ct− ξ0)

]
, α > β, (9)
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u3(x, t) = β + (β − α) tan2

[√
(b+ 1)(β − α)

6(b+ 2)
(x− ct− ξ0)

]
, α < β. (10)

Case 2. ∆ = 0, D = 0. In this case, we have F (ϕ) = (ϕ − α)3. We can get
the rational form of exact solutions for Eq.(1)

u4(x, t) = α+

6(b+2)
b+1

(x− ct− ξ0)2
. (11)

Case 3. ∆ > 0, D < 0. In this case, we have F (ϕ) = (ϕ−α)(ϕ−β)(ϕ−γ), α <
β < γ. When α < ϕ < β, Eq.(1) has exact smooth periodic wave solutions

u5(x, t) = α+ (β − α)sn2

(√
(b+ 1)(γ − α)

6(b+ 2)
(x− ct− ξ0),m

)
(12)

when ϕ > γ, Eq.(1) has exact periodic blow-up solutions

u6(x, t) =
γ − βsn2

(√
(b+1)(γ−α)

6(b+2) (x− ct− ξ0),m
)

cn2
(√

(b+1)(γ−α)
6(b+2) (x− ct− ξ0),m

) , (13)

where m2 = β−α
γ−α .

Case 4. ∆ < 0. In this case, we have F (ϕ) = (ϕ−α)(ϕ2+pϕ+q), p2−4q < 0.
We can obtain that Eq.(1) has the exact periodic blow-up solutions as follows

u7(x, t) = α−
√
α2 + pα+ q +

2
√
α2 + pα+ q

1± cn
(√

2(b+1)
3(b+2)(α

2 + pα+ q)
1
4 (x− ct− ξ0),m

) ,
(14)

where m2 = 1
2

(
1− α+ p

2√
α2+pα+q

)
.

3. Exact explicit travelling wave solutions of the generalized b-equation
by Liu

Suppose the parameter b > 1 and for the constant wave speed c ∈ (0, 1 + b),
Liu [2] has found 12 exact nonlinear wave solutions. Now we present these solutions
as follows:

u1(x, t) =
1

b(b+ 1)

[
p0 − bc− 3p0sech

2α0ξ
]
, (15)

u2(x, t) =
1

b(b+ 1)

[
p0 − bc+

3p0(2bc+ b2c− p0)

(
√
3p0coshα0ξ +

√
2bc+ b2c+ 2p0sinh|α0ξ|)2

]
,

(16)

u3(x, t) =
1

b(b+ 1)

[
p0 − bc+ 3p0csch

2α0ξ
]
, (17)

u4(x, t) =
1

b(b+ 1)

[
2p0 − bc+ 3p0 tan

2 α0ξ
]
, (18)
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u5(x, t) = a1 + a2sn
2(β0ξ, k1), c ∈ (0,

1

1 + b
);

= a1 + a3sn
2(γ0ξ, k2), c ∈ (

1

1 + b
,

4(1 + b)

4 + 2b+ b2
)

u6(x, t) = a1 + a3sn
−2(β0ξ, k1), c ∈ (0,

1

1 + b
);

= a1 + a2sn
−2(γ0ξ, k2), c ∈ (

1

1 + b
,

4(1 + b)

4 + 2b+ b2
)

u7(x, t) =
6(2 + b)[√

6 +
√
1 + b|x− (1 + b)t|

]2 − 1, (19)

u8(x, t) =
6(2 + b)

(1 + b)(x− (1 + b)t)2
− 1, (20)

u9(x, t) =
2

4 + 2b+ b2

[
2(1 + b) + 3(2 + b) tan2

√
1 + b

4 + 2b+ b2
(x− 4(1 + b)

4 + 2b+ b2
t)

]
,

(21)

u01(x, t) =
1

b+ 1
− 3(2 + b)

(1 + b)2
sech2

√
1

2(1 + b)

(
x− 1

1 + b
t

)
, (22)

u03(x, t) =
1

b+ 1
+

3(2 + b)

(1 + b)2
csch2

√
1

2(1 + b)

(
x− 1

1 + b
t

)
, (23)

u04(x, t) =
1

(1 + b)2

[
3 + 2b+ 3(2 + b) tan2

√
1

2(1 + b)
(x− 1

1 + b
t)

]
, (24)

where
ξ = x− ct, (25)

p0 =
√
b(2 + b)(1 + b− c)c, (26)

α0 =

√
p0

2b(2 + b)
, (27)

q0 =
√

3bc(2 + b)(4 + 4b− 4c− 2bc− b2c), (28)

a1 = −bc(4 + b) + q0
2b(1 + b)

, (29)

a2 =
3bc(2 + b) + q0

2b(1 + b)
, (30)

a3 =
q0

b(1 + b)
, (31)

k1 =
3bc(2 + b) + q0

2q0
, (32)

k2 =
2q0

3bc(2 + b) + q0
, (33)

β0 =

√
q0

6b(2 + b)
, (34)
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γ0 =

√
3bc(2 + b) + q0

12b(2 + b)
. (35)

By careful observation, we can find that almost all these exact solutions could
be deduced from the general solutions described in section 2. Let us demonstrate it
below.

Under Case 1, from (7) and ∆ = 0, D < 0, we can derive that

c ∈ (0, 1 + b), d0 =
3c2b(b+ 1)(2c− 2− b)− 2b2c3 ± c(b+ 2)(b+ 1− c)p0

b2(b+ 1)3
. (36)

Thus, we have α = −bc±p0
b(b+1) , β = −bc∓2p0

b(b+1) . If α = −bc+p0
b(b+1) > β = −bc−2p0

b(b+1) , then from

(8)-(9) we can obtain that Eq.(1) admits the following travelling wave solutions

u11(x, t) =
1

b(b+ 1)

[
−2p0 − bc+ 3p0tanh

2α0(ξ − ξ0)
]
, (37)

u13(x, t) =
1

b(b+ 1)

[
−2p0 − bc+ 3p0coth

2α0(ξ − ξ0)
]
, (38)

Note that tanh2 x + sech2x = 1 and coth2 x − csch2x = 1, if setting ξ0 = 0, it is
easy to see that the solutions u11 and u13 agree well with u1 and u3, respectively.
Moreover, assuming that c = 1

1+b in the solutions u1, u3, we accordingly have the

solutions u01, u
0
3.

If α = −bc−p0
b(b+1) < β = −bc+2p0

b(b+1) , then from (10) we can derive that Eq.(1) has

exact trigonometric periodic singular wave solution

u14(x, t) =
1

b(b+ 1)

[
2p0 − bc+ 3p0 tan

2 α0(ξ − ξ0)
]
, (39)

which coincides with the solution u4 if taking ξ0 = 0. Assuming that c = 1
1+b and

c = 4(1+b)
4+2b+b2

in the solution u4, we accordingly have the solutions u04, u9.

Note that tanh2 x = tanh2 |x|, coth2 x = coth2 |x|, we find that the following
functions

u01(x, t) =
1

b(b+ 1)

[
p0 − bc− 3p0sech

2(|α0ξ|+ η0)
]
, (40)

u03(x, t) =
1

b(b+ 1)

[
p0 − bc+ 3p0csch

2(|α0ξ|+ η0)
]
, (41)

are also the solutions of Eq.(1). By means of the following two identities

(A2
2 −A2

1)(1− tanh2Θ)

(A2 + a1 tanh |Θ|)2
= sech2(|Θ|+Θ0), Θ0 = tanh−1 A1

A2
, A2

2 > A2
1, (42)

and

(A2
2 −A2

1)(1− tanh2Θ)

(A2 +A1 tanh |Θ|)2
= −csch2(|Θ|+Θ0), Θ0 = coth−1 A1

A2
, A2

2 < A2
1, (43)

we have that the solution u2 is equal to u01 if c ∈ (0, 1
1+b), η0 = tanh−1

√
2bc+b2c+2p0

3p0
,

and u2 is equal to u03 if c ∈ ( 1
1+b ,+∞), η0 = coth−1

√
2bc+b2c+2p0

3p0
.
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Under Case 2, from (7) and ∆ = 0, D = 0, we can derive that c = b + 1 or
c = 0, this implies that α = −1 or α = 0. Thus, Eq.(1) admits the exact rational
form of solution

u08(x, t) = −1 +

6(b+2)
b+1

(x− (1 + b)t− ξ0)2
. (44)

and

u18(x, t) =

6(b+2)
b+1

(x− ξ0)2
. (45)

Setting ξ0 = 0, we can find that u08 is equal to the solution u8, while u
1
8 is a new

special fractional solution to Eq.(1).
Under Case 3, from (7) and ∆ > 0, D < 0, we can derive that

c ∈ (0, 1 + b), d0 ∈ (z1, z2), (46)

where

z1 =
3c2b(b+ 1)(2c− 2− b)− 2b2c3 − c(b+ 2)(b+ 1− c)p0

b2(b+ 1)3
, (47)

and

z2 =
3c2b(b+ 1)(2c− 2− b)− 2b2c3 + c(b+ 2)(b+ 1− c)p0

b2(b+ 1)3
. (48)

Note that α, β, γ are determined by the selection of constants c and d0. In addition,
the constant d0 is arbitrary. Therefore, we may always find the specific values of
α, β, γ, which make the relevant parameters satisfy the condition ∆ > 0, D < 0.

For example, when c ∈ (0, 1
1+b), we can let α = a1, β = c, γ = q0−bc(b+4)

2b(b+1) , it is easy

to verify that α < β < γ, and the relevant parameters also satisfy the condition
∆ > 0, D < 0. Substituting it into the general solution (12), one can easily find that

the obtained solution agrees well with the solution u5; When c ∈ ( 1
1+b ,

4(1+b)
4+2b+b2

), let

α = a1, β = c, γ = q0−bc(b+4)
2b(b+1) , we can also obtain the solution u5. Similarly, the

solution u6 can be deduced from the general solution (13). However, it should be
pointed out here that there is a minor error concerning k1, k2. That is, the above
identities (32) and (33) should be corrected as

k21 =
3bc(2 + b) + q0

2q0
, (49)

and

k22 =
2q0

3bc(2 + b) + q0
, (50)

respectively.
In a word, we can observe that almost all solutions from the list by Liu can

be obtained by our general solutions.

Remark 3.1. Under Case 4, from (7) and the condition ∆ < 0, we can also deter-
mine the concrete values of α, p, q and obtain numerous special exact travelling wave

solutions for Eq.(1). For example, setting d0 = 0, c ∈ (12(b+1)(b+2)
15b+24 ,+∞) leads to
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α = 0, p = 3c
b+1 , q = 3c(2c−2−b)

b(b+1) , then from the general solution (14) we can derive

that Eq.(1) has new exact explicit periodic blow-up solutions

u10(x, t) = −√
q +

2
√
q

1± cn
(√

2(b+1)
3(b+2)q

1
4 (x− ct− ξ0),m

) , (51)

where m2 = 1
2

(
1− p

2
√
q

)
.

Remark 3.2. Liu [2] claims in Proposition 3 that when c = 1
1+b , “three types of

exact nonlinear wave solutions” , namely smooth solitary wave solution u01, hyper-
bolic singular wave solution u03 and trigonometric periodic singular wave solution
u04 coexist for Eq.(1). However, we would like to point out here that it is not yet
complete. And in fact other three types of exact explicit solutions including elliptic
smooth periodic wave solution, elliptic periodic singular wave solution and peri-
odic blow-up solution also coexist for Eq.(1). Let us show it below. For example,

let d0 = 0, c = 1
1+b , we have F (ϕ) = ϕ(ϕ2 + 3

(1+b)2
ϕ − 3(b+3)

(b+1)3
). This implies that

α = −3+
√

9+12(b+1)(b+3)

2(1+b)2
, β = 0, γ =

−3+
√

9+12(b+1)(b+3)

2(1+b)2
. So from the general

solution (12), we can know that when u ∈ (−3+
√

9+12(b+1)(b+3)

2(1+b)2
, 0), Eq.(1) admits

smooth periodic wave solution

u11(x, t) = −
3 +

√
9 + 12(b+ 1)(b+ 3)

2(1 + b)2
cn2

√√
12b2 + 48b+ 45

6(b+ 1)(b+ 2)
(x− 1

1 + b
t− ξ0),m

 ,

(52)

When u ∈ (
−3+

√
9+12(b+1)(b+3)

2(1+b)2
,+∞), Eq.(1) admits periodic singular wave solution

u12(x, t) =
−3 +

√
9 + 12(b+ 1)(b+ 3)

2(1 + b)2
cn−2

√√
12b2 + 48b+ 45

6(b+ 1)(b+ 2)
(x− 1

1 + b
t− ξ0),m

 ,

(53)

where m2 = 3+
√
12b2+48b+45

2
√
12b2+48b+45

.

Notice that when c = 1
1+b , we always have D = d1 −

d22
3 < 0. So from (7) we

can know that the condition ∆ < 0 holds provided that the parameter d0 is chosen
large enough. According to Case 4, we can derive that Eq.(1) always admits exact
periodic blow-up solutions like the solution (14).

4. Discussions on the conjectures and questions proposed by Liu

With the aid of bifurcation phase portraits, Liu [2] proposed 3 conjectures and
2 questions. Below we would analyze and discuss them one by one.

4.1. Discussions on Conjecture 1

Conjecture 1 claims that: “When b > 1 and the wave speed c = 1
1+b or

c > 1 + b, Eq.(1.1) has no peakon wave solution.”
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From (5) and (7) , we can obtain that

D = d1 −
d22
3

=
3c(b+ 2)[c− (b+ 1)]

b(b+ 1)2
, (54)

When b > 1, it is easy to verify that D < 0 for c = 1
1+b , and D > 0,△ < 0 for

c > 1 + b. In view of the discussions as Remark 2 in Section 2, we can find that
Eq.(1) has no peakon wave solution. Since D > 0,△ < 0 corresponds to Case 4, for
which apparently has also no peakon solution. Hence, Conjecture 1 is confirmed.

4.2. Discussions on Conjecture 2

Conjecture 2 claims that: “When the wave speed c ≥ 1 + b, Eq.(1) has no
explicit smooth solitary wave solution.”

If b > 0, it follows from (54) and from the wave speed c ≥ 1 + b that D ≥ 0,
which certainly leads to that Eq.(1) has no explicit smooth solitary wave solution.
However, if b ∈ (−1, 0) and c ≥ 1 + b, then from (54) we can obtain that D ≤ 0.
According to Case 1, by properly selecting the constant d0, Eq.(1) has explicit
smooth solitary wave solution like the solution (8). Therefore, the above-mentioned
Conjecture 2 is not strict. And it should be described as follows: “When b > 0 and
the wave speed c ≥ 1 + b, Eq.(1) has no explicit smooth solitary wave solution.”

4.3. Discussions on Conjecture 3

Conjecture 3 claims that: “When the wave speed c ̸= 1 + b, Eq.(1) has no
fractional solution.”

Note that we have obtained in section 2 that Eq.(1) has fractional solution
u18. Consequently, it implies that Conjecture 3 is also not correct. In fact, from
(54) we can know that Eq.(1) would admit fractional solution if and only if c = 0
or c = 1+ b. I think the Correct statement is the following: “When the wave speed
c ̸= 1 + b and c ̸= 0, Eq.(1) has no fractional solution.”

4.4. Discussions on Question 1

Question 1 Claims that: “Our derivations were based on b > 1. But for
b ≤ 1, we do not know how to derive the solutions u1(x, t), u2(x, t), . . . , u9(x, t),
u01(x, t), u

0
3(x, t), u

0
4(x, t).”

Actually, it is easy to see that the solutions u1, . . . , u4 belong to Case 1(D <
0,△ = 0), while the solutions u5, u6 belong to Case 3(D < 0,△ > 0). We can
observe from (54) that D < 0 as long as c ∈ (0, 1 + b) and b > 0. Moreover, when
b > 0, we also have the inequalities (5) described in [2]. This certainly implies that
when b > 0, the derivations on the solutions u1, . . . , u6 still hold well.

Note that the solutions u01, u
0
3, u

0
4(u9) are derived by the solutions u1, u3, u4,

respectively. Hence, by comparing the solutions u01, u
0
3, u

0
4(u9) with the general solu-

tions (8)-(10), we can obtain that it should satisfy the condition b+2 > 0. However
our derivations concerning with the general solutions in Section 2 are based on the
condition b+1

b+2 > 0. These facts implies that when b > −1, u01, u
0
3, u

0
4, u9 are still the

real solutions of Eq.(1).
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The solution u8 corresponds to D = 0,△ = 0. In fact, in this case we have
from (4) that

ϕ′2 =
2(b+ 1)

3(b+ 2)
(ϕ+ 1)3. (55)

Obviously, Eq.(55) always have the solution like u8 as long as b ̸= −1. This illustrates
that u8 is still a real solution to Eq. (1) for b ̸= −1.

Thus, Question 1 is clarified.

4.5. Discussions on Question 2

Question 2 Claims that: “ For b < −1, we do not know whether there is any
other explicit real solution except u∗i (x, t)(i = 1, 2, 3) and u8(x, t).”

Without loss of generality, we assume that c = 2+b
2 . Below it will be shown

that Eq.(1) admits all other types of explicit real solutions except u∗i (x, t)(i = 1, 2, 3)
and u8(x, t).

First, we consider the case b < −2. From (5) and c = 2+b
2 , we have d1 =

0 and d2 > 0, and it implies that D < 0. Note that exact solutions of Eq.(1)
depend completely on the values of △, D. So from (7), we can observe that one can
flexibly controls the value of the constant d0 to make △ = 0 or △ > 0 or △ < 0.
This implies that Eq.(1) also admits the explicit solutions like (10),(12)-(14) except
u∗i (x, t)(i = 1, 2, 3) and u8(x, t). For example, if setting d0 = − 4

27d
3
2, then we have

F (ϕ) = (ϕ + 2d2
3 )2(ϕ − d2

3 ). This implies that α = −2d2
3 , β = d2

3 . So from (10), we
can obtain that Eq.(1) also has the following trigonometric periodic wave solution

u(x, t) =
b+ 2

2(b+ 1)

[
1 + 3 tan2

1

2
(x− 2 + b

2
t)

]
. (56)

Similarly, setting d0 = − 2
27d

3
2 yields that D < 0,△ > 0. Thus, according to Case

3, Eq.(1) admits the solutions like (12) and (13); Setting d0 = − 6
27d

3
2 yields that

△ < 0. Thus, according to Case 4, Eq.(1) admits the solution like (14).
As for the case b ∈ (−2,−1), notice that b+1

b+2 < 0, then by performing the

transformation ψ = −ϕ in Eq.(4), we can analyze it similarly.
Therefore, Question 2 is also clarified.

5. Conclusions

Let us shortly formulate the results of our paper. We have demonstrated that
using the method of complete discrimination system for polynomial one can find
some general explicit solutions of the generalized b-equation. We also demonstrated
that almost all explicit solutions from the list by Liu [2] can be obtained by our
general solutions. Moreover, we have confirmed or corrected some related conjectures
presented by Liu [2] and clarified some questions presented by Liu [2].
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