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A NOTE ON EXACT EXPLICIT TRAVELING WAVE SOLUTIONS
FOR THE GENERALIZED B-EQUATION

Xijun Deng!, Yuqiu Sun?, Dahai Xu?

Liu [Liu Rui, Coexistence of multifarious exact nonlinear wave solutions
for generalized b-equation, Inter. J. Bifurcation and Chaos, 20, pp. 3193-3208,
2010] investigated the coexistence of multifarious exact traveling wave solutions
of the generalized b-equation, and also presented three comjectures and two ques-
tions. In this note, by using the method of complete discrimination system for
polynomial, it is shown that some general exact explicit solutions of the gener-
alized b-equation can be obtained directly. Moreover, the above conjectures and
questions are confirmed/corrected and clarified, respectively.
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1. Introduction

Recently, Liu [1,2] studied the nonlinear wave solutions of the following gen-
eralized b-equation

U — Uyt + (1 + b)u2ux = bUplUpy + Ulgry (1)

He used the dynamical system approach combined with phase analysis to studied
the coexistence and explicit expressions of various nonlinear wave solutions, which
include smooth solitary wave solution, peakon wave solution, smooth periodic wave
solution, singular wave solution. Also, the author [2] presented three conjectures
and two questions.

The aim of this paper is to further solve the explicit travelling wave solutions
of the generalized b-equation, and analyze the above conjectures and questions pro-
posed by Liu [2].

This paper is organized as follows. In section 2 we give the general travelling
wave solutions of the generalized b-equation, by applying the method of complete
discrimination system for polynomial [3,4]. In section 3 we analyze the explicit
nonlinear wave solutions of the generalized b-equation by Liu [2] and demonstrate
that almost all solutions from the list by Liu [2] can be obtained by our general
solutions. In section 4 we analyze the related conjectures and questions presented
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by Liu [2]. Not only his conjectures are confirmed or corrected, but his questions
are clarified. Finally, some conclusions are summarized in section 5.

2. Some general explicit solutions of the generalized b-equation

In fact, some general explicit solutions for Eq.(1) can be obtained by using the
method of complete discrimination system for polynomial [3,4]. Let us demonstrate
it below. Making the travelling wave transformation in Eq.(1)

u(@,t) = ¢(§), &=w—ct (2)

and integrating with respect to &, we have the following first-order ordinary differ-
ential equation(ODE)

o2 = 2(b+1) {& N 3¢ 3(2¢* — 2¢ — be) Ch

3(b+2) b1l SRR

where C'1, Cy are arbitrary integral constants, b # 0, —1, —2. Noticing that in the
case C7 # 0, it seem to us that the exact explicit solutions for Eq.(1) can not be
obtained. Thus we assume that C; = 0 throughout the whole paper. We would
focus on the study of the first-order ODE as follows

¢° +

— + Cg] . (3)

2(b+1) 3c 3(2¢% — 2¢ — be)
2 3 2
= Col . 4
T [¢ I R SIS DR )
For convenience we first assume that ggzg; > 0, and let

3c 3(2¢2 — 2¢ — be)

then Eq.(4) becomes

/ dé _ L 204
VO + dad? + di¢ + do 3(b+2)

Denote that F(¢) = ¢® + do¢? + d1¢ + dg, whose complete discrimination
system is given by [3,4]
2d3 did d2 d?
A = —27(2—72 +do — %)2 — 4(dy — 32)3, D=d — §2 (7)
According to the method of complete discrimination system for polynomial
[3,4], we can obtain some corresponding explicit exact solutions for Eq.(1) in the
following four cases.
Case 1. A =0,D < 0. In this case, we have F(¢) = (¢ — a)?(¢ — 3),a # f3.
If ¢ > 3, Eq.(1) admits three types of exact explicit solutions as follows

(& —&o) (6)

(b+1)(a—B)
u'(z,t) = B + (a — B) tanh? _ W(w—ct—ﬁo)_ , a>f0, (8)
[ [0+ 1)(a—p) '

u*(x,t) = B+ (a — B) coth?

6(b—|—2) (:E_Ct_g()) ) O‘>Bv (9)
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(b+1)(6—-a)

wd(x,t) = B+ (B — ) tan? 60+ 2)

(x —ct — fo)] , a<p. (10)

Case 2. A =0,D = 0. In this case, we have F(¢) = (¢ — a)3. We can get
the rational form of exact solutions for Eq.(1)
6(b+2)

4 _ b+1
u (x,t) = a+ Tt —G7 (11)

Case 3. A > 0,D < 0. In this case, we have F'(¢) = (¢p—a)(¢—5)(¢p—7),a <
B < 7. When a < ¢ < 8, Eq.(1) has exact smooth periodic wave solutions

(b+1)(y—a)
6(b+2)

u’(x,t) = a+ (B — a)sn? ( (m—ct—ﬁ@,m) (12)

when ¢ > 7, Eq.(1) has exact periodic blow-up solutions
v — Bsn? ( 7(5’285?2_)6“) (x —ct — &), m)

cn? ( 7(17'2892_)&) (x —ct — &), m)

ul(x,t) = ) (13)

where m* = =—

Case 4. A < 0. In this case, we have F(¢) = (¢—a)(¢*+pop+q), p* —4q < 0.
We can obtain that Eq.(1) has the exact periodic blow-up solutions as follows

2. /02
u'(2,t) = a — a2 +pa+q+ @ rpaty )

1j:cn( gggi;;(cﬁ+poz+q)z11(x—ct—§0),m() |
14

2 _ B-a
a

Q

) 1 a+g
Where m-=s|(1— —2— .
2 < Va2 +patq

3. Exact explicit travelling wave solutions of the generalized b-equation
by Liu

Suppose the parameter b > 1 and for the constant wave speed ¢ € (0,1 + b),
Liu [2] has found 12 exact nonlinear wave solutions. Now we present these solutions
as follows:

1 2
= —be— 1
ui(z,t) b+ 1) [po — be — 3posech?apé] (15)
1 2 2c—
ug(x,t) = po — be + 3po(2be + be — po) ,
b(b+1) (v/3pocoshapé + +/2bc + b%c + 2pgsinh|apé|)?
(16)
1
ug(z,t) = Y [po — be + 3pocsch2a0§] , (17)
1
ug(z,t) = [2p0 — be + 3pg tan? aog] , (18)
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1

us(x,t) = a1+a23n2(ﬂgf,k1), ce((),m

);

1 4(1+40b)

= a1+ agsn®*(10€, ka), c € (

1

ug(x,t) = a1+ azsn” (o, k1), 06(0717_'_1)

);

14064420+ 02

1 4(1+0)

= a1 +azsn” (1€, ka), c € (

wr(ot) — 6(2 + b) B
Ve VIFblr— (b))t
©.4) 6(2 +b)
ug\x, =

(1+b)(z—(1+Db)t

1+b" 4420+ 02

ug(x,t) =

/ 1+b
(2+0b)t
2(1 + b) + 3(2 + b) tan? 4+2b+b2

4+ 2b + b?

&

(1) 1 1
u
b+1 2(1+b) 1+b

1 + 1
b+1 2(1+b)

(1) =

4+2b+b2

ul(z,t) = m

where
E=x—ct,
po = /b2 +b)(1+b—c)c,
o — | Po
0 2b(2 + b)’

qo = v/3bc(2 + b)(4 + 4b — dc — 2bc — b2c),
be(4+b) + qo
20(1+0)
3be(2 + b) + qo
2b(1+b) '
q0
b(1+0b)’
3bc(2 +b) + qo
2q0 ’
2q0
3bc(2+0)+ qo’

al = —

ag =

as =
k1 =
ky =

_ q0
bo = 6b(2+b)’

3+2b+3(2+0) tan“ 1+b 1+b
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_[3be(24b) + ¢
Y= \/126(2+b)0 (35)

By careful observation, we can find that almost all these exact solutions could
be deduced from the general solutions described in section 2. Let us demonstrate it
below.

Under Case 1, from (7) and A =0, D < 0, we can derive that

~3Eb(b+1)(2c—2—b) — 202 £ c(b+2)(b+ 1 — ¢)po

ce0.1+8), d 2 (36)
Thus, we have o = ;E’gf{’)‘), B = 7;22121’)70. If a = ;E)lif)o > = 7:2%1217)’0, then from

(8)-(9) we can obtain that Eq.(1) admits the following travelling wave solutions

1

uy [—2po — be + 3potanh®ao(§ — &) (37)

1
0 =55+

uj(z,t) = [—2po — be + 3pocoth®ag (€ — &)] (38)

b(b+1)
Note that tanh?z + sech?z = 1 and coth? z — csch?x = 1, if setting & = 0, it is

easy to see that the solutions ul and u} agree well with u; and us, respectively.
Moreover, assuming that ¢ = %% in the solutions w1, us, we accordingly have the
0

solutions uY, uj.
If 0 = Z02P0 < 3= =bt2P0 then from (10) we can derive that Eq.(1) has

b(b+1) b(o+1) °
exact trigonometric periodic singular wave solution
1
1 2
uy(x,t) = 2po — be + 3pg tan” ag (€ — , 39
4(z,7) o0 [2p0 — be + 3po 0(& — )] (39)
which coincides with the solution wuy if taking £y = 0. Assuming that ¢ = %er and
= ﬁglf -fl);? in the solution u4, we accordingly have the solutions u, ug.

Note that tanh? z = tanh? |z|,coth? 2z = coth? |z|, we find that the following
functions

uor(z,t) = [pg — be — 3posech?(|ao| + no)] , (40)

b(b+ 1)

uos(x,t) = [po —be + 3pocsch2(|oz0§\ + 770)] , (41)

b(b+1)
are also the solutions of Eq.(1). By means of the following two identities
(A3 — A?)(1 — tanh? ©)

(A + ay tanh |©])?2

A
= gech2(‘®‘ + @0), Oy = tanh_l I;,A% > A%, (42)

and
(A3 — A})(1 — tanh? ©)
(As + Aj tanh |©])2

. . . _ 2
we have that the solution us is equal to ug; if ¢ € (0, %H)), no = tanh ™!/ 2bc+gp++2p°,

i i 1 - —1  /2bctb?c+2po
and us is equal to ugg if ¢ € (1+b’ +00), 1m0 = coth 3o )

A
= —csch?(|0] + ©g), Oy = coth™ A—;,Aé <A, (43)
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Under Case 2, from (7) and A = 0,D = 0, we can derive that ¢ = b+ 1 or
¢ = 0, this implies that & = —1 or a = 0. Thus, Eq.(1) admits the exact rational
form of solution

6(b+2)
(z,t) =—1 ot : 44
B N Rk “
and
6(b+2)
ul(z,t) = (xbjiéo)? (45)

Setting &y = 0, we can find that ug is equal to the solution ug, while ué is a new
special fractional solution to Eq.(1).
Under Case 3, from (7) and A > 0, D < 0, we can derive that

ce (0,140b), do€ (21,2), (46)
where
3c2b(b+1)(2¢ — 2 —b) — 2b%c® —c(b+2)(b+ 1 — ¢)po
21 = 2 3 ) (47)
b2(b+1)
and
3¢2b(b+1)(2¢c — 2 — b) — 26?3+ c(b+2)(b+ 1 — ¢)po
z9 = . (48)

b2(b+1)3

Note that «, 5,7 are determined by the selection of constants ¢ and dy. In addition,
the constant dy is arbitrary. Therefore, we may always find the specific values of

«, 3,7, which make the relevant parameters satisfy the condition A > 0,D < 0.
qo—bc(b+4)
2b(b+1)
to verify that a < 8 < =, and the relevant parameters also satisfy the condition

A > 0,D < 0. Substituting it into the general solution (12), one can easily find that

the obtained solution agrees well with the solution us; When ¢ € (%er’ 44+(21;fl);2 ), let
qo—bc(b+4)

a=a,B =cy= Sope1) > We can also obtain the solution ws. Similarly, the

For example, when ¢ € (0, 1%%), we can let « = a1,8 =c¢,y7 = , it is easy

solution ug can be deduced from the general solution (13). However, it should be
pointed out here that there is a minor error concerning ki, k2. That is, the above
identities (32) and (33) should be corrected as

~ 3be(2+b) + qo

k2 4
P= (49)
and
2qo
K= —"= 50
27 3be(24 D) + qo (50)
respectively.

In a word, we can observe that almost all solutions from the list by Liu can
be obtained by our general solutions.

Remark 3.1. Under Case 4, from (7) and the condition A < 0, we can also deter-
mine the concrete values of «, p, ¢ and obtain numerous special exact travelling wave

12(“?17)(“2), +00) leads to

solutions for Eq.(1). For example, setting do =0, ¢ € (55052
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a=0, p= b+17 q= %, then from the general solution (14) we can derive

that Eq.(1) has new exact explicit periodic blow-up solutions

2
ulo(az,t) = —\/a-l- 261D \1/6 , (51)
1:|:cn( 3(b+2)q1(:c—ct—§g),m>

where m? = (1 — 7)

1
T+5
exact nonlinear wave solutions” , namely smooth solitary wave solution u{, hyper-
bolic singular wave solution ug and trigonometric periodic singular wave solution
u coexist for Eq.(1). However, we would like to point out here that it is not yet
complete. And in fact other three types of exact explicit solutions including elliptic
smooth periodic wave solution, elliptic periodic singular wave solution and peri-

odic blow-up solution also coexist for Eq.(1). Let us show it below. For example,

let dg = 0,¢ = 5, we have F(¢) = ¢(¢* + opd — 3l§i+13 ). This implies that

Remark 3.2. Liu [2] claims in Proposition 3 that when ¢ = “three types of

3+\/m 3+\/m
= ST ) ), =0 ~= (1+(b)2 . So from the general

3\/912b1b3
+/9+ +)(+ 0), Eq.(1)

S(14D)2 admits

solution (12), we can know that when u € (—
smooth periodic wave solution

wna(o.1) = 3449 4;(112559;;21)(b + 3) 2 \/61(?15%??2;15 (z— 141rbt _e)m
(52)
When u € (,3+ 9;2111(:;1)(“3) +00), Eq.(1) admits periodic singular wave solution
ui2(x,t) = 3 \/92—2111(2; De+3) en™? \/\/61(2191)1%1—)21%_2;15 (x — 1 Jlr bt —&o),m
(53)
where m? 3;\/7m

Notice that when ¢ = %er, we always have D = dy — % < 0. So from (7) we
can know that the condition A < 0 holds provided that the parameter dy is chosen
large enough. According to Case 4, we can derive that Eq.(1) always admits exact
periodic blow-up solutions like the solution (14).

4. Discussions on the conjectures and questions proposed by Liu

With the aid of bifurcation phase portraits, Liu [2] proposed 3 conjectures and
2 questions. Below we would analyze and discuss them one by one.

4.1. Discussions on Conjecture 1

Conjecture 1 claims that: “When b > 1 and the wave speed ¢ = ﬁb or
¢>1+4b, Eq.(1.1) has no peakon wave solution.”

9
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From (5) and (7) , we can obtain that

d3  3c(b+2)[c—(b+1

When b > 1, it is easy to verify that D < 0 for ¢ = %er, and D > 0,A < 0 for
c > 1+4b. In view of the discussions as Remark 2 in Section 2, we can find that
Eq.(1) has no peakon wave solution. Since D > 0, A < 0 corresponds to Case 4, for
which apparently has also no peakon solution. Hence, Conjecture 1 is confirmed.

4.2. Discussions on Conjecture 2

Conjecture 2 claims that: “When the wave speed ¢ > 1 + b, Eq.(1) has no
explicit smooth solitary wave solution.”

If b > 0, it follows from (54) and from the wave speed ¢ > 14 b that D > 0,
which certainly leads to that Eq.(1) has no explicit smooth solitary wave solution.
However, if b € (—1,0) and ¢ > 1+ b, then from (54) we can obtain that D < 0.
According to Case 1, by properly selecting the constant dp, Eq.(1) has explicit
smooth solitary wave solution like the solution (8). Therefore, the above-mentioned
Conjecture 2 is not strict. And it should be described as follows: “When b > 0 and
the wave speed ¢ > 1+ b, Eq.(1) has no explicit smooth solitary wave solution.”

4.3. Discussions on Conjecture 3

Conjecture 3 claims that: “When the wave speed ¢ # 1 + b, Eq.(1) has no
fractional solution.”

Note that we have obtained in section 2 that Eq.(1) has fractional solution
ug. Consequently, it implies that Conjecture 3 is also not correct. In fact, from
(54) we can know that Eq.(1) would admit fractional solution if and only if ¢ = 0
or ¢ =1+ b. I think the Correct statement is the following: “When the wave speed
c# 1+ band ¢ # 0, Eq.(1) has no fractional solution.”

4.4. Discussions on Question 1

Question 1 Claims that: “Our derivations were based on b > 1. But for
b < 1, we do not know how to derive the solutions w;(x,t),us(z,t),...,ug(z,1),
uf(z,t), ud(z,t), ud(x,t).”

Actually, it is easy to see that the solutions uy, ..., us belong to Case 1(D <
0,/A = 0), while the solutions us,ug belong to Case 3(D < 0,A > 0). We can
observe from (54) that D < 0 as long as ¢ € (0,1 + b) and b > 0. Moreover, when
b > 0, we also have the inequalities (5) described in [2]. This certainly implies that
when b > 0, the derivations on the solutions u1, ..., ug still hold well.

Note that the solutions uY, u3, ul(ug) are derived by the solutions uy,us, ud,
respectively. Hence, by comparing the solutions u{, ug, u(ug) with the general solu-
tions (8)-(10), we can obtain that it should satisfy the condition b+ 2 > 0. However
our derivations concerning with the general solutions in Section 2 are based on the
condition Zi—% > 0. These facts implies that when b > —1, u(f, ug, ug, ug are still the
real solutions of Eq.(1).
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The solution ug corresponds to D = 0, A = 0. In fact, in this case we have
from (4) that

o= 6+ 1) (55)

Obviously, Eq.(55) always have the solution like ug as long as b # —1. This illustrates
that ug is still a real solution to Eq. (1) for b # —1.
Thus, Question 1 is clarified.

4.5. Discussions on Question 2

Question 2 Claims that: “ For b < —1, we do not know whether there is any
other explicit real solution except u}(z,t)(i = 1,2,3) and ug(z,t).”
Without loss of generality, we assume that ¢ = ZTH’. Below it will be shown
that Eq.(1) admits all other types of explicit real solutions except u(z,t)(i = 1,2,3)
and ug(z,t).
First, we consider the case b < —2. From (5) and ¢ = 2T+b, we have d; =
0 and dy > 0, and it implies that D < 0. Note that exact solutions of Eq.(1)
depend completely on the values of A, D. So from (7), we can observe that one can
flexibly controls the value of the constant dy to make A =0 or A > 0 or A < 0.
This implies that Eq.(1) also admits the explicit solutions like (10),(12)-(14) except
uwf(z,t)(t = 1,2,3) and ug(z,t). For example, if setting dy = —%d%, then we have

F(p) = (¢ + 2d2) (¢ — ©). This implies that a = —22, 8 = %2 So from (10), we
can obtain that Eq.(1) also has the following trigonometric periodic wave solution
b+2 91 2+ b
t) = — |1+ 3tan” —(x — ——1)| . 56

Similarly, setting dy = —%d% yields that D < 0, A > 0. Thus, according to Case
3, Eq.(1) admits the solutions like (12) and (13); Setting dy = —Q%dg yields that
A < 0. Thus, according to Case 4, Eq.(1) admits the solution like (14).

As for the case b € (—2,—1), notice that gi% < 0, then by performing the
transformation ¢ = —¢ in Eq.(4), we can analyze it similarly.

Therefore, Question 2 is also clarified.

5. Conclusions

Let us shortly formulate the results of our paper. We have demonstrated that
using the method of complete discrimination system for polynomial one can find
some general explicit solutions of the generalized b-equation. We also demonstrated
that almost all explicit solutions from the list by Liu [2] can be obtained by our
general solutions. Moreover, we have confirmed or corrected some related conjectures
presented by Liu [2] and clarified some questions presented by Liu [2].
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