U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 4, 2014 ISSN 1223-7027

A TRANSFER THEOREM OF THE CONTINUOUS TRACE
AND TYPE | CROSSED PRODUCT OF A GROUPOID BY A
BUNDLE OF C-ALGEBRAS

Daniel TUDOR!

The purpose of this paper is to give equivalence conditions of the groupoid dynamical
systems (4, G, a) and (ﬂ,F,%) where G is a topological, locally compact, second countable

groupoid with a Haar measures system, Ais a bundle of C*-algebras indexed by the unit space of
G, ais a continuous homomorphism from G to Iso( A), T is the subgrupoid of stabilizers of G,

and % is the restriction of « to T . This equivalence is then used to transfer the property of

being continuous trace or type I C*-algebra between c* (G, A) and c* I, A4).
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1. Introduction

Known for their frequent use in quantum mechanics, C*-algebras are an
important tool in describing physical systems and the possible states of these
systems. Special cases of C*-algebras are type I C*-algebra and continuous trace
C*-algebra. Part of this large research domain of C*-algebras is the study of
different kind of crossed products associated to a group, group transformation or
groupoid and the study of the conditions under which these crossed products are
type I or continuous trace C*-algebra. Since Morita equivalence preserves the
property of being type I or continuous trace C*-algebra a tool in establishing such
conditions as mentioned above is to transfer the property of being type I or
continuous trace C(C*-algebra between a smaller crossed product or group
(groupoid) algebra and the entire crossed product or group (groupoid) algebra. For
example, in [1, Proposition 7.29] D.Williams shows that in the hypothesis of
regularity of the dynamical system (Cy(X),G,lt), where It : G — Aut(Cy(X)) is

Ity f(x)= f(g_lx) , the crossed product Cy(X)x;, G is a type I C*-algebra if

and only if the group algebra associated to every stability group G, is a type |
C*-algebra. Also, in [2, Theorem 2.7] it is shown that, if the stability groups vary
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continuously, every compact set of base space X is G-wandering and the C*-
algebra associated to all stability groups is a continuous trace C*-algebra, then the
C*-algebra associated to a group transformation, (G, X), is a continuous trace
C*-algebra.

In this context, the author of this paper showed in [3, Theorem 4] that in

the hypothesis that the stability groups vary continuously, and that if g; and g, !

are composable then g|g, !'is an element of the subgroupoid of stability groups
and the grupoid algebra associated to the subgroupoid of stability groups is a
continuous trace C*-algebra, it follows that the entire groupoid algebra is a
continuous C*-algebra. The main purpose of this paper is to extend this result to
the case of the crossed product of a locally compact groupoid by a bundle of C*-
algebras. The construction of this crossed product is described by Renault in [4].
For this purpose, we will use the notion of equivalent groupoid dynamical
systems, notion described in [4, Definition 5.3] and the fact that the equivalent
groupoid dynamical systems determine Morita equivalent crossed products, [4,
Corollaire 5.4]. We will show in Theorem 3.1.1 that in the first and second
hypothesis described in [3, Theorem 4] the groupoid dynamical systems

(A4,G,) and ( ﬂ,F,%), where G is a topological, locally compact, second

countable groupoid with Haar measure system {1" $e 0> T is the subgroupoid
of stability groups, 4 is a bundle of separable C*-algebras indexed by unit space
G , a:G — Iso(A) is a continuous homomorphism and % is the restriction
of o on I', are equivalent. Moreover, in Corollary 3.1.2, we show that the

crossed products C*(G,4) and C*(I',4) are Morita equivalent, and the
properties of being type I or continuous trace C*-algebra can be transfered from

Cc*(I, A) to C*(G, A).
2. Preliminaries

In this paper, we used the general notions concerning groupoids and
groupoid dynamical systems as given in [4], [5] and [6]. We also assume that all
groupoids have a Haar measures system. The important notion of equivalence of
groupoid dynamical systems is used as in [4, Definition 5.3] and the Morita
equivalence of the crossed products obtained from two equivalent groupoid
dynamical systems is given by Renault’s Equivalence Theorem [4, Corrolary 5.4].
Moreover, we used as in [3, Theorem 4] the topologically equivalence of a
groupoid G and the subgroupoid of stability groups T".
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3. The main results

THEOREM 3.1.1 Let ( A,G,a) be a groupoid dynamical system. If the

following conditions hold:
a) the stability groups vary continously,

b) for every pair (g1,g2) € GxG such that (g; ,gz_l) eG® it follows
that glgz_l el
then we can form the groupoid dynamical system ( ﬂ,F,%) where T is the

subgroupoid of stability groups and % the restriction of a to I'. Moreover,

(A,G,a) and ( ﬂ,F,%) are equivalent as groupoid dynamical systems.

Proof  The condition that the stability groups vary continously insures

that T has its own Haar measures system {1/ Y, er© (1in fact for every u e r® ,

v is the Haar measure of the stability group G/{u} ) and, because the unit space

of I' coincides with the unit space of G(O), it makes sense to form the groupoid

dynamical system ( ﬂ,F,%). In the following sentences, for brevity, % will

be simply denoted by «, and the elements from I" by y, hence % (y) will be

a(y). Let us recall here that in [3, Theorem 4], the second condition from this

Theorem was used to obtain a topologically equivalence between I' and G, via
the space G. This equivalence has been obtained with respect to the following left
action of I and right action of G on G. We have considered the surjections

p:G—> r®-g® , p(g)=r(g) (r the range map of G), 0:G — G(O),
o(g) = s(g) (s the source map of GG), and the actions y-g =2 € G,

yel,geG, s(y)=p(g) and g1 - g =g1g; for g1,¢, € G,0(g)) =7r(g2)-
Since the conditions from the hypothesis of the theorem insure there exists

a topologically equivalence between groupoids G and I' via G, we will obtain the

equivalence from [4, Definition 5.3] of groupoid dynamical systems( 4,G,«)

and ( ﬂ,l",%) in the following way:

We consider that the Banach bundle 9/ indexed by G will be the bundle
r*(A)={(g,a)/ac A(r(g))} with the canonical surjection f:r" (4)— G,
t(g,a)=g. A fibre of r*(4) has the form (g, A(r(g)) and a structure of
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A(p(g))— A(o(g)) -imprimitivity bimodule, or taking into account above
considerations A(r(g)) — A(s(g)) -imprimitivity bimodule, will be defined as
follows:

- the left action of A(r(g))on(g, A(r(g)) willbe b-(g,a) =(g,ba).
Since b and a are in the fiber A(7(g)), this action is corectly defined.

- the right action of A(s(g))on (g, A(r(g)) will be
(g,a)-c:=(g,aa4(c)). Since agy : A(s(g)) = A(r(g))is an isomorphism of C-
algebras, a g (¢) denotes the image of ¢ in A(r(g)) and this action is corectly
defined.

- the inner product A(r(2)) <(g,a);(g,b)> =ab”. Since a,be A(r(g))

implies ab” e A(r(g)), this inner product is corectly defined as an element of
A(r(g))-

- the inner product <(g,a);(g,b)>A(S(g)) = ag_l(a*b). Since ag_l(a*b) is

the image in A(s(g)) of the element a*b from A(r(g)), this inner product is
corectly defined as an element of A(r(g)).

Let us check now that (g, A(r(g)) is a left A(r(g))-Hilbert module, and a
right A(s(g))-Hilbert module respectively, with respect to the vector space
structure induced by A(r(g)):

(g,a)+(g,b)=(g,a+b),A(g,a)=(g,Aa),for every geG,abeAr(g)),1

scalar.
For ce A(r(g)) we have to show that:

CA(r(2) ((8:@):(2:D)) = 4(r(g)) (¢ (g:@)3(g.D)), Va,be A(r(g)), g€G.
Indeed, cA(r(g))<(g,a);(g,b)> =cab” and A(r(2)) <c-(g,a);(g,b)> =

= A(r(2)) ((g:ca)i(g.b)) = cab”.

We show now that 4, (¢))((2.4):(g.5)) = 4((g)) ((€:0):(g.2))"

Indeed 4(,(g))((8.@):(g.b)) = ab™ and 4(,(g))((g.b):(g.a))" = (ba™)" =
=" b =ab”.

Moreover A(r(g))<(g,a);(g,a)>=aa* is a positive element of A(r(g)), and

aa* =0 implies //aa*™//=//al/* =0, hence a=0.The liniarity in the first
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argument of inner product follows from the properties of addition and scalar
multiplication of the elements of the C*-algebra A(r(g)). Indeed:

A(r(g)) (A& @) + 11(2,5);(8,6)) = 4(r(g)) ((g:Aa+ 1b);(g,¢)) = (Aa+ ub)c” =

= Aac” + ubc” = 2 4,())((8:@):(8.0)) + t4(r(g)) ((€:D):(g.0)) -
Let us check that (g, 4(r(g)) is a right A(s(g)) -Hilbert module.
We have to show that((g,a); (g,b))A(S(g))c =((g.a);(g.b)- C>A(s(g))’ for every

geG,a,be A(r(g)),c e A(s(g)) -
Indeed ((£.):(8:5)) 454 © = o' (a*b)cand

((g:@);(g,b)-c >A(s(g)) <(g’“) (8:bag (e )>A(s(g))

=05_ (a b)a_ aglc)=ag (a*b)c.

=ag (a"bag(c) =

Then <(gaa) (g’b)>A(S(g)) <(gab) (g’a)>A(S(g))
<(g,a);(gab)>A(S(g)):ag (a b),

((8:0):(8:0)) 4 ) = (@ (070" =ag (b")) = ag' (@"(b")) = a5 (a’D).

<(g,a);(g,a)>A(S(g)) (a *a) = Qg (a) ag (a) and a (a) a (a) is a

positive element of A(s(g)). Moreover, since ¢, is an isomorphism of C-

g
algebras, we deduce in a similar way as in the case of the left module that
a;(a*a) =0 implies a=0. The liniarity the second argument of this inner

product can be proved in similar way as in the case of the left module.
We show now that (g, A(r(g)) is a A(r(g))- A(s(g)) -imprimitivity

bimodule.

We have:

(a-(8:0):(8:0)) 50y = ((8:aD)i(8:0)) 4y g)) = ¥z (@D) €)= arg' (b"a"c)and
(g.b);a" (g.c) =((g.b):(g.a"c) =a,'(b*a"c).

< >A(s(g)) < >A(s(g)) g

Hence (a-(€:0)3(8:6) 4y = (8010 () - for

every a,b,c € A(r(g)), g €G. 1)

We have y(,(¢)){(2:5)@:(2,0)) = a(r(g)) ((8-beg (@)):(g,¢)) =bag(a)c™ and
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Aren((@B)3(8,0)-0" ) = ey ((€:0):(8:carg (@) = bleag (") =batg (a)e”,

Hence y(r(g))((8:6)-a3(8:0)) =gy ((8:0)3(g.0)-a”), for every a e A(s(2)),
g€G, b,ce A(r(g)). )
We have 4(,(g)((ga):(g.b))-(g.¢) = (ab™)-(g,c) = (g,ab"c) and
(8,@)+((8:0):(2:9)) 45y = (&> ag' (b*c)=(g.aay(ag (b)) = (g.abc).

Hence 4(;(g))((2:0):(2:D))-(2:€) = (8,@)+((8:5)3(8:€) 4oy, » FoT every
geG, a,b, ce A(r(g)). 3)
From (1), (2) and (3) we conclude that (g, A4(r(g)) is a A(r(g))- A(s(g))-
imprimitivity bimodule.

In the following sentences, we define a left action of I and a right action

of G on (1) and we show that these actions comute and fulfill conditions from
[4, Definition 5.3].
Considering the surjection from [5, Definition 2.12], namely

Pa: r(A)— r®-g® , Pa(g,a)=r(g), the set of composable elements

will be T r*(4)= {(7.(g,2))/ p 4(g,a) =sp(y)}, the left action of I on r* ()
will bey - (g,a) =(y - g,a, (a)). But, from the considerations from the beginning

of this proof, y-g=yg (the multiplication from (), hence
(7-8.a,(a))=()g,a,(a)). Since p4(g,a)=r(g)=sr(y), 7 and g are
composable in G , and since «a,(a) denotes an element from

A(rr(y)) = A(rr (52)) , the above definition makes sense.
Considering the surjection & 4: r(A)—> G, o 4(g,a)=5(2),

r(D)*G ={((g1,0).82)/ 0 4(g1,a) =r(g2)}, we define(gy,a)- g5 =
=(g1-82,a) =(g182,a) . Since o 4(g1,a) =s(g1) =r(gz)and a € A(r(g182)) =
= A(r(gy)) , the definition makes sense.

We  show  that these actions commute. That means:
(r-(g1,a))-g2 =7-((g1,a)- &2) , for every y €l',g1,8 € G,a e A(r(gy)), such
that p 4(g1,a)=r(g1) =s7(¥),0 4(g1,a) =s(g1) =7r(g2) -

We have (7-(g1,))- €2 = (81, (a))- g3 Since o 4 (21, @, (@) = s0g)) =
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=s(g1) =r(gz), the elements (jgy,a,(a)) and g, are composable and
(81,0 (a))- g2 = (18182, (a)). On the other hand, y-((g1,4)-82)=

=7-(g182,4). Since p 4(g182,a) =r(g182) =r(g1) =sr(y), the elements y
and (g1g2,a) are composable, and y-(g1g2.4)=()8182.2,(a)). Hence the

actions commute. Since these actions are given as multiplications of elements

from topological groupoids and ag is an isomorphism of C -algebras, they are

continuous. The similar arguments, adding that multiplication of elements from a
C*—algebra is continuous, prove the first condition from [4, Definition 5.3].
Now we prove the next conditions from [4, Definition 5.3]:
- the equivariance of the bundle map ¢ at the groupoid actions:
We have to show #(y-(g,a))=y-t(g,a), forevery yel', g e G,sp(y) =r(g),

a € A(r(g)) and 1((g1,a)- g2) =1(g1,a)- g7, forevery g1,2, € G,s(g1) =r(22),
ae A(r(gr))-

Indeed #(y-(g,a)) =t(yg,a, (@) =g =y-g =y 1(g,a) and

1((g1,a) g2)=1(g182,a) =182 = &1 - &2 =1(g1,9)- &2

- the compatibility of the groupoid actions with the inner products of imprimitivity
bimodule structure:

A7 (€007 (2:0)) = @, (4(r(g))((2,@):(g,D))) , forevery y T, g €G,

s()=r(g), abe Ar(g)) Ok
((81.:4)°82:(81.5) 82) 45(g1y) = P ((81:0:(81.D)) 4 (g, ) » fOT EVeTy
81,82 €G, s(g1)=r(g2), a,be A(r(gy)) (%)

Concerning the computations from (4) and (5), some remarks have to be made.

Since  y-(g,a) = (78, a,(a)), respectively y-(g,0) =(g,a,(b)), they are
elements contained in the fibre (yg, A(r(32))) = (g, A(r(y))). But, sincey €I,
r(y) =s(y) . Moreover r(y) = s(y) =r(g), and we conclude that (yg,a,(a)) and

(7/g,a7, (b)) are in the fibre (yg,A(r(g))). It makes sense that the inner product
A(r(g))<7-(g,a);7/~(g,b)> is associated to fibre (yg, A(r(g))). On the right hand
side of the equality (4), the inner product A(r(g))<(g,a);(g,b)> is in
A(r(g)=A(s(y)), and its 1image through « is contained in

A(r(y)) = A(s(y)) = A(r(g)).-

v
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In the right hand side of the equality (5), the inner product is an element of
1
2

A(s(g1))=A(r(gr)) (g and g, are composable) and its image through a‘;
will be in A(s(gy)), similar to the inner product from left hand side.

We have (g (7 (2.@):7(8:D)) = 4(r(2)) <(7g,0!y (a)); (8. (b))> =
o, (@), (b) = o, (ab®);

ay (A(r(g))<(g,a);(g,b)>) =a, (ab™), and it results (4).

We have

. . -1 LA
<(81,a)'g2,(g1,b)'g2>A(s(gl)) =<(g1g2,a),(glgz,b)>A(s(gl)) =, . (a'b);

-1 , S I CP
@, ((£1:@5(810) 4y g y) = Ty (@ @B =y (@D =a) (D)
and it results (5).

- the compatibility of the groupoid actions with the actions of imprimitivity
bimodule structure.

We have to prove:y-(a-(g,0))=a,(a)-(y-(g.b)), for every yel.geG,

s(y) =r(g),a,b € A(r(g)) (6)
and

((g1.a)-b) g2 = ((g1.0) g2)- a;j (b),g1,82 € G,5(g)) =r(ga),a € A(r(g))),
be A(s(g))) (7)

Indeed, y-(a-(g,0)) =7 -(g,ab) = ()8, a, (ab));

a,(a)-(y-(g,b) =a,(a)-(1g,a,()) = (18,0, (a)a, (b)) = (18,2, (ab)) and it
results (6).

We have ((g1,a)-b)- g2 =(g1,aaq (b)) g2 =(8182.a04, (D));

(81.0) g2) ) ()= (2182.a) 0| (0) = (8182.a0g ¢, (e (b)) =
= (gng d
).

- the comutativity of the groupoid actions with the actions of imprimitivity
bimodule structure

We have to prove:

y-((g,a)-b)=(y-(g,a))-b;forevery yel',geG,s(y)=r(g),ac4(r(g)),

be A(s(g)) (®)

(a-(g1,0))-g2 =a-((g1,b)-g2), for every g1,g, € G,s(g1) =7(g2),

g.00yes () = (8182:00g,(,) () = (122,00, (b)) and it results
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a,b e A(r(gy)) ).
Indeed

7-((g,a)-b)=y-(g,aaq(b) =(18,a,(aay (b)) = (18,2, (a)a, (ag (b)) =

= (8.t (@)t (b)) ;

(7-(g,a))-b=(18,2,(a))-b=(18,a,(a)a, (b)) and it results (8).

We have (a-(g1,b))-g2 =(g1.ab)- g2 =(g182.ab);

a-((g1,0)-g2) =a-(g182,b) =(g1&2,ab) and it results (9).
Since we have checked all conditions from [4, Definition 5.3], the groupoid

dynamical systems ( 4,G,«) and ( 4, ,%) are equivalent.

COROLLARY 3.1.2  Let ( A,G,x) be a groupoid dynamical system

and T the stabilizers subgroupoid of G. If the following conditions are satisfied:
a) the stability groups vary continously,

b) for every pair (g1,2,) € GxG such that (gl,gz_l) eG? it follows
that glgz_l el
then C*(G, A) si C*(T,A) are Morita equivalent. Moreover, if C*(T', A) is a

continous trace C*—algebra or type 1 C*-algebra, then C*(G,A) will also be a
continous trace C -algebra or type I C -algebra, respectively.

Proof . By Theorem 3.1.1 ( 4,G,) and ( fl,F,%) are equivalent
dynamical systems, and by Renault’s Equivalence Theorem [4, Corrolary 5.4]

C*(G,A) si C*(I',A) are Morita equivalent. The posibility to transfer the
properties of being continous trace C*—algebra or type I C*—algebra between

C*(I', 4) and C*(G, A) is given by [1, Proposition 1.42] and [2, Theorem 2.15].

PROPOSITION 3.1.3  Let ( A,G,a) be a groupoid dynamical system
such that G is a transitive groupoid. We consider G /{u} the stability group of an

element ueG(O)andA(u)the C*—algebra from A with index ueGO. If the
group crossed product C”(G/{u}, A(u)) obtained from the group dynamical
system (A(u),G/{u},%/{u}) is a continous trace C -algebra or type I C'-

algebra, then C*(G, A) will also be a continous trace C -algebra or type I C -
algebra, respectively.
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Proof According to [5, Proposition 2.19], the condition of transitivity of

groupoid G insures that for any unit u e G(O), G and G/{u} are topologically
equivalent. In the same manner as in Theorem 3.1.1, we can show that

(A(w),G/ {u},% / {u}) is equivalent to( 4,G,a), and we have the posibility to

transfer the properties of being continous trace C*—algebra or type I C*—algebra
between C* (G /{u}, A(u)) and C*(G, ).

4. Conclusions

In this paper, we have studied the equivalence of certain groupoid
dynamical systems. We have offered in Theorem 3.1.1 an equivalence of the

groupoid dynamical systems (4,G,«) and ( 4,T, %) where G is a topological,
locally compact, second countable groupoid G with the Haar measures system

! Y yeq » T is the subgroupoid of stability groups, 4 is a bundle of separable

C*-algebras indexed by G ,a:G — Iso( A)1is a continuous homomorphism and

% is the restriction of « to I'. In Corollary 3.1.2, using Renault’s Equivalence

Theorem we have showed that C*(G,.4) and C*(I',.4) are Morita equivalent
and that we have the posibility to transfer the properties of being a continous trace

*-age ra or type *-age ra from ,A) to ,A).
C -algeb [ C -algebra from C*(I', 1) to C*(G, 4)
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