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ON THE INTERPOLATIVE (¢,%)-TYPE Z-CONTRACTION

Mohammad S. Khan', Y. Mahendra Singh?, Erdal Karapmar®

In this paper, we introduce the notions of interpolative (i, 1)-type Z-contrac-
tion with respect to simulation function and quasi triangular 0-orbital admissible map-
ping. Using these notions, some fixed point theorems are also established in the frame-
work of metric space. An illustrative example is furnished to show that there exists a
quasi triangular 0-orbital admissible mapping which is not a triangular 0-admissible.
As an application of our result, we establish an existence of solution for a non-linear
Fredholm integral equation.
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1. Introduction and Preliminaries

The metric fixed point theory was initiated by Banach [5] with his pivotal result
”contraction mapping principle” that was established for the existence and uniqueness of
a solution of certain integral equations. A mapping T' : X — X over a metric space
(X,d) is called contraction mapping, also known as Banach contraction, if there exists
k € [0,1) such that for all z,y € X, d(Tx,Ty) < kd(z,y). A mapping that satisfies the
”contraction mapping principle” is necessarily continuous and this was the main weakness
of this theorem. It was considered whether the continuity condition is superfluous. An
initial response to this question was given by Kannan [10] in 1968 affirmatively. Kannan
[10] successfully introduced a new type of contraction mapping which is not necessarily
continuous. A mapping T : X — X is called Kannan type contraction if there exists
0 < k < 3 such that for all z,y € X, d(T%,Ty) < k(d(z,Tz) + d(y,Ty)). In 1972,
Chatterjea [8] also introduced a similar type of Kannan contraction. Mapping T : X — X
is called Chatterjea type contraction if there exists 0 < k < % such that for all z,y € X,
d(Tz,Ty) < k(d(z,Ty) + d(y,Tx)). On the other hand, in 1976 Khan ([18], [19]) first
used the idea of geometric mean of Kannan type contraction. A mapping 7 : X — X
is called Khan type contraction if there exists 0 < k& < 1 such that for all z,y € X,
d(Tz, Ty) < k(d(z, Tz).d(y, Ty))? . Recently, in 2018 Karapmar [11] revisited Kannan type
contraction and introduced the concept of an interpolative Kannan type contraction, a more
general form of Khan type contraction. A mapping 7" : X — X is said to be an interpolative
Kannan contraction mapping if

d(T, Ty) < hld(w, Tx)]* [d(y, Ty))' ",
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for all z,y € X with Ta # x, where h € [0,1) and a € (0,1). Note that if o = %, then
interpolative Kannan type contraction reduces to Khan type contraction.

Theorem 1.1 ([11]). Let (X, d) be a complete metric space and T be an interpolative Kan-
nan type contraction. Then T has a unique fized point in X.

Very recently Karapmar et al. [13] pointed out that the fixed point obtained in
Theorem 1.1 [11] may not be unique. The refinement of Theorem 1.1 is stated as follows:

Theorem 1.2 ([13]). Let (X,d) be a complete metric space. A self mapping T : X — X
possesses a fixed point in X if there exist constants h € [0,1) and o € (0,1) such that

d(Tx,Ty) < hld(z, Tx)]" [d(y, Ty)]'~"
for all z,y € X \ Fiz(T), where Fiz(X) = {w: Tw = w}.

Example 1.1 ([13]). Let X = {0,1,2,3} endow with Euclidean metric d(x,y) = |z — yl.
DefineT : X - X by T0O=0,T1=1,T72=T3=1. For all x,y € X \ Fix(T) T satisfies
Theorem 1.2, where o € (0,1) and h € [0,1). Note that 0 and 1 are fized points of T.

Moreover, Karapmar et al. [13] also introduced the notion of interpolative Reich-Rus-
Ciri¢ type contraction in the setting of partial metric space.

Definition 1.1 ([13]). Let (X,p) be a partial metric space. A mappingT : X — X is called
an interpolative Reich-Rus-Cirié type contraction, if there exist h € [0,1), ay,as € (0,1)
with a1 + ag < 1 such that

p(Tz, Ty) < h{p(%y)rl-[p(w,Tw)r
for all z,y € X \ Fix(T).

2 :|1*a1*02

: [p(y7 Ty)

Theorem 1.3 ([13]). Let (X,p) be a complete partial metric space and T : X — X is an
interpolative Reich-Rus-Ciri¢ type contraction, then T has a fized point in X.

On the other hand, Karapmar et al.[14] introduced the notion of interpolative Hardy-
Rogers type contraction by using the well known contraction of Hardy and Rogers [9)].

Definition 1.2 ([14]). Let (X,d) be a metric space. A self mapping T : X — X is said to
be an interpolative Hardy-Rogers type contraction if there exist h € [0,1), a; € (0,1) with
ay + as + ag < 1 such that

d(Tx,Ty) < hH(z,y), for allz,y € X \ Fiz(T)
where

H(z,y) = [d(x, )| [d(a, T)| [d(y. Ty))** [ (d(z, Ty) + d(y. To)) |

In 1984, Khan et al. [20] introduced the notion of altering distance function.

1*2?:1 A

Definition 1.3. [20] A continuous function ¢ : [0,00) — [0, 00) is called an altering distance
if it is non-decreasing and p(r) = 0 if and only if r = 0.

It is obvious that (r) > 0, for all » > 0. We denote @, the set of all altering distance
functions. We have the following examples on altering distance function.
Example 1.2. Let ¢, : [0,00) — [0,00), where i = 1,2 be defined by:
(i) p1(t) = e + bt — 1;
(ii) pa(t) = at® + In(bt + 1), where a,b > 0.

Definition 1.4. ([6], [7]) A function v : [0,00) — [0, 00) is said to be a comparison function
if it is monotonically increasing and Y™ (t) — 0 as n — oo for all t > 0.
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Example 1.3. Let ¢); : [0,00) — [0,00), where i = 1,2 be defined by:
(1) ¥1(t) = kt, where k € [0,1), (ii) 2(t) = 555 Obviously v; is a comparison function,
where 1 = 1,2.

If 4 is comparison function, then ¥ (¢) < t for all ¢ > 0 and ¥ (0) = 0. The symbol ¥
denotes the set of all comparison functions. In 2015, Khojasteh et al. [21] introduced the
notion of simulation function.

Definition 1.5 ([21]). A mapping ¢ : [0,00) x [0,00) — R is called a simulation function,
if it satisfies the following conditions:

(€1) €(0,0) = 0;

(¢2) C(t,s) <s—t, forallt,s > 0;

(C3) if {tn}, {sn} are sequences in (0,00) such that lim t, = hrf $p > 0, then
n——+0oo

n—-+4oo

lim sup((tn,sn) <O0.

n=-+oo
The set of all simulation functions is denoted by Z.
Definition 1.6 ([21]). Let (X, d) be a metric space and T : X — X be a mapping. If there
exists ¢ € Z such that
C(d(Tx,Ty),d(x,y)) >0, for allz,y € X,
then T s called Z-contraction with respect to C.

In the same year, Argoubi et al. [4] refined the above notion by removing the first
condition (¢1). Note that the condition ({7) is indeed obtained from ({z), if T is a Z-
contraction with respect to (. A basic example of Z-contraction is Banach contraction,
which is obtained by setting ((¢,s) = As — ¢, where A € [0,1).

In the sense of Argoubi et al. [4], we have the following:
Definition 1.7 ([4]). A mapping ¢ : [0,00) X [0,00) — R is said to be simulation function
if it satisfies the conditions (C2) and ((3).

Clearly, any simulation function in the original Khojasteh et al. [21] sense is also a
simulation function in sense of Argoubi et al. [4], but the converse is not true.

Example 1.4 ([4]). Let ¢ : [0,00) % [0,00) — N be a function defined by
((t,s) = {1’ for (t,s) = (0,0);

As —t, otherwise,
where X € (0,1), then ¢ satisfies ((2) and (¢3) with (¢(0,0) > 0.

Example 1.5. Let ¢ € ® and ¢ € U such that Y(t) < t < @(t), for all t > 0 and
¢ :[0,00) X [0,00) = R be a mapping defined by ((t,s) = P(s) — p(t), for all t,s € [0,00).
Then ¢ is a simulation function.

For further details and examples on simulation function, it can be found in [21, 3, 24,
16, 17, 2, 1]. Recently Karapmar[12] extended interpolative Hardy-Rogers type contraction
using the simulation function ¢ in the sense of Argoubi et al. [4] as follows:

Definition 1.8 ([12]). A mapping T : X — X is called an interpolative Hardy-Rogers type
Z-contraction with respect to ¢ if there exist ¢ € Z, a; € (0,1), where i = 1,2,3 such that
a1 + ag + agz < 1 satisfying the inequality

C(d(Tx,Ty), H(ac,y)) >0, forallz,y € X\Fiz(T)

where
H(2,9) = [dx, )] [d(e, Te)] [a(y. To)]. [ (e 7o) +dy, 7)) ]
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Remark 1.1. If T is an interpolative Kannan type contraction(resp. Reich-Rus-Cirié
type contraction, Hardy-Rogers type contraction, Z-contraction and Hardy-Rogers type Z-
contraction), then T is continuous.

For this, consider a sequence {x,} in X defined by x,, = T"xg = Txp—1 for any xo € X,
where n > 1 such that x, — w € X as n — +o0o. Suppose T is an interpolative Kannan
type contraction, then we have

d(Tx,, Tw) <h[d(xn, Tz,)]* [d(w, Tw)]} ™ = hld(xn, 2p1)] [d(w, Tw)]* 2.
Letting limit as n — +o00, we have

lim d(Tx,, Tw) =0 yielding lir_~r_1 Tz, = Tu.
n—-+0o0

n—-+4oo

Similarly, one can prove that if T is an interpolative Reich-Rus-Cirié type(resp. Hardy-
Rogers type) contraction, then T is continuous. Further, suppose that T is an interpolative
Hardy-Rogers type Z-contraction. By definition, we have

0< C(d(Txn,Tw), H(x,, w)) < H(zp,w) — d(Tx,, Tw),
where, Tp,w € X \ Fiz(T) and
H(zp,w) =[d(zy,, w)]*" . [d(x,, Tz,)] 2. [d(w, Tw)]*.
1 1‘2?:1 i
[5 (d(xn, Tw) + d(w, Txn))} .
Letting limit as n — 400, we obtain

lim d(Tz,,Tw) <0 yields lim Tz, =Tw.

n—-+o0o n—-+oo

Thus, we conclude that T is continuous mapping if it is Z-contraction or an interpolative
Hardy-Rogers type Z-contraction.

Let X be a non-empty set and 6 : X x X — R. We collect the following concepts.
Definition 1.9 ([25]). A mapping T : X — X is said to be 0- admissible if
(01) O(x,y) > 1 implies 0(Tz, Ty) > 1, z,y € X.
Definition 1.10 ([15]). 4 mapping T : X — X is said to be triangular 6-admissible if it
satisfies (61) and
(02) O(x,2) > 1 and 0(z,y) > 1 imply 6(z,y) > 1, z,y,z € X.

Note that if T fails to satisfy any one of the conditions (1) and (2), then T is not a
triangular #-orbital admissible.
Definition 1.11 ([23]). A mapping T : X — X is said to be 0-orbital admissible if

(03) O(x, Tx) > 1 implies (Txz, T?z) > 1, z € X.
Definition 1.12 ([23]). A mapping T : X — X is said to be triangular 8-orbital admissible
if T satisfies (63) and
(04) 6(x,y) > 1 and O(y, Ty) > 1 imply 6(x, Ty) > 1, z,y € X.
It is obvious that every triangular #-orbital admissible mapping 7" is 6-orbital admis-

sible, but the converse is not true. For more details and examples on #-admissibility(resp.
f-orbital admissibility), it may be refered to ([25], [23],[15], [22] and references therein).

Definition 1.13 ([25],[23]). Let (X,d) be a metric space and 6§ : X x X — R be a mapping.
A sequence {x,} in X is said to be O-regular if O(xn, xpy1) > 1, for each n and ,, - w € X
as n — +oo, then there exists a subsequence {xn,, } of {xn} such that 0(x,, ,w) > 1, for
each k € N.
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Remark 1.2. (i) Popescu[23] observed that every 8-admissible mapping is 0-orbital admis-
sible. Further, it has observed in Popescu[23] that every triangular 6-admissible mapping is
a triangular 0-orbital admissible mapping, but the converse may not be true in general(see
Ezample 723]).

(it) In our view, it may be observed that every 0-admissible mapping T is 0-orbital admissible
if there exist w € X and k € NU{0} such that 0(x,y) = 0(T*w, T**1w) > 1, otherwise T is
not 0-orbital admissible(see Example 1.6 and Example 1.7). In fact by (03), every 0-orbital
admissible mapping may not be 0-admissible mapping(see Example 1.8).

Example 1.6. Let X = {0,1,2} with usual metric d(z,y) = |v —y|. Let T : X — X
and 0 : X x X — R be mappings defined by TO = 0,T1 = 2,72 = 1 and 0(z,y) = 1 if
(z,y) € {(0,0),(1,2),(2,1)} and 0(x,y) = 0, otherwise. Since 0(0,0) = 6(1,2) =0(2,1) =1,
0(T0,7T0) = 6(T1,T2) = 0(T2,T1) = 1. Therefore, T is 0-admissible mapping. On other
hand, we have 0(0,T0) = 6(1,T1) = 6(2,T2) =1, 6(T0,T?0) = 0(T1,T?1) = 6(T2,T?2) =
1, so T is a 0-orbital admissible. Note that T satisfies neither (62) nor (04). Therefore, T
1s neither triangular 0-admissible nor triangular 8-orbital admissible.

Example 1.7. Let X and T : X — X are as in Example 1.6. Define 6 : X x X — R as:
O(z,y) =1, if (z,y) € {(0,1),(0,2)} and 6(z,y) =0, otherwise. Clearly, T is a 6-admissible
as 0(0,1) = 0(T0,T1) = 1, 6(0,2) = 0(T0,T2) = 1. But, there does not exist w € X and
k € NU{0} such that 0(z,y) = 0(T*w, T* w) = 1, so T is not a O-orbital admissible
mapping.

The concept of quasi triangular #-orbital admissible mapping is defined as follows:

Definition 1.14. A mapping T : X — X is said to be quasi triangular 0-orbital admissible
if T satisfies (03) and
(05)0(z,y) > 1 implies 0(x,Ty) > 1, z,y € X.
Obviously, every triangular #-orbital admissible is quasi #-orbital admissible. In the

following example we show that there exists a quasi triangular 6-orbital admissible mapping,
but not a triangular #-admissible mapping.

Example 1.8. Let X = {0, 1,2, 3} with usual metric d(z,y) = |z —y|. Let T : X — X and
0: X x X — R be mappings defined by
L if(z,y) € A,

T0=0,T1=2,T2=1,T3=3 and 0(x,y) = ‘
0, otherwise,

where, A ={(0,1),(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),(2,3)}. Since (1,2),(2,1) € A, then
we have 0(1,T1) = 0(T1,T%1) = 6(2,1) = 1 and 6(2,T2) = 6(T2,7T?2) = 0(1,2) =1, so T
s 0-orbital admissible mapping. Further, we have

0(0,1) =6(0,T1) = 6(0,2) =1, 0(0,2) =6(0,72) = 6(0,1) =1,

0(1,2) =0(1,T2) = 0(1,1) = 1, 6(2,0) = 6(2,T0) = 6(2,0) = 1,

0(2,1) =0(2,T1) = 0(2,2) =1, 6(2,3) = 0(2,T3) = 6(2,3) = 1.

Therefore, T satisfies (05) and hence T is quasi triangular 0-orbital admissible mapping.
Note that 0(x,y) = 0(2,0) = 0(2,3) =1, 0(y,Ty) = 0(0,70) = 6(3,T3) =0, but 6(z,Ty) =
0(2,70) = 0(2,73) = 1. It shows that the necessity of 0(y,Ty) > 1 for (04) is not required
to satisfy (05). On the other hand, we have 6(2,0) = 6(2,3) =1, 6(T2,70) = 6(T2,T3) =0
as (1,0),(1,3) ¢ A, so T does not satisfy (61). Moreover, we have 0(1,2) = 6(2,3) = 1,
but (1,3) = 0, T does not satisfy (02) and hence T is neither triangular 8-admissible nor
0-admissible mapping.
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Lemma 1.1. Let T : X — X be a quasi triangular 0-orbital admissible mapping. Assume
that o € X such that 0(xo,Txo) > 1. If there exists a sequence {xp} in X such that
Tn = T"x0, then 0(xm,xn) > 1, m > n, for allm,n € NU{0}.

Proof. By assumption there exists xg € X such that 6(xg,Txg) > 1, then by 6-orbital
admissible of mapping T, we have 0(z1,22) = 0(Txo, T?z0) > 1. By continuing in this
process, we obtain 6(z,, z,+1) > 1, for all n € NU{0}. Since T is quasi triangular f-orbital
admissible mapping and 0(x,,z,+1) > 1 for n € NU {0}, then from (5), we obtain that
O(xp, Tni2) = 0(xn, Txpi1) > 1. By continuing this process repeatedly with (5), we obtain
that 6(zn,xm) > 1, m > n for all m,n € NU {0}. O

In this paper, using the notions of quasi triangular #-orbital admissible and inter-
polative (¢, ¥)-type Z-contraction with respect to simulation function, we prove some fixed
point theorems.

2. Interpolative (¢, v)-type Z-contraction and fixed point theorems

In this section, we discuss (i, 1)-type Z-contraction with respect to simulation func-
tion ¢ in the sense of Argoubi et al.[4], using an interpolative approach in the setting of
metric spaces. Let T be a self mapping on a metric space (X, d).

Definition 2.1. A mapping T : X — X is called an interpolative (p,1))-Banach-Kannan-
Chatterjea type Z- contraction with respect to ¢ (in short, interpolative (p,1)-BKC type
Z-contraction) if there exist 0 : X x X - R, (€ Z,p € @, € U, a1,a9 € (0,1) such that
p(t) > Y(t), fort >0 and a1 + ag < 1 satisfying the inequality

(06, y)e(d(T2, Ty)). $(B(.y))) 2 0, for all 2,y € X, (1)

where

Bla,y) = (e, )} [ 5 (Al To) + d(y, Ty)| [ (e, Ty) + dly, T2))

Definition 2.2. A mapping T : X — X is called an interpolative (¢,1))- Hardy-Rogers
type Z-contraction with respect to (in short, interpolative (p,¥)-HR type Z-contraction) if
there exist 0 : X x X - R, (€ Z,p € D, € U, o; € (0,1), where i = 1,2,3, such that
p(t) > (), t >0 and Z?:I a; < 1 satisfying the inequality

¢(0(,y)e(d(Tw, Ty)), (H(z.y))) > 0, for all 2.y € X\Fia(T), e

1—&1—&2

where
H(z,y) = [d(e, )| d(a, )| [d(y. Ty))* [ (d(z, Ty) + d(y. To)) |

Theorem 2.1. Let T be a self-mapping on a complete metric space (X,d). Suppose that
T is quasi triangular 0-orbital admissible and forms an interpolative (,v)-BKC type Z-
contraction with respect to (. If there exists xg € X such that 68(xg,Txo) > 1 and T is
continuous, then T has a fixed point in X.

1*2?:1 A

Proof. Let g € X such that 0(xg,Txo) > 1. Consider the iterative sequence {z,} by
xp =T"xy = Txy_q, for all n € N. If there exits ng € N such that z,,_; = z,,, then the
proof is over. Indeed, z,,_1 forms a fixed point since x,,—1 = Tpn, = T%n,—1. Consequently,
throughout the proof we shall assume that z,_1 # x, and hence we have d(z,_1,2z,) > 0,
for all n € N. On the other hand, 6(xg,x1) = 0(xg,Txo) > 1 and T is f-orbital admissible
mapping, we find 0(z1,22) = 0(Tzo, T?x0) > 1. Recursively, we derive that 0(x,,_1,1,) > 1,
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for all n € N. From (1), we obtain

0< ¢(0an-1,w)p(d(T 01, Ten)), b(Blan-1.7,)))

= ¢(0@n1.20)0(d(@0, 2041)) Y (B(w-1,70))) ®)
< w(B(xn—la xn)) - e(xn—la xn)ﬁp(d(xna LEn+1))7

where
B(wp_1,2,) = [d(xn_l,zn)} [% (d(xn_l,Tg:n_l) + d(xn’T%))}%.
[% (d(In—1, Tx,) + d(z,, Txn—l))] J
- |:d(-’13n—1, xn)} " [% (d(mn_1, ) + d(xn, xnﬂ)” o [%d(%—h xn+1):|

aq

(4)

Consequently, we arrive

e(d(zn, Tng1)) < O(zn- 1a15n)90(d(xn7517n+1))
< q/}(B(ZL'n lvxn

B -
[ld(xn 1, Tnt1)
< w( [d(xn_l, xn)} o [% (d(mn_l, Tn) + d(xn, mn+1)>} lial).
Suppose d(zn_1,Tyn) < d(@pn, Tpt1), for n > 1, then from (5), we obtain
P(d(@n, tni1)) < Y(d(@n, Tni1)) < @(d(@n, Tni1))
This is a contradiction. Accordingly, we obtain

d(Tp, Tpt1) < d(xp—1,x,), for all n > 1. (6)

aq Q2
xn 1»xn) +d(xn;xn+l)):| .

1—61 ~a (5)
} )

Hence {d(zn, xn+1)} is a monotone decreasing sequence of positive real numbers and bounded
below by zero. So there exists » > 0 such that lim, o0 d(Zpn, Znt1) = r. We claim that
r > 0, otherwise from (3), (4) together with (6), we obtain

0= ¢(0@n-1.20)p(d(@n,2as1)), V(B(a-1,20) )
< Y(B(Tn-1,2n)) = O(@n-1,70)0(d(Tn; Tnt1))-
Consequently, we obtain

Qo(d(xnvl'nnLl)) e(xnflvl'n)@(d(xmxwﬂrl)) < 1/)(3(%71,%)) (7)

<
< p(B(xn-1,7a)) < o(d(@n—1,2n))-
Letting limit as n — +oc in (7), we obtain

(

hmn—H—oo (l‘n 1, T

( (mmxn-&-l)) = limy, 4 o 7#(3(%—17%)) = ‘P(T)- (8)
Setting s, = 0(Tp—1,%n)p ( TnyTnt1)), tn = Y(B(p—1,2,)) in (3) and (4), then by ({3)

with (8), we obtain

0< lim,_joe supC(H(wn,l, Tn)p(d(xn, Tpi1)), Y(B(zp_1, mn))> < 0.

This is a contradiction and thus we have lim,, 4 oo d(Zn, Tnt1) = 0. Now, we show that {z,}
is a Cauchy sequence. Suppose not, there exists € > 0 for which we can find two sequences
{mi} and {ny}, for all k& > 1 with z,,,, > x,, > k such that d(z,,,zm,) > €. Further,
we assume that my, is the smallest number greater than ny, then d(x,, , Tm,—1) < €. By
triangular inequality, we obtain

€ S d(xnkvzmk) S d(Ink,xmk_l) + d(xmk—lvxmk) < € + d(Imk_l,fEmk).

17&17042
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Taking limit as kK — +o0, we obtain
lim d(zn,,Tm,) =€ 9)

k—+o0
Again by triangular inequality, we obtain
A Xy, s Ty, ) < ATy Trpt1) + ATt 1, Tmgt1) + A Tomg 1, Ty )-
Also we obtain
A X415 T +1) < (X415 Ty, ) + ATy Ty ) + ATy Ty t1)-

Combining the above two inequalities and taking limit as & — +o00 together with (9), we
obtain

kEIJPoo d(‘rnk+1’$mk+1) =€ (10)

Furthermore, we obtain
d(xnk ’ Crmk) < d(xnk ) xnk+1) + d(xnkJrlv xmk) < d(xnk ’ xmk) + 2d(xnk ’ xnk“rl)'
Taking limit as k — +o00, we obtain

kgrfood(xnk-‘rlaxmk) =€ (11)

Similarly, we obtain
d(mnk ’ xmk) Sd(xnk ) xkarl) + d(mkarlv imk) < d(xnka ‘rmk) + Zd(xmk ) xkarl)'
Taking limit as k — +o00, we obtain

im d(wn,w 1) = (12)

Since T is quasi triangular #-orbital admissible, by Lemma 1.1, we obtain
a(Zp, , Tm,, ) > 1, for all numbers my, ny such that my > ny, where k > 1.
From (1), we obtain

0 <C(0@ns, 2 )P (A(T00,), T, ) (B 1))

¢ (0@, T )P, 11,y 1)) V(B 7m,)))
<¢(B(xnk » Lmy, )) - e(x"k y Lmy, )(P(d(mnkJrlv mkarl))'
It follows that

P(dn, 41, Ty 1)) 0@ )P (Anst1, Ty 1))

<t (B(xnk , xmk)) < @(B(xnk , xmk))

where

B(zn,, Tm,,) =[d(@n,, Tm, )] [% (d(mnk y T2, ) + d(Tm,,, Txmk))} QQ.

[% (d(ﬂvnk T 2m,,) + ATy, Txnk)>:| l—a1—as
=[d(xp,, Tm, )] E (d(xnk onit) + o xmkﬂ)ﬂ -
1

[5 (d(x"k s Tmg+1) + ATy, znk+1))} roamas

Taking limit as k — 400 together with (9), (10), (11) and (12), we obtain
0 < ¢(e) < ¢(0) =0 = ¢(e) = 0 if and only if e = 0.
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This is a contradiction and hence {z,} is a Cauchy sequence in X. Since X is complete,
there exists w € X such that lim,,_, ;o , = w. On account of T is continuous, we find that
Tw = lim, 400 Txp = limy, o0 Tnt1 = w. Hence, w is the desired fixed point of T O

Example 2.1. Let X = [0,1] with usual metric d(x,y) = |z —y|. Suppose §: X x X - R
and T : X — X are mappings defined by

by = b OSwUSy o<y g e 0<
’ 0, otherwise ' z, %<

3 B
for all n € N. Also, we have % < Trz < %, for all x € [0,1]. It is obvious that T is
quast triangular 6-orbital admissible in X. Let xo € X such that 0(xo,Txo) > 1. Define a
sequence {xn} in X such that x, = T"x, for all n € N. By 0-orbital admissibility of T,
we have 0(Txg, T?x¢) > 1. Recursively, one may obtain that (T ‘xo, T"x¢) > 1, where

n -2 i z
T Tro — %Z?:O (%) + 1—;’_71,0
Taking ((t,s) = ¢(s) —t, for all s,t > 0 in Theorem 2.1, we obtain

0(z, y)p(d(Tz, Ty)) < (B(x,y)), for all z,y € X.

Setting @(t) = t,(t) = ht, t > 0, where h = %, a1 = % and ap = 3, then o(t) > p(t).

Since 0 < z,y < %, we obtain

Since n*-iterate of T is either T"x = %Z?:_Oz(l)i +1z 2 e o, %] or, T"v =z, € (%, 1],

1
Oslx—yléiéoﬁlx—ylé

<1
_\/53

0< E(|x—Tm|+|y—Ty|)r2 = [%(\1—2x|+|1—2y|)] <

i
—
W =
~—
i
=}
S
IS8

IS 5 71 5 1\
(5)" |30 =Tyl +ly—Ta)|" = [c(i+y -3zl +1+z-3y)]" < (3)".
By simple calculation for all z,y € X, we obtain
1
0(z,y)p(d(Tz, Ty)) =0(z,y)|Tz = Tyl = S|z —y|

1
6

1 1 371
<l =yl (G122l + 11— 20)] " [G (1L +y = Bl 142 3y

=5l =it [5e =Tl + y = Tu] [0 = Tul + 1y = Tx) | = w(Blw)).

Thus, all the conditions of Theorem 2.1 are satisfied and on account of continuity of T, we
obtain

1 19 1y 1
TS = lim T(T"w) = lim T"leg= lim (3;(3) + “”0)

n——+oo n—-+oo n—-+o0 3"
. 1 1 1+ o 1
= lim (7 X T+ ) = —.
n—+oo \3 1 — 3 3" 2

Thus T possess a fized point in X . Note that Fiz(T) = {3} U{z :x € (3,1]}.

In the following theorem, we replace one of the heavy conditions of Theorem 2.1 i.e.,
continuity of T with the notion of f-regularity as follows:
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Theorem 2.2. Let T be a self-mapping on a complete metric space (X,d). Suppose that
T is quasi triangular 0-orbital admissible and forms an interpolative (,v)-BKC type Z-
contraction with respect to (. If there exists xo € X such that 0(xo,Txg) > 1 and {z,} in
X is O-reqular, where x, = T"xo, n € N, then T has a fixed point in X.

Proof. By given assumption, there exists xg € X such that 6(xg,Tzg) > 1. Consider the
iterative sequence {x,} by x, = Tx,_1, for all n € N. Since T is #-orbital admissible, we
obtain recursively that (x,—1,2,) > 1, for all n € N. Without lost of generality, we shall
assume that z,,_1 # x,, and hence we have d(z,_1,x,) > 0, for all n € N. By repeating the
same steps as in the proof of Theorem 2.1, we derive that {x,} converges to w. Since {z,}
is f-regular in X, then there exists a subsequence {z,,} of {z,} such that 0(x,, ,w) > 1,
for each k € NU {0}. From (1), we obtain

0 (0@, w)p(A(T 2, Tw)) (Bl Tw)))
:< (e(xnk ) w)@(d<xnk+17 Tw))7 w(B(xnk ) Tw))) < w(B(xnk ’ TU})) - e(xnk ) w)@(d<xnk+17 Tw))

which is equivalent to

P(d(zny 41, Tw)) <Oy, w)p(d(Zny 41, Tw)) < Y(B(xn,, Tw)) < P(B(Tn,, Tw))

where

B(zy,,, Tw) =[d(zp, , w)]*". [% (d(mnk , T2, ) + d(w, Tw))} a2

s ]

—[d(zn, , w)]*. [1 (d(xnk Zns1) + d(w, Tw))} -

2
1 1704170(2
b (d(:ﬁnk,Tw) +d(w,xnk+1)>} .
Taking k — +o00, we obtain ¢(d(w,Tw)) = 0 implies d(w, Tw) = 0. This shows that w is a
fixed point of T |

Let (U) be the uniqueness condition which is given as: For any distinct fixed points
w,w* € Fix(T) # ¢, O(w,w*) > 1, where Fix(T) = {x: Tx = x}.

Theorem 2.3. In addition to the assumption of Theorem 2.1 (or Theorem 2.2), we suppose
the condition (U) holds. Then the observed fixed point is unique.

Proof. Taking w,w* € X, w # w* such that Tw = w and Tw* = w* in (1), we obtain
0 g((é)(TmTw*)cp(d(Tw,Tw*)),w(B(w,w*)))
¢ (6w, w*)pld(w,w*)), v(Blw,w)))
<P(B(w,w")) — 0w, w)p(d(w,w")) = =0(w, w*)e(d(w, w")
This is contradiction and hence T has a unique fixed point in X. O

Remark 2.1. In Ezample 2.1, Fiz(T) = {1} U{z : z € (3,1]}, so the condition (U) does
not hold and hence Theorem 2.3 is not applicable in Example 2.1.

Theorem 2.4. Let T : X — X be a self mapping on a complete metric space (X,d). If
there exist 0 : X x X = R, p € ®,9p € U, oy, a3 € (0,1) such that o(t) > ¥(t), fort >0
and a1 + ag < 1 satisfying the inequality

0(z, y)p(d(Tz, Ty)) <¢(B(z,y))
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for all x,y € X. If there exists xg € X such that 0(xo,Txo) > 1 and T is continuous, or
{zn} in X is O-reqular, where x, = T"xo, n € N, then T has a fized point in X. Further
suppose the condition (U) holds, then Fix(T) is singleton.

Proof. Setting ((t,s) = 1(s) —t, for all s,¢ > 0 in Theorem 2.3. |

Corollary 2.1. Let T be a self mapping on a complete metric space (X,d). If there exist
Y E W, ar,as € (0,1) such that a; + as < 1 satisfying the inequality

d(Tz,Ty) <¢(B(z,y))
for all x,y € X, then T has a unique fized point in X.
Example 2.2. Let X = {0,1,2,3} endow with Euclidean metric d(x,y) = |z — y|. Define

T:X =X by
Ty — 0, =#3
1, z==3.

)

Setting ¥(t) = 5t, t > 0 and oy = 3,as = 5. Then T satisfies all the conditions of

Corollary 2.1 and 0 is the unique fized point of T'.

Theorem 2.5. Let T : X — X be a self mapping on a complete metric space (X,d).
Suppose that T is quasi triangular 0-orbital admissible and forms an interpolative (¢, 1)-HR
type Z-contraction with respect to ¢. If there exists xg € X such that 0(zg, Txo) > 1 and T
s continuous, then T has a fized point in X.

Proof. Let x9 € X such that 0(zo,Txo) > 1 and consider the iterative sequence {z,} by
Tp =Tx,_1, for all n € N. Following the proof of Theorem 2.1, we shall consider x,, # =, _1
and hence we have d(x,_1,2,) > 0, for all n € N. On the other hand, T is f-orbital
admissible, we obtain recursively that 6(z,_1,x,) > 1, for all n € N. From (2.2), we obtain

0< CO@n—1,zn)p(d(TTn—1,TTy)), Y (H(Tp-1,75)))
= C(e(xnflvmn)<p(d(xnvanrl))vw(H(xnflvxn))) (13)
< Y(H(@n-1,70)) = O(@n—1,%5)p(d(Tn, Tnt1))
where
H(zp1,70) = [d(@n_1,20)] [d(Tn—1, TTn1)]*.[d(Ty, Tz)]*.

1 1-30 e
(L (1, Tn) + d(wn, T 1))] (14)
*E?:l Qi
= [d(zn_1,2,)]* T2 [d(2n, Tri1)]*. [%d(zn_l, a:m_l)} ' .
From (13) and (14), we obtain
@(d(xnvanrl)) < a(xnflvxn)so(d(xnvmrH»l)) < ’(/J(H("En,hl'n)) =
-0
= w([d(zn—lvxn)]al+a2'[d(xnazn-‘rl)]aa-[%d(xn—lyxn—i-l)} )
< (Ao, )] )]
1— 371 (e 77
%(d(mn—hxn) + d(xn; mn-&—l))} i ), for all n € N.
(15)

Assume that d(x,—1,2n) < d(Tpn, Tne1), for all n € N, then from (15), we obtain
A An, Tns1)) < DA, En1)) < 9d(n, Znsn)), for all n € N.

This is a contradiction. Therefore,

d(xp, Tpt1) < d(Tp—1,,), for all n € N. (16)
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Thus, as in Theorem 2.1, there exists [ > 0 such that lim, o0 d(Zn,Znt1) = I. Now, we
claim that [ > 0, otherwise from (15) together with (16), we obtain

o(d(Tn, Tpi1)) < (@1, ) p(d(Tn, Tni1)) < P(H(Tn-1,Tn))
< Yld(wn—1, 7)) < e(d(Tn_1,2n))-

Letting limit as n — +o00, we obtain

limn—>+oo a(xn—la xn)@(d(xny xvl+1)) = 1imn—)+oo ¢(H($n—1, xn)) = W(Z) (17)

Note that ¢(I) > 0, for all I > 0. Letting s, = 0(xp_1,2n)0(d(n,Tn+1)) and ¢, =
W(H(xp—1,2,)) and by condition ({3) with (17), we obtain

0< lim, o0 sup((é’(mn_hxn)tp(d(xm $n+1))>¢(H(l‘n—l7$n))> <O0.

This is a contradiction and hence lim,—, y oo d(2p, nt1) = 0, for all n € NU{0}. Moreover, T
is quasi triangular @-orbital admissible mapping, by Lemma 1.1, we obtain a(xy, , Tm, ) > 1
for all numbers my, n; € NU {0} such that my > ni > k. Following the same steps as in
Theorem 2.1, we can prove that {x, } is a Cauchy sequence in X. Since X is complete, there
exists w € X such that lim,,_, . x, = w. On account of T is continuous, immediately we
find that Tw = w. Hence w is the desired fixed point of T'. |

Next, we replace the continuity condition of 7" in Theorem 2.5 by #-regularity.

Theorem 2.6. Let T : X — X be a self mapping on a complete metric space (X,d).
Suppose that T is quasi triangular 0-orbital admissible and forms an interpolative (p,)-HR
type Z-contraction with respect to ¢. If there exists xg € X such that 0(xg, Txg) > 1 and
{z,} in X is O-reqular, where x,, = T"xo, n € N, then T has a fized point in X.

From Theorem 2.5, by letting 6(z,y) = 1 for all z,y € X and ¢ = ¢ = Ix(identity mapping)
we get the following:

Corollary 2.2 ([12]). Let T : X — X be a self mapping on a complete metric space (X, d).
Suppose that T is an interpolative Hardy-Rogers type Z-contraction with respect to ¢, then
T has a fived point in X.

For ((t,s) = hs — t, where h € [0,1) and s,t > 0 in Corollary 2.2, we find the following:

Corollary 2.3 ([14]). Let (X,d) be a complete metric space and T be an interpolative
Hardy-Rogers type contraction. Then T has a fixed point in X .

3. Application

We apply our result to establish an existence theorem for non-linear Fredholm integral
equation. Let X = Cla, b] be a set of all real continuous functions on [a, b] equipped with
metric d(f,g) = |f — g| = maxicjqy [f(t) — g(t)], for all f,g € Cla,b]. Then, (X,d) is a
complete metric space.

Now, we consider non-linear Fredholm integral equation

b
z(t) = v(t) + 2 ! a/ K(t,s,z(s))ds, (18)

where t,s € [a,b]. Assume that K : [a,b] x [a,b] X X — R and v : [a,b] — R continuous,
where v(t) is a given function in X.

Theorem 3.1. Suppose (X,d) be a metric space equipped with metric d(f,g) = |f —g| =
maxyeiqp |f(t) — g(t)], for allf,g € X and T : X — X be an operator on X defined by

b
Ta(t) = vt) + ﬁ/ K(t, s,2(s))ds. (19)
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If there exist k € [0,1), a1, 2 € (0,1) with oy +ag < 1 such that for all z,y € X, s,t € [a,b]
satisfying the following inequality

(K (t,s,2(s)) — K(t,5,y(s))| < kM (x(s),y(s)) (20)
where, M (x(), y(s)) =l (s) — y(s) "5 1m(5) = T ()] + y(s) = To(s))°
3 la(s) = Ty(s)] + ly(s) ~ Ta(s) .

Then, the integral equation (19) has a unique solution in X.

Proof. From (19) and (20 we obtain

|Tx(t) — Ty(t) \/Ktsx ds—/Ktsy )ds|

§|b_a|/ Kt 5,2(s) = K (15 y(s)lds < ‘/ (5))ds

a1 ]' Q2
|b_ . / )| [5(12(s) = Tas)| + ly(s) = Ty(s))]
Tyals) = Ty(s)| + ly(s) — ()] )|~ =),

Taking maximum on both sides for all ¢ € [a, b], we obtain

b
d(Tz, Ty) = max [Tx(t) = Ty(t)| < / (lz(s) — y(S)I”%(II(S) — Tua(s)|

t€[0,1] b—al tE[a b]
+ly(s) - Ty(S)I)]“z-[%(Iw(S) = Ty(s)| + ly(s) — Tx(s)])]'~*~**)ds
k o
<y (e (lo(s) = y()|*" [ (J2(s) = Ta(s)]

1 b
+1y(s) = Ty(s)D]™.[5 (12(s) = Ty(s)] + ly(s) = Ta(s)D]' =™ 7)) / ds

—Hld(ar ) [ (A, Ta) + dTy)]* [3 (A, Ty) + d(y, Ta))]= % = kB(z, ).

Since X = C|a, b] is complete metric space. Therefore, all the conditions of Corollary 2.1 are
satisfied by setting ¢ (t) = kt for all ¢ > 0, where k € [0,1) and hence the integral equation
(19) has a unique solution in X. O
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