U.P.B. Sci. Bull,, Series C, Vol. 87, Iss. 4, 2025 ISSN 2286 — 3540

PCB DEFECT DETECTION ALGORITHM BASED ON SGB-
YOLOVS5s

Xianli JIN ', Jinqiang LI%?, Yangyang ZHAO '+

Industrial PCB defect detection requires fast and accurate search for defect
types and locations, and target detection methods based on deep learning are mainly
used in this field. However, in the actual complex production environment, the existing
detection methods have shortcomings in detection accuracy, speed, and model size,
and it is difficult to complete real-time monitoring and deployment. To this end, this
paper proposes a new PCB defect detection method, SGB-YOLOvS5s, which greatly
improves the detection accuracy and speed. In SGB-YOLOVS5s, the use of 160*160
scale detection head and k-means++ clustering algorithm further enhances the
detection performance of the network for small target defects. Secondly, the weighted
group convolution involution block (GCI) technologies are used between the
backbone network and the neck network to reduce the loss of feature information in
the feature fusion stage. Finally, by introducing a bidirectional multi-scale feature
pyramid structure (BMFPN) into the neck network, the simultaneous fusion of multi-
scale features is realized. The experimental results show that the average accuracy of
all defect types in the SGB-YOLOv5s model is map@50 and reaches 99.39%.
Compared with the original model, the map@50 of all class defects is increased by
1.15% on the basis of almost no increase in the number of parameters and model size,
which proves the effectiveness of the improved method.

Keywords: PCB defect detection, YOLOvVS, GCI, Detection anchor, BMFPN
1. Introduction

With the rapid development of the electronic information industry, the
quality and reliability of printed circuit board (PCB) as a key component in
electronic equipment [1-3] directly affect the reliability and stability of the entire
electronic product. PCB is widely used in many fields such as mobile phones,
computers, medical treatment, communication equipment and automobiles, so it is
of great significance to strictly control the production quality of PCB and find and
repair defects in time to improve the overall quality and market competitiveness of
products. Each PCB is subject to rigorous quality inspection before leaving the
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factory, often using optical inspection methods [4] (AOI) or deep learning-based
object detection algorithms detects defects on printed circuit boards, which can
achieve faster inspection speed and accuracy than manual inspection, while also
reducing the cost required in production. The object detection algorithm can be
divided into two-stage object detection algorithm and single-stage object detection
algorithm according to the different processing methods of input data, among which
the two-stage object detection algorithm is mainly represented by the RCNN series
network, which has the characteristics of high detection accuracy, but the detection
speed is slow, and the single-stage object detection algorithm is mainly SSD and
the YOLO model [5], the most obvious feature of this type of algorithm is that it is
fast and takes into account the detection accuracy, so it has been favored by many
scholars, and on this basis, the model is further studied to meet the needs of real-
time industry [6].Therefore, after conducting comparative experiments on various
mainstream models in the same environment as the dataset and training parameters,
this paper determines that the YOLOvS5 model is used as the baseline model to study
the dataset and network structure, and the specific experimental results are shown
in Table 5 below.

Among them, the single-stage object detection algorithm YOLOV5 network
consists of three parts: backbone feature extraction network, neck feature fusion
network and head detection network. It should be noted that insufficient feature
extraction, poor dataset quality, and poor feature fusion will seriously affect the
effect of subsequent detection [7]. In order to prevent the occurrence of network
training overfitting due to the small number of datasets, we need to perform data
augmentation operations on the datasets used before the network is trained.

In view of the problems existing in the above analysis, this paper proposes
a network model with better detection accuracy, speed and model size (SGB-
YOLOVvS5s), as shown in Fig.1, which provides a framework that includes data
augmentation technology and object detection technology based on deep learning.
Firstly, the original data is enhanced by affine transformation, rotation, cropping
and color transformation, so as to increase the number of original datasets, so that
the network can extract more defect feature information to prevent the network from
losing overfitting. Then, the classification and regression of the marked defects in
the PCB are realized through the SGB-YOLOVS5 network, which can quickly and
accurately locate the location of the defects. The main innovations of the work in
this paper are as follows:

(1) For the detection anchor size and scale given by the original YOLOVS5
network, the 20*20 scale anchor frame is discarded and the 160*160 scale anchor
is designed to improve the detection anchor's ability to feel the wildness of small
targets. At the same time, in order to better match the size of defects, k-means++
clustering algorithm is used to regenerate the new anchor size.
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(2) In order to reduce the loss of information in the process of transmitting
features from the backbone feature extraction network to the feature fusion
network, the Group Convolution Pair Block (GCI), that is, the group convolution
of the features of the input neck without dimensionality reduction is adopted, and
the weights of different features are obtained from the training process for
weighted recombination, so as to retain more feature information extracted from
the backbone network.

(3) The PANet feature pyramid structure used in the original YOLOVS is
changed to a bi-multi-scale feature pyramid Structure (BMFPN), so that the
network is able to carry out the process of transferring the low-level features to the
high-level features at the same time, and to fuse the feature information of different
scales.

The rest of the article is organized as follows: Section 2 describes the related
work. Section 3 describes the design methodology for the SGB-YOLOVS network.
Section 4 analyzes the experimental and simulation results.

Input Image Data Augmentation Defect Detection

Fig.1. SBG-YOLOVS5s framework
2. Related Work

2.1 Object Detection

The evolution of object detection algorithms can be analyzed through two
dimensions: core technological innovations and architectural optimizations. The
foundational work began with LeCun et al.'s LeNet-5 network in 1998 [8], which
established the CNN architecture through synergistic design of convolutional and
pooling layers, laying the theoretical groundwork for modern object detection. In
2005, Dalal et al. [9] developed the HOG Detector using gradient histogram
features for efficient detection, though its local feature modeling mechanism lacked
global semantic perception capabilities. A significant breakthrough occurred in
2014 when Kaiming He [10] proposed SPPNet, introducing spatial pyramid pooling
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modules to overcome traditional CNN input size constraints while significantly
enhancing model generalization. The technological breakthrough in single-stage
detectors commenced with Redmon's YOLOvl in 2015 [11], achieving
millisecond-level detection speed through an end-to-end architecture, albeit with
precision limitations from coarse-grained feature fusion. Subsequently, Liu et al.'s
SSD algorithm in 2016 [12] enhanced small object detection via multi-scale feature
map fusion while maintaining real-time performance, though its memory footprint
and hardware dependencies constrained industrial deployment potential. The
YOLOV3 architecture introduced by Redmon's team in 2018 [13] employed multi-
scale training strategies and Feature Pyramid Networks (FPN) to strengthen multi-
scale detection, yet small target localization accuracy remained suboptimal. The
subsequent YOLOv4 [14] innovatively integrated the CSPDarkNet53 backbone
with cosine annealing learning rate scheduling, improving convergence efficiency
while mitigating overfitting. Recent algorithmic optimizations focus on lightweight
design and attention mechanism integration. The YOLOVS framework proposed by
the Ultralytics team in 2021 achieved precision-speed balance through adaptive
training strategies and Mosaic data augmentation, with Team L [15] extending its
application to infrared image detection, validating cross-modal adaptability. Huang
et al.'s 2023 improvement [16] utilized C2f convolutions to reduce computational
complexity while incorporating EMA attention mechanisms to enhance multi-scale
context modeling. Wang et al.'s YOLOvV10 in 2024 [17] realized classifier head
lightweighting through depthwise separable convolutions and spatial-channel
decoupled downsampling, combined with self-attention mechanisms to strengthen
feature discriminability. Bakirci et al. [18] applied YOLOv11 to UAV aerial vehicle
detection, achieving real-time performance while still facing missed detection
challenges with small-scale aerial targets.

2.2 PCB Defect Detection

PCB defect detection algorithms can be roughly divided into two
categories: traditional methods and deep learning methods. Traditional methods
integrate mathematical modeling, signal processing, and computer vision
technologies to achieve defect detection through image preprocessing, feature
extraction, and classification. Ongshenjit J et al. [19] proposed an algorithm
capable of simultaneously detecting and classifying 14 types of PCB defects with
high accuracy, but its computational inefficiency makes it unsuitable for real-
time applications. Ma J et al. [20] developed an "image subtraction" method that
locates defects by comparing pixel differences between standard and test images,
demonstrating effectiveness in common areas but exhibiting false
positives/misses with complex defects. Melnyk and Tushnytskyy [21] employed
K-means clustering [22] to compute defect feature centers, using Euclidean
distance thresholds between feature vectors for defect determination, though with
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limited small-target detection capability. These conventional methods
predominantly rely on manual feature engineering. This leads to inherent
limitations in generalization capability and sensitivity to image quality.

Deep learning methods primarily consist of two-stage frameworks
(exemplified by RCNN series) and single-stage architectures (represented by
YOLO series). While two-stage methods achieve higher precision, their
computational complexity hinders real-time implementation. Hu B et al. [23]
enhanced Faster-RCNN's accuracy through feature pyramid networks, yet
inference latency remained problematic. Ding R's team [24] optimized anchor
boxes via K-means clustering in Faster-RCNN, improving detection at the cost
of increased training computation. Jia Chaoy et al. [25] innovatively replaced
VGG with lightweight EfficientNetv2, integrating feature fusion networks and
ECA attention mechanisms to strengthen multi-scale feature integration while
reducing parameters. Regarding single-stage methods, Adibhatla [26] adopted
YOLOv2 for speed improvement but sacrificed precision. Liao X et al. [27]
substituted YOLOv4's backbone with MobileNetV3, achieving 40% parameter
reduction while meeting real-time requirements. Subsequent work by Adibhatla's
team [28] incorporated CSPNet and PANet into YOLOVS, further optimizing the
precision-speed balance.

Comparative analysis reveals YOLO series' superior balance between
detection accuracy and speed, particularly suitable for edge computing devices.
However, existing algorithms still exhibit room for improvement in precision and
efficiency for PCB micro-defect detection. The subsequent sections of this paper
will focus on targeted optimizations of the YOLOvS model to enhance its
comprehensive performance in PCB defect detection.

3. SGB-YOLOVS Network Design Methodology

3.1 Small Object Detection Head (SOD)

The YOLOVS model initializes nine anchor boxes corresponding to three
feature maps of different scales: 80x80, 40x40, and 20x20, with each grid cell in
these feature maps utilizing three anchors for prediction. Since the detection
performance for micro-targets is closely related to the network's receptive fields, in
the original YOLOVS head architecture, the 80x80 feature map with the smallest
receptive field excels in detecting small targets, while the 20%20 feature map with
the largest receptive field prioritizes large object recognition. Inspired by the
methodology in [29], this study replaces the 20%20 deep-layer feature map with a
160x160 shallow-layer feature map, thereby reducing the receptive field to enhance
detection capability for PCB micro-defects.

In earlier YOLOv3/YOLOv4 implementations, anchor box initialization
relied on k-means clustering applied to the COCO dataset followed by genetic
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algorithm optimization. However, the standard k-means algorithm's random
initialization of cluster centers may lead to local optima, whereas the k-means++
algorithm mitigates this issue through optimized initial centroid selection. Given
that the default anchor box dimensions may not align with specific defect datasets,
this study employs k-means++ clustering to recalibrate anchor boxes based on
defect characteristics, generating more adaptive parameters for enhanced detection
performance.

Algorithm K-means++ Cluster

Input:

X={x1,x2,", xn}, K=6, C={ci, 2, 3, Ca, Cs5, C6}

X: input dataset, K: number of clusters, C: initially selected cluster center
Ouput:

cluster_centers Centroids after reclustering
1: while X # empty do

2: count=0

3: for xiin X do

4 for ¢; in C do

5 D(xi) = min(distance(x;, ¢;))
6: count += 1

7 end for

8: end for

9: while count =6

10:  return cluster centers = Kmeans(X,6)
11:  end while

12: end while

3.2 Grouped Convolutional Inversion Blocks (GCI)

Depending on the different ways of convolving the input features, there are
commonly used standard convolution, grouped convolution, depth convolution,
point-by-point convolution and depth separable convolution. The network structure
we designed here mainly uses group convolution to extract features from the input
feature maps. The difference between group convolution and standard convolution
is that it first groups the different feature maps of the input layer, and then uses
different convolution kernels to convolve the feature maps of each group, which
reduces the number of parameters in the convolution and the amount of
computation, thus improving the training speed of the network. The process of
standard convolution and grouped convolution is shown in Fig.2 below.
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(a)Standard convolution (b)Grouped convolution

Fig. 2. Standard convolution (a) and grouped convolution (b)

Assuming the size of the input feature map is CxH*W, the size of the output
feature map is Nx H'xW', the size of the convolution kernel in both standard
convolution and grouped convolution is KxK. If the input feature map is divided
into G groups, the number of input feature maps in each group is C/G, the number
of output feature maps in each group is N/G, and the size of each convolution kernel
is C/GxKxK. By calculating the number of parameters 7., and computation F,,

for standard convolutional parametric quantities and grouped convolutional
parameters Py, and computation Fg,,,

PConv:KXKXCXN (1)
Fropy =KxKxCxH xW xN (2)
C
PGrouszXKXEXN (3)
C . .
FGmupzaxKxKxH xW xN 4)

From Eq. (1) to Eq. (4), the grouped convolution accounts for the parametric
ratio H, and the computational ratio /. of the standard convolution, respectively:

K><K><£><N
G

P
Hp =00 _ - 5)
Poonv KxKxCxN G

F £><K><K><H'><W'><N
H. = Group _ G :l (6)
d Feony KxKxCxH xW' xN G

From Egs. (5) and (6), it can be seen that the convolution computation of
the feature map using grouped convolution is 1/G of the standard convolution both
in terms of the number of network parameters and computation, which makes the
network model more lightweight and reduces the need for hard computational
performance.
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In conventional approaches, features extracted by the backbone network are
typically processed through 1x1 convolutional kernels for channel dimension
reduction before entering the feature fusion network, a method that inevitably leads
to feature information loss. To address this limitation, we propose a Grouped
Convolutional Inversion (GCI) block. This module employs grouped convolution
to process backbone-derived features without dimensionality reduction: 1) The
input feature map is partitioned into channel groups, with each group undergoing
convolution operations while preserving tensor dimensions. 2) A weight-sharing
mechanism enables implicit diffusion of channel-specific pixel information into
adjacent spatial regions. This design maintains full channel dimensionality while
enhancing feature representation through spatial interactions, effectively mitigating
information loss and expanding receptive field coverage to significantly improve
micro-target detection. The output feature map retains identical channel dimensions
as the input, with its architecture illustrated in Fig.3 and mathematical formulation
expressed as:

Yi,j,k = Zf i,j,m+[K/2],n+[K/2],[kG/C]Xi+m,j+n,k (7)
(m,n)eAK
Where / is the convolution kernel of the GCI pair fit block, denoted as

¢ e RTHEAG Iywhere H and W denote the height and width of the feature mapping,

respectively, K is the convolution kernel size, and G denotes the number of groups
of grouped convolutions. X denotes the input feature tensor of different groups.
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Fig. 3. Structure of the grouped convolutional pairing block (GCI)
3.3 Bidirectional Multiscale Feature Pyramid Structure (BMFPN)

YOLOVS employs a PANet-based multi-scale feature fusion pyramid
architecture (illustrated in Fig.4), which combines top-down and bottom-up path
aggregation strategies (i.e., FPN+PAN integration) to facilitate feature interactions.
While designed to enhance the synergy between spatial details from shallow



PCB defect detection algorithm based on SGB-YOLOvVS5s 381

features and semantic abstractions from deep features, this approach suffers from
inefficient feature propagation and computational redundancy in practice.

Specifically:

Shallow features (e.g., 80x80 resolution) retain rich spatial localization
details but lack semantic abstraction.

Deep features (e.g., 20%20 resolution) encapsulate high-level semantics but
exhibit reduced spatial resolution.

Although PANet theoretically enhances multi-scale detection by integrating
FPN (top-down semantic propagation) and PAN (bottom-up positional encoding),
it presents critical limitations:

(i) FPN Pathway Deficiency: Upsampling deep features to shallow layers
causes significant loss of high-frequency details, degrading small-target feature
representation.

(i) PAN Pathway Inadequacy: When propagating shallow features to deep
layers, channel dimension compression in the pyramid structure leads to insufficient
cross-level interactions and fails to prioritize feature importance adaptively.

To address these issues, the weighted Bidirectional Feature Pyramid
Network (BiFPN) introduces two key innovations:

(1) Bidirectional Cross-Scale Connections: Cyclic top«>bottom feature
propagation enhances multi-scale feature capture without computational overhead
escalation.

(1) Learnable Weighted Fusion: A dynamic weighting mechanism
optimizes fusion weights across feature levels during training, achieving superior
multi-modal feature integration.

As shown in Fig.4, the BiFPN architecture effectively mitigates information
decay and redundancy inherent in traditional pyramid structures, significantly
improving detection accuracy for PCB micro-defects.

BiFPN structural feature fusion is computed as follows, here the P6 output
is used as an example:

o, - ;" + o, -Re size(P;")

td
F® =Con\ (8)
o+, +¢&
o, - P" + w, - P! + w, - Re size(P*"
P6()1lt — COI’!\/( 1 6 2‘ 6 ' 3' ( 5 ))
a)1+a)2+a)3+5 (9)

Inspired by the idea of BiFPN feature pyramid structure, this paper proposes
a bi-directional multi-scale feature pyramid network structure (BMFPN), which
firstly fuses the feature maps extracted from different scales in the backbone
network to realize the full utilization of the features, and then fuses the feature maps
extracted from the same sizes in the backbone network through the weighted fusion
of the top-down path propagation network to enhance the ability of the network to
learn more features of different scales and achieve better detection results. The
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structure of the Bidirectional Multiscale Feature Pyramid Network (BMFPN) is
shown in Fig.5 below.

P7© Y

P6

PSQ_,

P4

N Wep

Fig. 5. The structure of the Bidirectional Multiscale Feature Pyramid Network

As can be seen from Fig. 5, the network structure retains the bidirectional
feature transfer of the BiFPM network while passing the feature maps P;" extracted

from the backbone network as input nodes into the feature fusion network and
fusing feature maps of different sizes by up-sampling. In addition, the bidirectional
multi-scale feature pyramid structure (BMFPN) adopts a two- and three-scale
feature-weighted fusion approach, and for the 160*160 detection head, the features
extracted by the backbone network are directly fused with the feature maps obtained
by upsampling, which are finally used as the output features of the 160*160 scale
anchor frame. As for the 80*80 and 40*40 scale anchor frames, a three-scale
weighted fusion is used, i.e., it contains three components: the feature map extracted
from the backbone, and the feature map obtained from the neck via top-down path
and bottom-up path.

4. Experimental Environment Configuration and Simulation

4.1 Experimental Environment
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The experimental environment used is shown in Table 1 below.

Table 1
Experimental environment configuration
Operating System Window11
CPU AMD Ryzen 7 7840H 3.80GHz
GPU NVIDIA GeForce RTX4060 Laptop
Memory 8GB
CUDA Versions and Acceleration Libraries CUDA11.8+cudnn8.9.7
Deep Learning Framework Pycharm

4.2 Dataset Preparation

The dataset [30] used in this experiment is the publicly available PCB defect
dataset from the Intelligent Robotics Laboratory of Peking University. It includes
six types of defects: open circuit, short, mouse bite, missing hole,
spurious_copper, and spur, with a total of 1,386 images. For this study, I selected
693 images as the benchmark dataset and used the remaining 693 samples for
testing. In order to improve the generalization ability of the model and to prevent
premature model fitting during training, the original dataset was augmented by
employing data enhancement techniques (panning, rotating, cropping, mirroring,
adding noise, and adjusting the brightness of the image, final dataset was
augmented to 3500 samples and randomly divided into training and validation sets
in the ratio of 9:1. The number of various types of defects in the augmented dataset
is shown in Table 2 below.

Table 2
Number of defects in each category before and after dataset enhancement
Defect type Number of defects by Number of defects by
category(before) category(after)

Open_circuit 116 580
short 116 580
Mouse bite 115 580
Missing hole 115 605
Spurious copper 116 580
spur 115 575
total 693 3500

4.3 Evaluation Indicators

Precision rate (P): refers to the proportion of the number of samples
predicted to be positive to the total number of actual positive samples when the
actual samples are positive, and its mathematical expression is:

P

P=—" (10)
TP+ FP
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Recall (R): refers to the proportion of all positive sample species that are
predicted to be positive, and its mathematical expression is:
P

R=— (11)
TP+ FN
Where TP denotes the number of positive samples correctly detected, FP denotes
the number of negative samples correctly detected as positive samples, and FN
denotes the number of negative samples incorrectly detected as positive samples.
Average precision (AP): refers to the average precision, expressed by the
area enclosed by the two indicators of accuracy and recall, its mathematical
expression is:

AP = jO‘P(R)dR (12)

Intersection and integration ratio (IOU): refers to the degree of overlap
between the predicted frame and the real frame by calculating, the larger the value
represents a better localization of the network to the target, its mathematical
expression is:

_ PDNGT

PDUGT
Where PD denotes the prediction anchor and GT denotes the true anchor.
Mean Average Precision (mAP): refers to the summed average of the
precision of each class of defects, its mathematical expression is:

> AP

: 14

m AP: i=1 ( )
n

Where i denotes the average accuracy value of a particular class of defects, and in
the dataset used in this experiment there are 6 classes of defects, so n is equal to 6.

10U (13)

4.4 Ablation Experiments

To validate the effectiveness of the improvement methods proposed in
Section 1, this study conducted a series of comparative experiments based on the
original YOLOv5s model (Baseline) under consistent training environments and
parameters. Nine modified models were sequentially constructed: Modell added a
160x160 shallow detection head to Baseline. Model2 optimized anchor clustering
via k-means++. Model3 incorporated the Grouped Convolutional Inversion (GCI)
block. Model4 integrated the weighted Bidirectional Multi-scale Feature Pyramid
(BiFPN). Models5-7 combined two improvement strategies each. Model8 fused
three optimizations (k-means++, GCI, and BiFPN). And Model9 (SGB-YOLOV5s)
synthesized all enhancements. Experimental results (detailed in Table 3)
demonstrated progressive improvements in per-class Average Precision (AP), mean
Average Precision at 50% IloU (mAP@50), model size, and parameter count.
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Notably, the comprehensively optimized Model9 achieved significant mAP@50
gains over Baseline while retaining lightweight characteristics, confirming the
synergistic efficacy of multi-strategy integration.

Table 3
Ablation experiments
AP/%

Mis . . Para
Model Open_ | o Mous | sing Spuri ISI:)?’E@ /Sl\l/flj meter

circuit | "™ | ¢ bite | hol | OUS-C | SPUr ° s'M

- N opper

Basicline 98.13 | 99.49 | 99.24 | 99.5 | 99.45 | 959 98.26 26.8 | 7.03
Modell 99.49 | 99.49 | 99.23 | 99.1 | 99.5 | 97.79 99.1 26.78 | 7.02
Model2 99.45 | 99.49 | 99.05 | 99.5 | 99.5 | 97.93 99.16 | 26.84 | 7.03
Model3 99.17 | 99.49 | 99.06 | 99.5 | 99.5 96.4 98.85 28.4 | 7.45
Model4 99.21 99.5 | 9943 | 99.5 {9948 | 959 98.84 | 27.09 | 7.09
Model5 99.45 99.5 | 99.21 | 99.5 | 99.5 | 97.96 99.19 28.4 | 7.45

Model6 99.46 99.5 | 99.36 | 99.5 | 99.5 | 97.84 99.19 | 27.09 | 7.1
Model7 98.92 99.5 | 99.26 | 99.5 | 99.5 | 96.54 98.87 | 28.78 | 7.54
Model8 99.61 | 99.67 | 98.97 | 99.6 | 99.67 | 98.01 99.2 28.78 | 7.54
Model9 99.49 99.5 99.3 |199.5 | 100 99.03 99.39 28.6 7.5

Experimental results demonstrate significant performance improvements
across all enhancement strategies. Modell, which replaced the 20x20 detection
head with a 160x160 shallow head, increased AP values for open-circuit, excess
copper, and burr defects, elevating the overall mAP@50 from 98.26% to 99.1%,
validating the efficacy of shallow features for micro-defect detection. Model2,
employing k-means++ for anchor optimization, improved AP for all defect types
except rodent bites, with a 0.92% mAP@50 gain, confirming that adaptive anchor
parameters better align with PCB defect characteristics.

Model3's integration of the Grouped Convolutional Inversion (GCI) block
enhanced AP for all defects except short circuits, achieving a 0.49% mAP@50
increase, highlighting its capability to preserve channel-wise information. Model4's
adoption of BiFPN boosted open-circuit AP from 98.13% to 99.21% with only 1.08%
and 0.85% increases in model size and parameters, respectively, underscoring its
efficient feature fusion.

Model5's combined k-means++ and GCI strategy elevated open-circuit and
burr AP to 99.45% and 97.96%, surpassing the standalone k-means++ model by
0.16% and 0.06% for rodent bites and burrs, demonstrating synergistic optimization.
Model6 maintained short-circuit AP at 99.5% while improving other defects,
particularly open-circuit, rodent bites, and burrs.

Though Model7's fusion of GCI and BiFPN slightly reduced open-circuit
AP, it enhanced other defect categories. Model8's comprehensive integration of
three strategies achieved a 99.2% mAP@50 (up from 98.26%) with 7.39% and 7.25%
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increases in model size and parameters, revealing global optimization potential.
Ultimately, Model9 (SGB-YOLOvS5s) attained 100% AP for excess copper defects
and a 1.15% mAP@50 improvement (99.39%) with only 1.8MB and 0.47M
increases in model size and parameters, achieving optimal precision-lightweight
balance.

4.5 Comparative Experiments

To comprehensively evaluate the performance advantages of the proposed
SGB-YOLOvVS network, comparative experiments were conducted against
mainstream detection models (YOLOv3, YOLOv3-tiny, YOLOv4, YOLOVSs,
YOLOV7-tiny, YOLOv8n, and YOLO11) using the publicly available PCB defect
dataset from Peking University’s Intelligent Robotics Laboratory. As detailed in
Table 4, model performance was assessed through five metrics: Precision (P),
Recall (R), mean Average Precision (mAP@50), parameter count (Parameters), and
inference speed (Frames Per Second, FPS). Comparative curves of mAP@50 and
mAP@50:95 across models (Fig.6-7) visually demonstrate multi-scale detection
capability differences. Experimental results confirm that SGB-YOLOVS achieves
superior precision-efficiency balance compared to state-of-the-art models.

Table 4
Comparative experiments
Model P/% R/% mAP@50/% | mAP@50:95/% | Parameters/M | FPS
YOLOvV3 96.7 91.6 94.7 53.7 8.68 158.5
YOLOv3-tiny 97.5 91.4 95.1 53.5 8.68 158.7
YOLOVS5s 98.2 97.3 98.26 70.98 7.03 73
YOLOv7-tiny 94.7 85.3 89.9 46.8 6.03 49.02
YOLOvV8n 96.7 88.4 93.7 59.1 3.0 101
YOLOI1 95.3 88.6 93.1 58.7 2.58 101
SGB-YOLOv5s | 99.4 | 98.73 99.39 76.85 7.49 66.7

Experimental results (Table 4) reveal that while YOLOv3 and YOLOvV3-
tiny achieve optimal inference speed (FPS), their core precision metrics—including
accuracy (P), recall (R), and mAP@50—remain suboptimal. Although YOLOv7-
tiny exhibits low parameter counts, its mAP@50 (89.9%) and mAP@50:95 (46.8%)
are notably inferior, coupled with the lowest recall rate among all models.
YOLOvV8n demonstrates advantages in lightweight design and speed but leaves
room for precision improvement. YOLO11, despite having the fewest parameters,
underperforms significantly compared to YOLOvS5s in both accuracy and recall,
justifying our selection of YOLOvVSs as the baseline. In contrast, SGB-YOLOVS5s
achieves optimal values across all four key metrics (P, R, mAP@50, and
mAP@50:95). Although its FPS does not peak, it sufficiently meets real-time
detection requirements. Crucially, this model comprehensively surpasses the



PCB defect detection algorithm based on SGB-YOLOvVS5s 387

original YOLOvS5s with negligible parameter increases, offering an efficient
solution for edge device deployment.

As illustrated in Fig.6-7, mAP curves further validate these findings:
YOLOv7-tiny exhibits severe overfitting with the weakest detection performance;
YOLOv3 and YOLOv3-tiny show overlapping curves indicating comparable
performance; YOLOvSs demonstrates superior precision and smoother
convergence compared to the former three; YOLOv8n and YOLOI11 achieve
similar accuracy levels but lag behind YOLOvVS5s. The enhanced SGB-YOLOVS5s
attains peak values in both mAP@50 and mAP@50:95 metrics, with accelerated
convergence and significant precision advantages, fully validating the efficacy of
our algorithmic improvements.
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Fig. 6. Curves mAP@50 different models Fig. 7. Curves of different model mAP@50:95
4.6 Detection Effect Test

To validate the detection performance of YOLOvSs and SGB-YOLOVSs,
Fig.8 demonstrates the comparative testing results of both models on six types of
defects in the test dataset: open_ circuit, short, mouse bite, missing hole,
spurious_copper, and spur. The first column displays ground truth annotations, the
second column shows detection results from YOLOVSs, and the third column
illustrates outputs from SGB-YOLOVSs. Experimental observations reveal that
while YOLOvS5s achieves defect localization, its confidence scores are notably
lower than those of the enhanced model. Specifically, all defect types demonstrated
varying degrees of improvement in detection performance when using SGB-
YOLOvSs, among which mouse bite defects showed the most significant
enhancement. Furthermore, while the baseline YOLOvS5s model exhibited both
missed detections and false positives for spur defects, the improved model achieved
accurate and error-free detection.
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Fig.8. Detection effect of YOLOvVSs and SGB-YOLOvSs
5. Conclusion

This paper proposes a PCB defect detection algorithm based on the SGB-
YOLOVSs model. The algorithm first designs a 160x160-scale detection head and
employs the k-means++ clustering algorithm to better adapt to the feature size
distribution of PCB defects. Additionally, between the backbone network and the neck
feature fusion network, grouped convolution cross-block modules replace
conventional 1x1 convolutions. This approach preserves feature channel dimensions
while enabling effective feature transmission, with ablation studies demonstrating its
ability to prevent feature loss and enhance detection accuracy without increasing
network parameters. Furthermore, a weighted bidirectional multi-scale feature
pyramid network (BMFPN) is implemented to achieve simultaneous fusion of multi-
scale features while improving computational efficiency. Experimental results show
that SGB-YOLOV5s achieves a state-of-the-art mAP@50 of 99.39%, surpassing
existing mainstream models in detection accuracy. This breakthrough successfully
resolves high-precision detection challenges and provides a novel solution for
practical PCB defect detection in industrial production.
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However, real-world application scenarios present challenges such as complex
backgrounds and environmental noise that may compromise detection performance.
To address these issues, the study employs advanced data augmentation techniques to
simulate authentic PCB defect images captured in practical environments, thereby
enhancing model robustness. While the current implementation achieves a detection
speed of 66.7 FPS - sufficient for real-time requirements - future research will focus
on optimizing network architecture to simultaneously improve inference speed and
maintain high accuracy, ultimately delivering a comprehensive solution that balances
precision and efficiency for industrial deployment.
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