
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 4, 2022                                                    ISSN 2286-3540 

TEST AUTOMATION FOR CONTINUOUS INTEGRATION IN 

SOFTWARE DEVELOPMENT 

Tudor-Alin NIȚESCU1, Andreea-Iulia CONCEA-PRISĂCARU2,                     

Valentin SGÂRCIU3 

Software application testing represents one of the crucial steps in an 

application release lifecycle, and it usually consists in performing different sets and 

types of tests, after every update on the code of the application. Therefore, we can 

notice the presence of manual and repetitive testing tasks, and we can automate 

them using performant tools. Moreover, the set of automated tests can be included in 

the continuous integration flows, where the software engineers usually define a set 

of tasks to run automatically on every change on the application codebase. By doing 

this, the set of automated tests can be able to detect the eventual problems in the 

new changes on the code as early as possible, minimizing the faulty code changes 

that could get released for a new version of the software application. Besides that, 

test automation can save precious time of the software engineers team, if the set of 

tests is defined correctly and scheduled to run properly for each new code change. 

Keywords: functional testing, unit testing, test automation, continuous 

integration, software development, pipeline, automated build, Azure 

1. Introduction 

Continuous integration, also known per its abbreviation as CI, represents a 

software development practice where the software engineers of an application 

regularly add their code to a centralized location, named repository. A code 

repository represents the location in which all the code base of an application 

resides, so each engineer working on the application can access it, modify it, 

improve it and so on. 

Continuous integration is, most of the times, related to the build stage of 

an application, where the engineers create a new version of it, called release. The 

release can contain either some new functionalities for the software application, or 

just some fixes related to wrong working functionalities found within it (also 

known as bugs). But in order to avoid, or at least try to reduce the impact of a bug 

 
1 PhD student., Dept. of Automation and Industrial Informatics, University POLITEHNICA of 

Bucharest, Romania, e-mail: tudor_alin.nitescu@stud.acs.upb.ro 
2 PhD student., Dept. of Automation and Industrial Informatics, University POLITEHNICA of 

Bucharest, Romania, e-mail: andreea.concea@stud.acs.upb.ro 
3 Prof., Dept. of Automation and Industrial Informatics, University POLITEHNICA of Bucharest, 

Romania, e-mail: valentin.sgarciu@upb.ro 



96                   Tudor-Alin Nițescu, Andreea-Iulia Concea-Prisăcaru, Valentin Sgârciu 

 

 

as much as possible in a software project (avoid application downtimes, 

malfunctioning features resulting in unintended actions in the software application 

and so on), the CI practices come in handy for a variety of situations: find and 

address bugs quicker, improve software quality, reduce the required validation 

time for a new release, smoothen the release process etc. 

In order to apply this software principle, there are two main components 

needed: one is the automation component (which can be chosen from a variety of 

solutions found on the software market and adapted to the needs of the project) 

and the other one is the cultural component (this is more related to the willingness 

of the software engineers from a project to learn the continuous integration 

principles and apply them as much as possible) [1].  

The success of CI should be accredited to the variety of strong tools that 

can be used in the present, which, when configured and used properly, can 

considerably automate most of the required steps to inspect, integrate, and test the 

source code changes of a software application in a transparent and straightforward 

manner. The usage of CI tools not only accelerates the release process of a 

software application, but also helps in avoiding undesirable events such as faulty 

code in new application versions, helping with the detection and also with the 

prevention of them. 

However, the advantages of the CI tools usage within a software 

development team are only present and useful when the respective team adheres 

to the best practices of this development practice. Unless the development team is 

willing to change their development culture, the automation tools may produce no 

benefits to them, and it will even harden their workload. For example, when 

integrating a suite of automated test in an application build, the engineers must 

ensure that the test suite is appropriate, which is a thing that none of the CI tools 

can take care of, but only the ones designing the tests to be integrated in the 

automated builds can [2]. 

Functional testing is a very important step of the software development 

process, and it shouldn’t be neglected, skipped or performed unproperly. It can 

help us prevent, detect and fix possible issues that might appear in the 

development phase. This process involves both manual testing and automated 

testing and it can save us a lot of time if it is designed properly. Usually, in this 

phase, the testers and/or the developers test all the possible business flows of the 

application, including both positive and negative scenarios. Depending on the run 

frequency of the tests, the team can determine which flows can be automated, by 

doing an analysis of the most recurrent manual steps performed during the testing 

phases. 

In this paper, we will demonstrate the best practices of test automations for 

continuous integration of software, how to design the CI for software applications 

and which tools are the most powerful to use for automations. 



Test automation for continuous integration in software development                   97 

2. State of the art 

The need of automation in the testing field came as a result of the many 

repetitive and recurrent tasks performed in the testing stage of the software 

development life cycle. Nowadays, the trend for test automation is constantly 

increasing, as on the market there are a lot of software tools and applications 

available for this purpose. The trend was followed by most software development 

companies on the market, and not only, also researchers in the software 

development area were interested by this topic and delved more into it.  

In this section we are going to present the current state of the art in the 

software testing area and interesting findings in this domain. 

A group of German researchers approached the topic of test automation in 

the context of designing and building various test suites for different cases, 

environments and system parametrizations. Their approach intended to reduce 

execution times by skipping the tests that will never get executed in a specific 

environment due to some parametrizations. The implementation was done for a 

software product in the area of public transportation, where system parameters 

and setups can change the flows of the tests [3]. 

Furthermore, in the researchers spotlight software tools such as Selenium, 

QTP and Cucumber were present. The case studies have shown that Selenium is 

the most performant and commonly used tool for automating the tests for different 

Web applications. It has been proved that Selenium is suitable for the testing 

automation field due to its time management performances and rich information 

logs [4]. 

 

 
 

Fig. 1. Software Testing Tools Usage within companies  

 



98                   Tudor-Alin Nițescu, Andreea-Iulia Concea-Prisăcaru, Valentin Sgârciu 

 

 

Another research done by a Bulgarian researcher was a case study for test 

automation in microservice architectures. Their main focus was on the switch of a 

monolith system to a microservice architecture, where each functionality is 

divided separately in services. The main focus when developing the automated 

tests was the testing pyramid (Fig.2). What they wanted to research was the way 

in which separate microservices interact to each other, so if one gets changed, the 

impact on the others can be predicted accordingly. Their test automation system 

was based on a solution based on PACT framework (People, Activities, Context 

and Technology). They gathered information about each service, how it works 

and how it interacts with its “neighbors”, and then they created the test files 

accordingly, isolating the testing of a microservice, regardless of the external 

services with which they were integrated. This helped them to migrate the 

monolith system to a microservice architecture, moving the business logic into 

separate services, and developing more and more automated tests for the new 

services created [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Testing Pyramid  

 

In another research, done by a group of Nigerian students, the test 

automation subject was approached for educational portals, more exactly focusing 

on the enhancement of quality and behavior of the applications from that 

category, having as case study the Obafemi Awolowo University. They designed 

a testing framework using Java language and used MySQL to store the test data. 

The developed framework was able to support test automation for any portal 

powered by web technology, creating HTML reports with various stages of the 

test execution process. They evaluated the performance of the framework using 

different indicators, such as Test Time Performance, Performance Test Efficiency 

and Automation Scripting Productivity. Their results shown that the framework 



Test automation for continuous integration in software development                   99 

produced about 360 operations per hour, the test efficiency was 80% and the test 

time performance was 4% (higher the percentage means more testing time) [6]. 

3. Methodology 

3.1. Test automation and best practices of test automation  

Test automation represents a very important stage in the life-cycle of an 

application, if it’s planned during the early stages of the project. Furthermore, it is 

a good practice to involve the testing engineers from the business requirements 

analysis stages, when the requirements are designed, in order to review these 

activities and get a good understanding of the customer’s needs. Therefore, the 

test engineers can produce more detailed test designs and create more appropriate 

test environments. In addition to this, a well-defined set of functional 

requirements will surely help in the automated testing and will reduce the time 

and cost required for the testing [7]. Based on that, we can define the automated 

tests lifecycle in Fig.3 below: 

 

 

 

 

 

 

Fig. 3. Automated testing lifecycle  

 

First, when the decision to automate the tests for a project is taken, an 

analysis should be done in order to decide what is the appropriate testing tool to 

be used. After its acquirement, the test plan should be designed, containing all the 

business test cases described as detailed as possible, so the testing team could 

understand. This step is followed by the test plan execution, and last but not least 



100                   Tudor-Alin Nițescu, Andreea-Iulia Concea-Prisăcaru, Valentin Sgârciu 

 

 

after the test results are obtained, they should be further analyzed in order to 

improve the process. When following the automated testing lifecycle, a good set 

of practices must be followed by the engineers, otherwise the results of the testing 

won’t be as effective as they should be.  

Based on 26 academic literature and 55 grey literature sources, here are 

some of the best practices for test automation [8]: 

✓ Define an effective test automation strategy and adjust it to the 

eventual changes on the project 

✓ Involve the key stakeholders when defining the strategy 

✓ Provide enough testing resources 

✓ Have competent test professionals and keep them motivated 

✓ Promote collaboration within the team 

✓ Share the available test automation knowledge 

✓ Allow enough time for the engineers to train and learn the test 

automation approach 

✓ Use the appropriate testing tools 

✓ Set up good test environments, suitable for the cases tests 

✓ Create high-quality test data 

✓ Define test automation requirements based on efficient and 

effective analysis (detailed test scenarios, use cases) 

✓ Prioritize the automated tests in the execution flows 

✓ Report the test automation results to the key stakeholders involved 

✓ Use the right test automation metrics to measure the performance 

✓ Always analyze and adapt to the new technologies for the 

automation of the tests 

3.2. Test automation software 

Nowadays, there are a lot of solutions available on the market for the test 

automation field. From the long list of test automation frameworks, we can 

mention the most popular ones, which are: Selenium, Cucumber and QTP. 

Selenium is an open-source framework used for test automation. It is 

widely used for testing web applications, and it offers support for different 

programming languages, operating systems, browsers and others. From the long 

list of programming languages that Selenium is offering support to, we can 

mention the following ones: Python, Java, C, Ruby and PHP. Selenium is 

composed of several components, IDE, RC, Web Driver and Grid. Selenium IDE 

is a browser plugin that enables the reproduction of the steps that the user is 

performing. Selenium RC is a user interface, which allows us to perform 

commands from the editor and also tests on the application. The Web Driver is 

used for sending the information to a web server. After the request is performed, a 



Test automation for continuous integration in software development                   101 

response will be received in exchange. Last, but not least, the grid is an extra 

feature that Selenium is offering, allowing the user to execute tests in parallel on 

several computers and browsers at the same time, having the advantage of short 

execution time [9]. 

Cucumber is another test automation software solution, being mainly used 

by the software development companies and other enterprises. The framework is 

used for functional and/or acceptance testing, in designing the testing flows and 

running them based on different schedules. The test suites written in Cucumber 

are easy to read and understand, due to the Gherkin syntax, which tries to imitate 

the human language in the testing steps code. Cucumber is offering support as 

well for different programming languages (Java, Scala, Python etc.). The main 

advantage of this framework is the increased level of collaboration and 

communication between different roles inside and outside the company 

(programmer, analyst, tester, business owner), because the syntax of the tests is 

easy to understand by anybody who knows the expected flows to be tested. The 

test flow is written as a feature, and it can contain one or more scenarios (test 

cases). The test scenarios can have one or several steps (testing actions) [10].  

3.3. Continuous integration tools 

The continuous integration tools are used to develop automated builds for 

the software applications, also known as pipelines, using a set of stages like build, 

test, publish, deploy and so on. In the test stage of a continuous integration build, 

the automated tests can be integrated and scheduled to run on each new version of 

the application. The solutions for CI present nowadays are very well known and 

strong, and we can mention two of the most popular ones: Azure DevOps and 

AWS (Amazon Web Services).  

Azure DevOps is a Cloud computing platform offering services such as 

repositories, where the code of the application can be managed and stored, and 

pipelines, where the engineers can create and manage different pipeline builds for 

the software application. Azure Repos is used to manage the code in a project, 

tracking changes and creating updated versions of the code. It keeps a history of 

the code changes, and has an option to rollback, to get back to any past version of 

the implementation. This is mainly used to manage the code changes and then 

build the application based on the stored code, using the pipeline builds. Azure 

Pipelines represents a feature that can be used by engineers to design automated 

builds of the applications, with different stages, prerequisites and configurations, 

based on the application design. Among this stages, a testing one can be created, 

and here the engineers can include different sets of test to run after each code 

change on the application, such as unit testing, regression testing, functional 

testing and so on, depending on the test plan and application design [11]. 



102                   Tudor-Alin Nițescu, Andreea-Iulia Concea-Prisăcaru, Valentin Sgârciu 

 

 

AWS (Amazon Web Services) is also a Cloud computing solution, that 

allows the users to store their application code and other data in repositories 

(AWS CodeCommit) like in Azure DevOps, as well as allowing the engineers to 

create automated builds, using AWS CodePipeline. It’s a quite similar solution 

when compared to Azure one, being a Cloud solution that offers a big chunk of 

the features also offered by the Microsoft solution, distinguished by some 

technical aspects of each functionality. Usually, the choice between them is made 

based on an analysis for the needs of the company, based on details like costs, 

ease of implementation, knowledge base of the engineers, etc. [12]. 

In this paperwork, we will focus on Azure DevOps as the main CI tool, 

and we will try to showcase the integration of automated tests in an application 

build using it. 

4. Implementation and results 

For this paperwork, we have used a sample Java project that implements a 

virtual board game, and we wrote Unit Tests for it using JUnit framework. The 

test suite shown in this example was a regression suite, which covered all possible 

test scenarios that could be impacted by a pending change done as a proof of 

concept. To integrate the regression test suite in an automated countinuous 

integration flow, we have developed an Azure Pipeline that builds the application 

and then runs the tests. If the build fails, we have put the option to not allow the 

merging of the new code (source branch) into the target branch (master).  

Fig 4. Adding the new code to master        Fig 5. Triggering a new build for the added code 

On the images from above, we can see that the new code is being added to 

the master branch, on the left side (which should contain the application that gets 

released to the customer), and the new change targets a java class and a test suite. 

On the right side, we can see that a new build, named by us “Run Automated 



Test automation for continuous integration in software development                   103 

Tests” has been triggered to run automatically, and it is a required check that 

needs to pass in order for the new code to be added. We will see that the new code 

added made three tests to fail, and therefore the whole build failed and the code in 

its current state could not reach master (Fig. 6) 

 
Fig 6. Failed build for the new code added 

  

If we go to see the details about the failed build, more exactly, in the detailed logs 

of the pipeline (Fig. 7), we can see the exact tests that failed, which can hint us 

where to look exactly, and there could be two possibilities: either the code 

changes were faulty, or the new tests added for the regression were badly written. 

This has to be an analysis done to find the best solution and push a new change to 

the pull request. Besides that, Azure offers another detailed (and more graphical 

option) about the automated test run results (Fig. 8). We can see that out of 14 

tests that run as part of this automated build, 3 failed, resulting in a 78.57% pass 

percentage. We also see the run duration, which was about 1.6s. 

 

 
Fig 7. Failed pipeline detailed logs 

 



104                   Tudor-Alin Nițescu, Andreea-Iulia Concea-Prisăcaru, Valentin Sgârciu 

 

 

 
Fig 8. Automated test run report for a failed build 

After the change is done in either the code or in the tests (in our case, we 

intentionally wrote faulty tests to prove that not only the code can impact the tests, 

and it is required to follow the best practices for test automation), and a new 

commit is made to the pull request, another build will be triggered, to test the 

updated changes. In our case, we fixed the tests to have the correct behaviour and 

the new build passed (Fig. 9) 

Fig 9. Passed build for the updated tests 



Test automation for continuous integration in software development                   105 

After the build passed, the new code can be merged into master, and a new 

version of the application can be released. We can also see the updated test report 

in Fig. 10, with no test failures after the latest update, and the execution time 

remaining approximately the same. 

Fig 10. Automated test run report for a passed build 

5. Conclusion 

In this paperwork, we highlighted the best practices to follow when 

writing tests to be automated, and we’ve also presented a modern solution that can 

be used for Continuous Integration (Azure DevOps) to include automated test 

suites. Build automation can spare manual work time for the engineers and can be 

used to detect eventual code flaws in the early stages of a project. However, we 

should not neglect the best practices when writing test suites to be automated (or 

even ran manually). By creating strong collections of tests, we can always count 

on the automated builds that integrate them to find any eventual issues, indicating 

precisely which code has problems that needs to be addressed in order to do a new 

release for the software application. In the end, the results of our build were 

successful, the entire test suite passed, with ~1.6s execution time, significantly 

less time than it would have taken for a manual testing of the code. Besides that, it 

is important to be mentioned that the set of tests to be automated should be 

implemented very carefully, not only to cover the functionalities/code correctly 

(using the best practices for that), but also to avoid leaking sensitive information 

in the test log results, if these would be accessed by a potential attacker. By using 

the solution provided from Microsoft, the access to the pipelines/logs can be 

restricted only to certain members of a team. 

R E F E R E N C E S 

[1]. S. Rossel, “Continuous Integration, Delivery and Deployment. Reliable and faster software 

releases with automating builds, tests and deployment”, Packt Publishing, 2017. 

[2]. W. Felidré, W.F.L. Furtado, D.A da Costa, B. Cartaxo, G. Pinto, Continuous Integration 

Theater, IEEE, 2019. 



106                   Tudor-Alin Nițescu, Andreea-Iulia Concea-Prisăcaru, Valentin Sgârciu 

 

 

[3]. N.T.T Soe, N. Wild, S. Tanachutiwat, H. Lichter, “Design and Implementation of a Test 

Automation Framework for Configurable Devices.”, 2022 4th Asia Pacific Information 

Technology Conference (pp. 200-207), January 2022. 

[4]. S. D. Ezhuthachan, J.K.Tailor, "Test Case to Test Automation with Selenium IDE: a Case 

Study.", Compendium of Management Case Studies (2022): 263, 2022. 

[5]. N. Raychev, “Test automation in microservice architecture”, IEEE Spectrum, 2020. 

[6]. A. Aniwange, P.T. Nyishar, B.S. Afolabi, A. O. Ejidokun, “A hybrid software test 

automation for educational portals”, Novateur Publications, International Journal of 

Innovations in Engineering Research and Technology, 2021. 

[7]. A. Asif, K. Maheen, K. Hameed, “Software Test Automation”, Instant Approach to 

Software Testing: Principles, Applications, Techniques, and Practices, Bpb Publications, 

2019. 

[8]. Y. Wang, M. V. Mäntylä, Z. Liu, J. Markkula, R. P. Jurvanen, “Improving test automation 

maturity: A multivocal literature review”, Software Testing, Verification and Reliability, 

e1804, 2022. 

[9]. V. Ray, “Inside Clinical Arena Automated Evaluation Using Selenium testing framework”, 

YMER Digital, Volume 21, 2022. 

[10]. R. Anand, M. Arulprakash, “Business driven automation testing framework”, International 

Journal of Engineering & Technology, 7 (2.8) (2018) 345-349, 2018. 

[11]. D. Obayomi, D. Athyala, J. K. Duphey, G. Kapadiya, “Azure DevOps”, Frankfurt University 

of Applied Sciences, 2021. 

[12]. A. Bandaru, “Amazon Web Services”, AWS Conference, 2020. 

 


