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COMBESCURE RELATED PSEUDO NULL CURVES AND THEIR
APPLICATIONS TO DA RIOS VORTEX FILAMENT EQUATION

Osman KECILIOGLU', Kazim ILARSLAN?

Space curve pairs related through the Combescure transformation consti-
tute a class of curves arising from specific relationships between the Frenet vectors of
the curves. In other words, they are pairs of curves whose tangent vectors are parallel
at corresponding points. In this study, pseudo null curves connected via the Combes-
cure transformation are investigated within the framework of Minkowski 3-space, and
the necessary conditions for such connections are derived. Furthermore, the relation-
ships between the Frenet vectors and curvatures of these curve pairs are established, and
illustrative examples are provided.

Another section of the study focuses on applications of pseudo null curves related
through the Combescure transformation. Initially, conditions under which a pseudo null
curve associated with a pseudo null biharmonic curve via the Combescure transformation
also becomes biharmonic are derived and supported with examples. As another applica-
tion, in the context of pseudo null curves related through a Combescure transformation,
necessary and sufficient conditions have been obtained for the ruled surface generated
by the conjugate curve to be a solution of the Da Rios vortex filament equation, assum-
ing that the ruled surface generated by the main curve is already a solution. Examples
supporting these results have also been provided.

Keywords: Combescure transformation, Minkowski 3-space, pseudo-null space curves,
biharmonic curves, Da Rios vortex filament equation.
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1. Introduction

The differential geometry of spatial curves in Euclidean 3-space has been widely stud-
ied, with many results extended to non-Euclidean settings using alternative metrics and
moving frames. One notable framework is Minkowski 3-space (Lorentz-Minkowski space),
which plays a key role in relativity theory [9, 31].

In this space, curves are classified based on the causal character of their velocity vec-
tors: spacelike, timelike, or null (lightlike). Unlike spacelike or timelike cases [24, 31], null
curves involve degenerate metrics, introducing additional challenges. A particularly inter-
esting class is pseudo null curves, which have spacelike tangent vectors and null acceleration
vectors.

Pseudo null curves offer insight into the geometry of both null and spacelike curves,
helping reveal the interplay between curvature, torsion, and metric structure [5]. They are
also useful in modeling geometric behavior in Lorentzian settings, representing simplified
forms of relativistic motion. Many studies have explored special properties of pseudo null
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curves in Minkowski 3-space, such as being helices or slant helices, and have used Frenet
frames to classify them as Bertrand, Mannheim, or Involute-Evolute curves [7, 25, 27, 28].

A key concept in such studies is the Combescure transformation, which links two
curves by aligning their tangent vectors at corresponding points [8, 16, 32]. This often leads
to parallelism in their normal and binormal vectors as well [26]. The transformation has also
been extended to Riemannian manifolds, where it’s known that only flat manifolds satisfy
this property [19].

Recent research uses the Combescure transformation to generate specific curve types,
such as Bertrand, Mannheim, and Salkowski curves, from a given base curve [3, 8]. Related
investigations on non-null curves in Minkowski space have also been carried out by the
authors [22]. Moreover, this transformation is relevant not only in geometry but also in
mathematical physics [4, 29, 33].

This paper is structured as follows: Section 2 reviews key concepts in Minkowski 3-
space, focusing on the Frenet apparatus of pseudo null curves. Section 3 introduces pseudo
null curves associated via the Combescure transformation and derives conditions for such
associations, supported by a central theorem and illustrative example. Section 4 examines
cases where the principal curve is biharmonic and identifies when the associated curve also
becomes biharmonic. It also analyzes when ruled surfaces generated by these curves satisfy
the Da Rios vortex filament equation, providing conditions and graphical examples.

2. Preliminaries

Minkowski space E$ is a three-dimensional affine space endowed with an indefinite flat
metric ( , ) with signature (—, 4+, +). This means that metric bilinear form can be written
as

(u,v) = —uqv1 + ugva + ugvs,

for any two vectors u = (u1,u2,u3) and v = (vq,v9,v3) in E}. Recall that a vector u € E3\{0}
can be spacelike if g(u,u) > 0, timelike if g(u,u) < 0 and null (lightlike) if g(u,u) =0 and
u # 0. In particular, the vector u = 0 is a spacelike. The norm of a vector u is given
by |lu|| = /|g(u,u)|, and two vectors w and v are said to be orthogonal, if g(u,v) = 0.
An arbitrary curve o(s) in E$, can locally be spacelike, timelike or null (lightlike), if all
its velocity vectors ¢'(s) are respectively spacelike, timelike or null. A null curve ¢ is
parameterized by pseudo-arc s if g(¢”(s), ¢ (s)) = 1. A spacelike or a timelike curve ¢(s)
has unit speed, if g(¢'(s),¢'(s)) = £1 [24], [31]. The Lorentzian vector product of two
vectors u and v is given by

u X v = (uzvz — UV3, U3V — UIV3, U1V — UV1) .

Let {T, N, B} denote the moving Frenet frame along a curve ¢ in E3, T, N and B
represent the tangent, principal normal, and binormal vector fields, respectively. The form
of the Frenet equations varies depending on the causal character of the curve .

If  is a pseudo null curve, the Frenet equations are given by

T 0O 1 O T
N |l=|0 7 o0 N (1)
B’ -1 0 -7 B
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where the first curvature k1 = 0 if o is straight line, or k1 = 1 in all other cases. In particular,
the following conditions hold:
g(N,N) =g(B,B) =g(T,N) = g(T,B) = 0,9(T,T) = g(N,B) = 1

and
TxN=N, NxB=T, BxT=B. (2)

3. Pseudo Null Curves Related by a Combescure Transformation in Minkowski
3-space

In this section, pseudo null curves in the 3-dimensional Minkowski space that possess
parallel tangent vector fields, or equivalently, are related by a transformation of Combescure,
have been studied.

Definition 3.1. Let ¢ : I CR — E and ¢* : I* CR — E3 be null curves in E3 with Frenet
apparatus {T,N,B,k,7} and {T*, N*, B*,k*,7*}, respectively. If the tangent vectors at
the corresponding points of ¢ and ©* are equal, these curves are called curves related by a
transformation of Combescure.

Theorem 3.1. Let ¢ : I CR — E3 and p* : [* CR — E3 be unit speed pseudo null curves
in B3 with Frenet apparatus {T, N, B, k,7,s} and {T*, N*, B*, k*, 7%, s*}, respectively. Then
the tangent vector T of ¢ is equal to the tangent vector T* of p* at the corresponding points
if and only if the parametrization of the curve p*is given one of the followings

" (s") = ¢"(h1(s)) (3)
= p(s)+C(s)T (s) e JT)s {/ —C (s) el T s 4 co| N (s)
+efr(s)dsB (S)
or
" (s") = ¢"(ha(s)) (4)
ac (3) J(s)ds
= p(s)— Is +7C(s) | T(s)+C(s)N(s)+e B(s)
where hy, ho : I — I are diffeomorphism and C' : I CR — R is a differentiable function.

Proof. Let o : I CR — E} and ¢* : I* C R — E3$ be pseudo null curves in E$ with Frenet
apparatus {T, N, B, k,7} and {T*, N*, B* k* 7"}, respectively. Assume that T'=T" and

" (s") =9 " (h1(s)) =@ (s) +u(s)T(s) +v(s)N(s) +w(s)B(s) (5)
where u, v and w are differentiable functions on I C R and hy : I — I* is a diffeomorphism.
Differentiating this equation with respect to s and using (1), we obtain

dp*
ds*
Since T' = T, it follows that

Ri(s)=(1+v —w)T+ (u+v" +v7) N + (v’ — 7w) B.

1+u’—w=%:h’1(s)

u+v +or=0 (6)
w — 7w =0

The last equality represents a first order linear differential equation. Solving this equation
yields the solution w = e/ 7(9)ds Tet € : T — R be a differentiable function. If we take
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u = C (s), expression (6) leads to the linear differential equation v’ + 7v = —C (s). Solving
this equation gives

v = e—fT(s)ds |:/ -C (s)f‘f'(s)ds ds + CO:| ,
where ¢y € R. As a result, we obtain
e (s") = ¢ (hi(s))

©(s)+C(s)T (s) + e J7()ds {/ —C (s) e s 4 co] N (s)

+el TV B () .
If we take v = C' (s), expression (6) leads to u = — (d(égs) +7C (s)), thus, we get
d
F6) =t @)ee - (G T+ CON @+ OB )

where hy : I — I* is a diffeomorphism. Conversely, assume that ¢ : I C R — E3 be a pseudo
null curve in E$ with Frenet apparatus {T, N, B,x,7}, C : I C R — R be a differentiable
function and the parametrization of ¢* given by

e (s") = ¢ (hi(s)) (7)
©(s)+C (s)T (s) + e S 7()ds U —C (s) el T 4 co] N (s)

+efr(s)dsB (S) )

ds* ds d
and T are unit vectors, we get T* = T. Thus ¢* and ¢ are pseudo null space curves are

Differentiating (7) with respect to s, we find & 4 — (1 + &S) —ef Tds) T. Since T*

related by a transformation of Combescure. If the parametrization of ¢* given by

F) = ) = e - (G @) TE e e

+ef~r(s)dsB (S)

We easily show that T* = T. So ¢* and ¢ are pseudo null space curves are related by a
transformation of Combescure. This complete the proof. O

Theorem 3.2. Let ¢ : I CR — E$ and ¢* : I* CR — E$ be pseudo null curves related by
transformation of Combescure with Frenet apparatus {T, N, B, k,7,s} and {T*, N*, B* r* 7% s*},
respectively. The curvatures and Frenet vector of ¢ and o™ related as follows:

(1) If the parameterization of ©* is given by (3), then we have

1 I
T*=T,N"= —N,B*=hBand s* =k =1,7" = () +
h h
1 1

T
hi
where by (s) =1+ %L(:) —eJ T(s)ds
(2) If the parameterization of ¢* is given by (4), then, the same equalities as above are
2
obtained for hly (s) =1 — %ﬁ —7/C (s) — 7 (s) di(S) _of T(s)ds

S

Proof. Assume that, ¢ and ¢* be pseudo null curves related by transformation of Combes-
cure and the parameterization of ¢* is given by (3) . Differentiating (3) with respect to s and
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using Frenet equations, we get Zf: % = (1 + %ﬁs) —el T(S)ds) T. If we denote b} (s) = d&i

and using T* =T, we get

dc (S) _ ef‘r(s)ds.

Taking the derivative of the equation T* = T with respect to s and using the Frenet formulas

() 7
=~ —.
hi hi
Now assume that there exist differentiable functions a, b, ¢ such that the binormal vector B*
can be expressed as

yields

B* =aT + bN + cB. (9)

Since T* =T, N* = ;%N and using equations (1) and (2), we obtain a = b =0 and ¢ = hj.
1
So, we have B* = h} B. Thus we complete the proof. O

Example 3.1. Consider the curve E3 given by

1 1 1 1 1
QD(S) = (383, 6\/583 + 58, 683 - 2\/53)

with the curvatures k = 1,7 = % By using Theorem 3.1 and taking C (s) = 3s, we obtain

related by transformation of Combescure curve ¢] and @3 as follows

“jst+ 40— 4,
0 (hr (s)) = | —2vBst 4 2vBs® — Lt 426+ 13,

—gst+ 258+ 1V3s? —2V3s + §

with curvatures K =1 and 7f = ﬁ and
“pot i -k
o3 (ha () = | —3vEs'+ 1vEsS — 12 + Lo+ 1VE -3,

—gst+ 38+ 1VBsT — 1VBs +3V3+ &
with curvatures k3 =1 and 75 = ﬁ It can be easily verified that T (s) = Ty (hy (s)) =
Ty (ha (8)). Accordingly, the curve pairs (v, pT), (v, p3) and (pT,p3) are related by a trans-
formation of Combescure.
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FIGURE 1. The figure illustrates the main curve ¢ (red) together with the
associated curves ¢} (blue) and 3 (black), which are connected to ¢ via a
Combescure transformation in Example 3.1.

4. Some Applications of Combescure Related Pseudo Null Curves

In this section, we investigate key problems involving pseudo null curves in Minkowski
3-space related by the Combescure transformation. First, given a biharmonic pseudo null
curve ¢ : [ — E3, we determine the necessary and sufficient conditions for its Combescure-
related curve ¢* : I* — E$ to also be biharmonic. Second, assuming that the ruled surface
generated by ¢ satisfies the Da Rios vortex filament equation, we establish the conditions
under which the ruled surface generated by ¢* likewise solves this equation.

4.1. Biharmonic Curves and Combescure Related Space Curves

In this subsection, we examine the conditions under which the Combescure transform
of a non-null biharmonic curve remains biharmonic. Before doing so, we briefly review
biharmonic curves in Minkowski 3-space and summarize relevant previous results.

A unit-speed curve is biharmonic if the Laplacian of its mean curvature vector van-
ishes. In semi-Euclidean 3-space, this is equivalent to the biharmonic equation on the curve
itself. Chen and Ishikawa [10] showed that all biharmonic curves in semi-Euclidean spaces lie
within three-dimensional totally geodesic subspaces. In Minkowski 3-space, Inoguchi clas-
sified biharmonic curves as helices with curvature and torsion satisfying a specific relation
[20]. Studying biharmonic curves sheds light on the behavior of elastic curves in Lorentzian
geometry, which differ from Euclidean cases due to the indefinite metric. The characteriza-
tion of a pseudo-null curve as a biharmonic curve in Minkowski 3-space is given by Inoguchi
with Theorem 3.1 in [21].

The following theorem provides the conditions under which the associated curve of
a pseudo null biharmonic curve in Minkowski 3-space, related through the Combescure

transformation, is also a biharmonic curve.

Theorem 4.1. Let ¢p: I CR — E:{’ and p* : I* CR — ]E? be Combescure related unit speed
pseudo null curves in B3 with Frenet apparatus {T, N, B, k,7,s} and {T*, N*, B*, k*, 7%, 5%},
respectively. If ¢ is a biharmonic curve, a necessary and sufficient condition for ¢* to also
be a biharmonic curve is that the differentiable function C' in the parametrization of p* given

by (3) is one of the following:
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(1) If the torsion of the biharmonic curve  is T(s) = 0, then for real constants d, A, j11, 2,
the function C(s) is either

C(s) = As + /efT(s)dsds (10)

or
C(S)Z—dﬂF\/d2+2u18+2u1u2—s+/eff(s)d5ds (11)
(2) If the torsion of the biharmonic curve ¢ is T(s) = ﬁ, where ¢ € R, then for real

constants d, 41,02, 01,02, the function C(s) is either
]

C(s)= 5132 + (01— 1)s + 02 + /efT(s)des (12)

or
C(s)=—-d=F \/d2 + (—1 + (s+ c)2) €’ + 09— s+ /efT(s)dsds. (13)

Proof. Let assume that ¢ and ¢* are Combescure related pseudo null curves in Minkowski
3-space, and suppose ¢ is a biharmonic curve. We will determine the function C' (s) in the
parametrization (3) of ¢* that ensures ¢* is also a biharmonic curve. For this, the following
two cases arise:

Case 1. Suppose that ¢ is a biharmonic curve with torsion function 7 (s) = 0. Then, for
©* to also be a biharmonic curve, the torsion function of ¢* must satisfy 7* (s*) = 0 or

T (%) = ﬁ, where d is a real constant (see Theorem 3.1 in [21]).

Case 2. Suppose that ¢ is a biharmonic curve with torsion function 7 (s) = Sic where ¢
is a real constant. In this case, ¢* is also biharmonic if and only if its torsion function is
either 7* (s*) =0 or 7* (s*) = ﬁ7 for some real constant d.

We now proceed to analyze these cases in detail. Assume that the parametrization of ¢* is
given by (3). From Theorem 3.2, we get
* [ % 1
TH(sT) = W(hlﬂ — hY). (14)
If we take 7(s) = 0 and 7*(s*) = 0 in (14), we obtain the differential equation % =0.
The general solution of this differential equation is
hi(s) =ci1s+co (15)
where ¢1,co € R. Since hy (s) is a diffeomorphism, it must satisfy h] (s) = ¢; # 0. Substi-
tuting equation (15) into equation (8), we obtain
dC (s)
ds
If we denote ¢; — 1 = A, it is clear that A # —1. Then integrating equation (16) gives

= — 14l 75 (16)

O(s) = As + [ e/ 7()45ds. Next, consider equation (14) with 7(s) = 0 and 7*(s*) = ﬁ
where d is a real constant. Then, we get
1 hy
; (17)

shd (R
Since % = hf, it follows that s* = h;(s) and substituting into equation (17) gives h} +

(h))?
h1(8)+d

= 0. The general solution of this differential equation is

hi(s) = —dF /d + 2p15 + 21 1o (18)
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for some real constants p; and . Substituting (18) in (8) yields 4€ = R} (s) — 1 +ef T(s)ds
which integrates to C (s) = —d F \/d2 4+ 2u1s + 2u1 e — S + fef T(S dsds. Now, if in equa-
tion (14) we take 7(s) = HC and 7*(s*) = 0 for a real constant ¢ . With the above similar
steps are repeated for this case C' (s) = %2 + (Jic — 1)5 + 05 + [ el 74545 can be readily
obtained. Finally, in equation (14) if we take 7(s) = HC, TH(s*) = m and for real con-

stants ¢ and d. A straightforward repetition of the previous steps for this situation gives
C(S) = _d:F \/d2 + (—1 + (5 + 0)2) e’1r + 09 — 8 —+ fefT(s)dst.
Conversely, suppose that in the parametrization of the curve ¢* given by (3) the function

C(s) is given in the form C (s) = —d + \/d2 + (—1 + (s+ 0)2) e + 09 — s+ [l T3

(s+c)e”1

where d, 01, 05 are real constants. Then from equation (8) we obtain A (s \/dz = )
+ s+c

From equation (14) it follows that

1
™(s*) = 7(h1(s) = ——
Since s* = hi(s), we have 7%(s*) = ﬁ. Thus, the pseudo-null curve ¢* is a biharmonic
curve. The proof can be carried out in a similar manner for the remaining cases of the
function C'(s) as well. O

Example 4.1. Consider the pseudo null biharmonic curve in Minkowski 3-space given by

1 1 1 1
w(s) = (683 + 552,5, 683 + 232>

with the curvatures k(s) = 1,7 (s) = ?11 If 6, = 2 and d = 0 are assumed in part (2) of
Theorem 4.1, then it follows that Cy (s) = 352*% and using in (3), the curve ¢¥, which
is Combescure related to ¢, is obtained as follows

_ 82 S 2 82 ) 9
ei(h (s) = <2+4(2+),;+s(2+3),2+f+)> 7

where b (s) = 2+ 2s. It is easily calculated that 77 (s*) = 0. Therefore, the curve i is a
pseudo null biharmonic curve. If d =2, c=1 01 =0 and o3 = —2 are assumed in part (2)

of Theorem 4.1, then it follows that Cy (s) = —2 + /1 + (s +1)° + S‘QTH and using in (3),
the curve @5, which is Combescure related to ¢, is obtained as follows

—34(s%425—4)/14+(1+5)?2
6 )

3 (ha (s)) = —3+2y/14(1+5)°

2 )

3+(s2425—4)/1+(145)?

6

where Y (s) = ——L=—. When the torsion function of ¢} is calculated with respect to s*
vV 1+(1+s)? 2 ’

1

we obtain 73 (s*) = 545. This implies that 3 is a pseudo null biharmonic curve.

e?1+02
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F1GURE 2. The figure illustrates the main pseudo null biharmonic curve ¢
(red) together with the associated pseudo null biharmonic curves ¢ (blue)
and ¢3 (black), which are connected to ¢ via a Combescure transformation

in Example 4.1
4.2. Da Rios Vortex Filament Equation and Combescure Related Pseudo

(19)

Null Curves
The vortex filament equation, also known as the smoke ring equation or localized
incompressible, inviscid fluid, originally introduced by L.S. Da Rios [11]. For a curve z(s, t)

induction approximation, models the evolution of a one-dimensional vortex filament in an

parametrized by arc length s and time ¢, its evolution is governed by
Tt = Ts X Tgs-
This equation was later rediscovered by Betchov and independently by Arms and Hama

[1, 2, 6], as an asymptotic form considering only local Biot-Savart contributions.
Beyond fluid mechanics, the equation admits a geometric interpretation as a dynam-

ical system on curves in Minkowski 3-space [30, 34]. Special solutions preserving filament
shape correspond to traveling wave solutions of the nonlinear Schrodinger (NLS) equation
[18], with related soliton surfaces known as Hasimoto surfaces [14].
Specifically:
o If x(s,t) is spacelike with a timelike normal vector, the motion generates a spacelike

Hasimoto surface.
e If the binormal vector is timelike, the resulting surface is timelike.
These cases connect to nonlinear heat-type systems [17]. For timelike curves z(s,t),

the vortex filament flow yields a timelike Hasimoto surface governed by a repulsive NLS

/L.Qt = —(Qss T 2‘q|QQ7

equation:
with extensive studies on this correspondence [13, 23].

In Minkowski 3-space, conditions under which ruled surfaces generated by pseudo-
null curves or their Frenet vectors satisfy the Da Rios equation have been analyzed with

respect to the curve’s torsion, yielding important results [12, 15, 27]. When we consider the

Theorem 6.1-6.2 in [27] and Theorem 3.1 in [21], we get the following result.
Corollary 4.1. A ruled surface generated by a pseudo null biharmonic curve in Minkowski

3-space is a solution to the Da Rios vortex filament equation.
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Let ¢ and ¢* be pseudo-null curves related by a Combescure transformation. When
the ruled surface S, generated by the curve ¢, is a solution to the Da Rios equation, the
conditions under which the ruled surface S*, generated by the curve ¢*, is also a solution
to the Da Rios equation are provided in the following theorem.

Theorem 4.2. Let ¢ : [ CR — E$ and ¢* : I* CR — E3 be Combescure related unit speed
pseudo null curves in B3 with Frenet apparatus {T, N, B, k,T,s} and {T*, N*, B*, k*, 7%, 5%},
respectively. If the ruled surface S generated by the curve ¢ satisfies the Da Rios vor-
tex filament equation, then a necessary and sufficient condition for the Combescure related
curve ©* to also satisfy the Da Rios equation is that the differentiable function C (s) in the
parametrization of p* given by equation (3) is one of the following:

(1) If ¢ is a pseudo-null curve with torsion function T (s) = 0. In this case:

(a) If C(s) = c1s + [ el 7)¥ds, then the torsion function of ©* is T* (s*) = 0.

(b) If C(s) = c1 + L In(ds —c2) — s + [ el 7()sds then the torsion function of *
is T (s*) =d #0.

(c) If C(s) = —dF \/d2 + (71 + (s+ 0)2) e’ 409 — s+ fef'r(s)dsds, then the
torsion function of ™ is T* (s) = ﬁ.

(d) If C(s) = _1_616271:62‘1 — s+ [elT()sds, then the torsion function of ¢* is

( ): s+d

(e) IfC'( )= —2d + 2arctan (¢;s + c2) — s + [ el )4 ds, then the torsion function

of p* is tan(% +d).

N

(2) If p is a pseudo-null curve with torsion function 7 (s) = c. In this case:

(a) IfC (s) = cre® +ca—s+ [ el 7 ds  then the torsion function of p* is T* (s*) =
0.

(b) If C(s) = C(s) = 2In(1+ dect+e)) ¢y — s + fefT(S)des, then the torsion
function of ¢* is T* (s*) =d # 0.

(c) If C(s) = —edFy/ A peectte) ooy _ + [ el 7 ds, then the torsion function

c
- * _ 1
of p* is 7 (s) = W
c(s+c
(d) If C(s) = e =9 sy [l 7()dsqs, then the torsion function of p* is

ec(Te2) 1oy
T*(s) = Sfd.

2¢:cosd+( F(H'"?)fcl)smd
\/4p2+ eclstea) ¢y )
function of ©* is T* (s) = tan(7 +d).

(e) If C (s) = 2arccos ) — s+ [ el s ds then the torsion

(3) If p is a pseudo-null curve with torsion function 7 (s) = %—i—c In this case:

(a) IfC (s) =1 (cs + %) +eo—s+ [el s then the torsion function of ¢* is
T*(s*) = 0.

(b) IfC (s) = 11n (2cds + ds? + 2¢1) +ca—s+ [ e/ 75)45ds, then the torsion function
of * is T* ( *)=d#£0.

(c) If C(s) = —d F V/d® — €22 1 c2e?e | 2ce®2s + e2252 1 ¢ — s + [ el T()dsds,
then the torsion function of ©* is 7" (s) = ﬁ.

—d(=14c%+2¢cs+5%)+(1—der) cos(cz)+(14dcer ) sin(cz) (s)ds
(d) IfC(S) = ( —1+c2+2cs)+32+c1 CIOS(CQ)jCl sin(cQ)1 = - s+ f@f (e)d dS, then
2

the torsion function of ¢* is 7% (s) = 375
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In(c+s) sind—e2 (2 cos d+cy sind 7(s)ds s*
(e) C (s) = 2arccos <\/€2c5 (Z«k)c?)2015“2(21n(c+:;+11n2(c+s)>_8+f el ()43 ds, then tan (< +
d).

(4) If ¢ is a pseudo-null curve with torsion function T (s) = iQC In this case:

(a) IfC(s) = —F+ca—s+[ el 7 ds then the torsion function of ©* is T* (s*) =

(b) If C(s) = L1In <C+S + cl) ey — s+ [l T0)5ds then the torsion function of

(¢) IfC(s) = —dF y/d® + 2% 4 2cy — s+ [ e/ "% ds, then the torsion function of

p* s TF (5) = = {s-d
(d) IfC( ) = == Scl‘f:éc;rd;é dscz g4 [ el 7()sds, then the torsion function of ¢*
is T (s) = Sfd.
(e) If C'(s) = —2d + 2 arctan <%) s+ fef (5)ds (s then tan( +d).

(5) If ¢ is a pseudo-null curve with torsion function T (s) = tan (% + c) . In this case:

(a) IfC(s)=2citan (5 +c)+ca—s+ [ el T()ds s then the torsion function of ©*
is T (s*) = 0.

(b) If C(s) = +In (61 +2dtan (5 +¢)) + 2 — s+ [el 7)sqs  then the torsion
function of ©* is T* (s*) =d # 0.

(c) IfC(s)=—dF \/d2 +2¢o —4deytan (5 +¢) — s+ [ el 7)sqs then the torsion
function of ©* is 7" (s) = ﬁ.

(d) IfC(s) = ﬁ —d—s+ fefT(s)dsds, then the torsion function of p*
Cco—4cCcp tan bl C
is T (s) = Sfd.
(e) If C(s) = —2d+2 arctan (2 —citan ($+¢)) —s+ [ el T()Asq then, the torsion
function of ¢* is tan( +d).

Proof. Let us assume that ¢ and ¢* are pseudo null curves in Minkowski 3-space, connected
via a Combescure transformation. When we consider the Theorem 6.1-6.2 in [27], the
possible values of the torsion function for a pseudo null curve whose associated ruled surface
is a solution to the Da Rios vortex filament equation are stated. Among these values, it is
known that in the cases 7(s) = 0 and 7 (s) = S+c7 the curve is also a biharmonic curve.
For these specific cases, Theorem 4.1 proves how the differentiable function C (s), which
appears in the parametrization of the associated curve ¢*, should be chosen so that ¢* is
also a biharmonic curve. These cases correspond to the subcases 1-a, 1-c, 3-a, and 3-c of
our main theorem. Therefore, the remaining cases can similarly be verified using the proof
technique provided in Theorem 4.1. (|

Example 4.2. Consider the pseudo null curve in Minkowski 3-space given by

p(s) = (41n (cos(% + 1)) ,5,—41n (cos(g + 1)))

with the curvatures & (s) = 1,7 (s) = tan(5 + 1). If we take d = —2,c1 = —1 and ca = 2 in
part (5-¢) of Theorem 4.2, then it follows that C (s) = 4 + 2arctan (1 +tan ($ + 1)) — s+
2 tan (% + 1) and using in (8), the curve o*, which is Combescure related to @, is obtained
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as follows

g + 4 arctan (1 + tan(3 + 1)) —2In (2 + tan(3 + 1) (2 + tan(5 + 1))) ,
©* (h(s)) = 4+ 2arctan (1 + tan($ + 1)),

—3 —4arctan (1 +tan($ + 1)) +2In (2 + tan($ + 1) (24 tan($ +1)))

where s* = h(s) = 4 + 2arctan (1 + tan (% + 1)) . The ruled surfaces S and S*, generated

by the curves ¢ and @*, respectively, and also satisfying the vortex filament equation, are
given by

6(s,t) = B(s)+t (—tan (;+1)T(s)+N(s)—2COS2(15_|_1)B(s)>
2

B
= (le (5—5t—3cos(2+s)),—sin (2 + s)

1
,4(—3+3t+5cos(2+s))>

and

¢" (s%,t) = ¢ (h(s),1)
9t 5—3cos(2+5s)

4 6+2cos(2+§)+4sin(2+s)’

—t —
2cot (2 +5) +3csc(2+s)’
Tt —3+4+5cos(2+s)

4 Jr6—i—200$(2—i-8)—i—45in(2—&—s)

F1cUure 3. Figure A illustrates the curves ¢ and ¢*, which are pseudo null
curves connected via a Combescure transformation, as given in Example
4.2. Figure B presents the ruled surfaces S and S* , generated by the

curves ¢ and @*, respectively. These surfaces are solutions to the Da Rios
vortex filament equation.

Remark 4.1. All the theorems, proofs, results, and examples above have been carried out
based on the parametrization of the conjugate curve p* given by equation (3) in Theorem
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3.1. Similar results can be obtained by using the parametrization given in equation (4) in
Theorem 3.1.

5. Conclusion

This study examines pseudo null curves in Minkowski 3-space that are related through
the Combescure transformation, meaning their tangent vectors are parallel. This condition
also implies the parallelism of other Frenet vectors, placing them among Bertrand curve
pairs. As an application, we consider biharmonic curves and ruled surfaces satisfying the
Da Rios vortex filament equation. The results can be extended to other geometric settings,
such as Minkowski space-time and (pseudo-)Galilean spaces.
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