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A LAGRANGE MULTIPLIER APPROACH USING INTERVAL 
FUNCTIONS FOR GENERALIZED NASH EQUILIBRIUM IN 

INFINITE DIMENSION 

Bogdan BIOLAN1 

In this paper we study a class of generalized Nash equilibrium problems in 
the interval analysis framework. Some characterizations of the solutions 
corresponding to players which share the same Lagrange Multipliers are also given. 
The types of functions used in this article are the so called interval applications or 
interval functions. According to [3], this kind of Nash equilibria concept was 
introduced by Rosen [12] in 1965 for finite dimensional spaces. In order to obtain 
the same property for the infinite dimensional approach, we use recent 
developments of a new duality theory. Regarding its usfulness new theorems are 
proven and similar kinds of equilibrium for pay-off interval type functions or their 
extended versions are approached. 
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1. Introduction 

In [3] F.Faraci extended the Nash Equilibria concept defined by Rosen 
[12] in 1965 to infinite dimensional spaces. The aim of this paper is to extend this 
type of equilibria obtained in [3] to a class of functions, called interval functions. 
So the pay-off functions used in this article and the other functionals are described  
be interval functions. Generalized Nash equilibrium problems (GNEP’s) are 
noncooperative games in which the strategy of each player can depend on the rival 
players’ strategies. These problems have become popular recently because of their 
utility for modeling economic problems, as well as routing problems in 
communication networks. Recently, Facchinei et al. [2] have proved that for a 
large class of GNEP’s, in finite dimension, certain solutions can be computed by 
solving a variational inequality rather than a quasi-variational inequality. 
Moreover, they have proved that the solutions of GNEP’s which are preserved by 
switching to the variational inequality formulation are characterized by the fact 
that all players share the same vector of Lagrange multipliers. This kind of Nash 
equilibria was introduced by Rosen in his seminal paper [12] and its connection to 
variational inequalities has important consequences from computational point of 
view. In order to prove the main result from [2], assuming that some constraints 
qualification holds, the authors use the Knaster-Kuratowski-Mazurkievicz 
conditions associated to the GNEP. In this paper we are interested in extending 
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the above mentioned result to an infinite-dimensional functional setting. This 
extension is motivated by the fact that modeling the all time dependent 
equilibrium problems requires the use of variational inequalities in ܮ௣ spaces. 
Moreover, the study of random equilibrium problems can be done using 
variational inequalities theory in probability spaces. Here can be mentioned the 
contributions of [6-11]. 

The application of the standard Lagrangian duality theory to the above 
mentioned infinite-dimensional problems is not possible, because the ordering 
cone which describes the inequality constraints (i.e. the cone of non-negative 
functions in some ܮ௣ space) has empty interior. However, very recently, a new 
duality theory developed in [3] has proved to be a powerful instrument to 
overcome this difficulty. The key tool in this theory is represented by the so-called 
Assumption S, which replaces, in the infinite-dimensional framework, the 
qualification constraints assumptions of the classical finite-dimensional setting. 
The main result has been improved and since then many works have been devoted 
to develop and apply the new duality theory. In this paper, by using the new 
theory, we are able to prove the existence of Lagrange Multipliers for GNEP’s in 
general Banach spaces and to extend the results to the infinite dimension case. For 
more details concerning convex analysis in infinite dimension, see [13]. 

The paper is organized as follows. In Section 2 we introduce the setting of 
our problem and the variational inequality concept, which constitute the main 
object of our study. In Section 3 we prove our main result in an abstract Banach 
space, we denote attention to Assumption S and we show how abstract theory can 
be applied to concrete case of GNEP’s in Lebesgue spaces. Finally, in Section 4, 
we conclude our work by revising the importance of the new results obtained in 
this paper. 

2. The setting 

Let ଵܺ and ܺଶ be two Banach spaces and let ݑ ൌ ሺݑଵ,  ଶሻ be an element ofݑ
the product space  ܺ ൌ ଵܺ ൈ ܺଶ. The element ݑଵ corresponds to the first player 
and the element ݑଶ corresponds to the second one. Let ܭ ؿ ܺ be an non-empty 
and convex set and let ܬଵ, ܬଶ: ܺ ՜ ܴ be two functionals, also known as the utility 
functions or the pay-off functions, so that ܬଵሺ. ,  ଶሻ is convex and Gateauxݑ
differentiable for every  ݑଶ א ܺଶ and ܬଶሺݑଵ, . ሻ is convex and Gateaux 
differentiable for every  ݑଵ א ଵܺ. 

For every  ݑ ൌ ሺݑଵ,  ଶሻ the sets of optimal strategies of the two playersݑ
can be expressed as follows: 
ሻݑଵሺܭ ൌ ሼݒଵ א ଵܺ: ሺݒଵ, ଶሻݑ א ሽܭ ؿ ଵܺ, 
ሻݑଶሺܭ ൌ ሼݒଶ א ܺଶ: ሺݑଵ, ଶሻݒ א ሽܭ ؿ ܺଶ . 
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Note that if ݑ א  then the above sets are convex and non-empty, as ,ܭ
௜ݑ א  ሻ. The purpose of each player ݅, given the strategy of the rival, is toݑ௜ሺܭ
choose a strategy which minimizes the function  ܬ௜ on its optimal set. 

The following definition describes the goal of the game, which consists in  
finding an equilibrium point for both players, represented by a vector ݑത ൌ
ሺݑതଵ,  തଶሻ, such that no player can decrease his utility function by changingݑ
unilaterally ݑത௜ to any other optimal point. We will recall this definition from [3] 
and afterwards we will show how an interval function can change this setting. 
Definition 2.1. We say that ݑത ൌ ሺݑതଵ,  തଶሻ is a generalized Nash equilibrium pointݑ
or a solution of the GNEP (Generalised Nash Equilibrium Problems, see [3])  if  
തݑ א  :and the following conditions hold ܭ

,തଵݑଵሺܬ തଶሻݑ ൌ minሼܬଵሺݑଵ, ;തଶሻݑ ଵݑ א  , തሻሽݑଵሺܭ
,തଵݑଶሺܬ തଶሻݑ ൌ minሼܬଶሺݑതଵ, ;ଶሻݑ ଶݑ א  . തሻሽݑଶሺܭ

Let ܽ, ܾ, ܽ′, ܾ′ א Թ.  

Definition 2.2. We say that ሾܽ, ܾሿ ൑ ሾܽ′, ܾ′ሿ if:      ൜ܽ ൑ ܽ′
ܾ ൑ ܾ′

ൠ. 

We say that  ሾܽ, ܾሿ ൏ ሾܽ′, ܾ′ሿ if:   ൜ܽ ൑ ܽ′
ܾ ൏ ܾ′

ൠ or ൜ܽ ൏ ܽ′
ܾ ൑ ܾ′

ൠ or ൜ܽ ൏ ܽ′
ܾ ൏ ܾ′

ൠ. 

Let ܫ be a non-empty set. Then we define ݂: ܫ ՜ ,ሺԹሻܫܯ ݂ ൌ ሾ݂௅, ݂௎ሿ, with 
݂௅ሺݔሻ ൑ ݂௎ሺݔሻ, ݔ׊ א  the so-called interval function, where ,ܫ

ሺԹሻܫܯ ൌ ሼܬ ׷ ؿ ܬ Թ ݈݅ܽݒݎ݁ݐ݊݅ ݀݁ݏ݋݈ܿ ܽ ݏሽ . 
We say that  ݔഥ   is a minimum for ݂ if the following constraints hold: 

ሾ݂௅ሺݔҧሻ, ݂௎ሺݔҧሻሿ ൏  ሾ݂௅ሺݔሻ, ݂௎ሺݔሻሿ, ݔ׊ א  .ܫ
Let ݃: ܫ ՜ Թ௠ be a vectorial application, where ݉ ൒ 1.   
Consider the optimization problem: 

൝
inf ሾ݂௅, ݂௎ሿ
݃ሺݔሻ ൑ 0

ݔ א ܫ
ൡ. 

We say that  ݔҧ  is an optimum interval point iff ݔҧ is an optimal solution for: ݌௅ሺݔҧሻ 
and  ݌௎ሺݔҧሻ, where: 

:ҧሻݔ௅ሺ݌ ൞

݂݉݅݊௅ሺݔሻ
݃ሺݔሻ ൑ 0

݂௎ሺݔሻ ൑ ݂௎ሺݔҧሻ
ݔ א ܫ

ൢ    and:         ݌௎ሺݔҧሻ: ൞

݂݉݅݊௎ሺݔሻ
݃ሺݔሻ ൑ 0

݂௅ሺݔሻ ൑ ݂௅ሺݔҧሻ
ݔ א ܫ

ൢ. 

We will give the definition of Nash equilibrium point for this class of functions. 
Let ܬଵ and  ܬଶ be two interval functions, ܬଵ, ܬଶ: ܺ ՜  ሺԹሻ the utility functions orܫܯ
pay-off functions so that ܬଵሺ. ,   ଶሻ  is convex and Gateaux differentiable  for everyݑ
ଶݑ  א ܺଶ   and   ܬଶሺݑଵ, . ሻ is convex and Gateaux differentiable, for every  ݑଵ א ଵܺ.  
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Now, we will define the equilibrium point for the problems with the interval 
functions: ሾܬଵ

௅, ଵܬ
௎ሿ , ሾܬଶ

௅, ଶܬ
௎ሿ. 

Definition 2.3. We say that ݑത ൌ ሺݑതଵ,  തଶሻ is an interval equilibrium point forݑ
GNEP if the following conditions hold: 

,തଵݑଵሺܬ (1) തଶሻݑ ൌ minሼܬଵሺݑଵ, ;തଶሻݑ ଵݑ א  ;തଶ is fixedݑ തሻሽ, whereݑଵሺܭ
,തଵݑଶሺܬ (2) തଶሻݑ ൌ ,തଵݑଶሺܬ തଶሻݑ ൌ minሼܬଶሺݑതଵ, ;ଶሻݑ ଶݑ א  തଵ  isݑ തሻሽ, whereݑଶሺܭ

fixed,  
i.e., ݑതଵ is optimal for the problems: 

:തଶሻݑ௅ሺ݌

ە
۔

ۓ min ଵܬ
௅ሺݑଵ, തଶሻݑ

ଵݑ א തሻݑଵሺܭ
ଵܬ

௎ሺݑଵ, തଶሻݑ ൑ ଵܬ
௎ሺݑതଵ, തଶሻݑ

ۙ
ۘ

ۗ
, :തଶሻݑ௎ሺ݌

ە
۔

ۓ min ଵܬ
௎ሺݑଵ, തଶሻݑ

ଵݑ א തሻݑଵሺܭ
ଵܬ

௅ሺݑଵ, തଶሻݑ ൑ ଵܬ
௅ሺݑതଵ, തଶሻݑ

ۙ
ۘ

ۗ
 

and ݑതଶ is optimal for the problems: 

:തଵሻݑ௅ሺ݌  

ە
۔

ۓ min ଶܬ
௅ሺݑതଵ, ଶሻݑ

ଶݑ א തሻݑଶሺܭ
ଶܬ

௎ሺݑതଵ, ଶሻݑ ൑ ଶܬ
௎ሺݑതଵ, തଶሻݑ

ۙ
ۘ

ۗ
:തଵሻݑ௎ሺ݌ ,

ە
۔

ۓ min ଶܬ
௎ሺݑതଵ, ଶሻݑ

ଶݑ א തሻݑଶሺܭ
ଶܬ

௅ሺݑതଵ, ଶሻݑ ൑ ଶܬ
௅ሺݑതଵ, തଶሻݑ

ۙ
ۘ

ۗ
, 

respectively. 
Remark 2.1.  (1)  and (2) are the equilibrium conditions for the so-called interval 
functions. 
Remark 2.2. ݑത  is an interval equilibrium point for GNEP iff ݑത is an optimum for: 
 .തଶሻݑ௎ሺ݌ ,തଶሻݑ௅ሺ݌  തଵሻ   andݑ௎ሺ݌ ,തଵሻݑ௅ሺ݌
Now we recall the concept of Gateaux  differentiability. Let ܻ be a Banach space 
and ܻכ the dual of the topological space ܻ.  
Definition 2.4. The function ݄: ܻ ՜ Թ is said to be Gateaux differentiable in 
തݑ א ܻ if there exists ߮ א  :such that we have כܻ

lim
ఈ՜଴శ

݄ሺݑത ൅ ሻݑߙ െ ݄ሺݑതሻ
ߙ ൌ ߮ሺݑሻ, ሺ׊ሻݑ א ܻ. 

The functional ߮ is called the Gateaux derivative of  and it will be denoted by 
߮ ؠ  .തሻݑሺ݄ܦ
From well-known results of convex analysis (see e.g. Theorem 3.8 of [4]), 
തݑ ൌ ሺݑതଵ,  തଶሻ is considered to be optimum interval for a GNEP interval game ifݑ
and only if: 
ଵܬଵܦ

௅ሺݑതଵ, ଵݑതଶሻሺݑ െ തଵሻݑ ൒ 0, ሺ׊ሻ ݑଵ א തሻݑଵሺܭ ଵܬ :ଵݑ}ת
௎ሺݑଵ, തଶሻݑ ൑ ଵܬ

௎ሺݑതଵ,  ,{തଶሻݑ
ଵܬଵܦ

௎ሺݑതଵ, ଵݑതଶሻሺݑ െ തଵሻݑ ൒ 0, ሺ׊ሻ ݑଵ א തሻݑଵሺܭ ଵܬ :ଵݑ}ת
௅ሺݑଵ, തଶሻݑ ൑ ଵܬ

௅ሺݑതଵ, ,{തଶሻݑ
 (2.2) 

ଶܬଶܦ
௅ሺݑതଵ, ଶݑതଶሻሺݑ െ തଶሻݑ ൒ 0, ሺ׊ሻ ݑଶ א തሻݑଶሺܭ ଶܬ :ଶݑ}ת

௎ሺݑതଵ, ଶሻݑ ൑ ଶܬ
௎ሺݑതଵ,  ,{തଶሻݑ

ଶܬଶܦ
௎ሺݑതଵ, ଶݑതଶሻሺݑ െ തଶሻݑ ൒ 0, ሺ׊ሻ ݑଶ א തሻݑଶሺܭ ଶܬ :ଶݑ}ת

௅ሺݑതଵ, ଶሻݑ ൑ ଶܬ
௅ሺݑതଵ,  ,{തଶሻݑ
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where ܦଵ and ܦଶ stand for the Gateaux derivative of  ܬଵ
௅ሺ. , ,തଶሻݑ ଵܬ

௎ሺ. ,  തଶሻ andݑ
ଶܬ

௎ሺݑതଵ, . ሻ, ܬଶ
௅ሺݑതଵ, . ሻ,  respectively. 

Denote by Γ: ܺ ՜ ଵܺ
כ ൈ ܺଶ

  ,כ

Γሺݑଵ, ଶሻݑ ൌ

ۉ

ۈ
ۇ

ଵܬଵܦ
௅ሺݑଵ, ଶሻݑ

ଵܬଵܦ
௎ሺݑଵ, ଶሻݑ

ଶܬଶܦ
௅ሺݑଵ, ଶሻݑ

ଶܬଶܦ
௎ሺݑଵ, یଶሻݑ

ۋ
ۊ

. 

Now we will recall the concept of underlevel subset. 
Definition 2.5.  We say that ࡸటሺߙሻ ൌ ሼݔ: ߰ሺݔሻ ൑ ߙ ሽ, whereߙ א Թ is the 
underlevel subset of the function  ߰: ܺ ՜ Թ. 
Considering this, it is clear that (2.2) is equivalent with: 

                           Γሺݑതሻ்ሺu െ തሻݑ ൒ 0, ሺ׊ሻݑ
א ቀܭଵሺݑതሻ ת ௃భࡸ 

ೆ൫ܬଵ
௎ሺݑതଵ, തଶሻ൯ݑ ת ௃భࡸ

ಽ൫ܬଵ
௅ሺݑതଵ, തଶሻ൯ቁݑ

ൈ ቀܭଶሺݑതሻ ௃మࡸ ת
ೆ൫ܬଶ

௎ሺݑതଵ, തଶሻ൯ݑ ת ௃మࡸ
ಽ൫ܬଶ

௅ሺݑതଵ,  .തଶሻ൯ቁݑ
Obvious:  ࡸ௃భ

ಽ൫ܬଵ
௅ሺݑതଵ, ଵܬ :ଵݑ}=തଶሻ൯ݑ

௅ሺݑଵ, തଶሻݑ ൑ ଵܬ
௅ሺݑതଵ,  {തଶሻݑ

௃భࡸ                   
ೆ൫ܬଵ

௎ሺݑതଵ, തଶሻ൯ݑ ൌ ሼݑଵ: ܬଵ
௎ሺݑଵ, തଶሻݑ ൑ ଵܬ

௎ሺݑതଵ,  ,{തଶሻݑ
and the same for the others two involving ܬଶ. 
Since the convex sets ܭ௜ሺݑതሻ depend on the solution, one obtains that GNEP for 
interval games can be formulated equivalently as a quasi-variational inequality. 
The nature of the optimal sets allows us to reduce the problem to variational 
inequalities. Solving this associated to Γ and the set ܭ (in short : ܸܫሺΓ, Kሻ), means 
finding a point ݑത ൌ ሺݑതଵ, തଶሻݑ א  :such that we have the following inequality ܭ

Γሺݑതሻ்ሺu െ തሻݑ ൒ 0, ሺ׊ሻݑ א  .ܭ
Theorem 2.1. Every solution of the variational inequality ܸܫሺΓ, Kሻ) is a solution 
of  GNEP interval games. 
Proof: 
Let ݑത ൌ ሺݑതଵ, തଶሻݑ א ଵݑ be solution of (2.4.) where Γ is as in (2.3). If ܭ א  ,തሻݑଵሺܭ
then ݑ ൌ ሺݑଵ, തଶሻݑ א and from the definition of Γ we have that 0 ܭ ൑
Γሺݑതሻ்ሺu െ തሻݑ ൌ ଵܬଵܦ

௅ሺݑതଵ, ଵݑതଶሻሺݑ െ  തଵሻ. In a similar way we get the other threeݑ
inequalities of (2.2). 
A solution of the GNEP interval games that is also a solution of  ܸܫሺΓ, Kሻ) is 
usually referred in Nash equilibrium theory as a variational equilibrium. 
Theorem 2.2. ([7], Corollary 3.7). If K is a convex, closed and bounded subset of 
a reflexive space ܺ and Γ: K ՜ Xכ is a monotone map which is continuous on 
finite-dimensional subspaces of ܭ, then ܸܫሺΓ, Kሻ) has a solution. 
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3. The Lagrange multipliers rule 

A solution of the GNEP interval games can be obtained as a solution of the 
,ሺΓܫܸ Kሻ). By adopting the reduction method, we can lose solutions of the GNEP 
interval game. 

We want to see now which kind of solutions are preserved for a special set 
of constraints. We follow the finite dimensional case [5] and prove that a solution 
of the GNEP interval game is a variational equilibrium iff the shared constraints 
have the same multipliers. The result is true under any constraints qualification 
condition. 

The setting is the same like in Section 2. We assume that ܻ is a Banach 
space ordered by a convex cone, let’s say ܥ, ݃: ܺ ՜ ܻ is convex, continuously 
Gateaux differentiable mapping and: 

ܭ ൌ ሼݓ א כܻ ൏׷ ,ݓ ݖ ൐௒כ,௒൒ 0, ሺ׊ሻݖ א  ,ሽܥ
൏. , . ൐௒כ,௒ denotes the duality between  ܻכ and  ܻ. 
If ݂: ܺ ՜ Թ and ݑത א  ത is a solution of the minimal problemݑ we say that ,ܭ
( ௙ܲ,௄)([3])  if: 

minሼ = (തݑ) ݂ ݂ሺݔሻ| ݔ א  .ሽܭ
The following theorem is the main result of our research. 
Theorem 3.1. (i) Let ݑത be a solution of the ܸܫሺΓ, Kሻ so that a suitable constraints 
qualification condition for the ܸܫሺΓ, Kሻ takes place at ݑത. Then ݑത is a solution of    
the GNEP–interval game such that both players have the same Lagrange 
multipliers. 
(ii) ݑത is a solution of  the GNEP-interval game such that a constraints qualification 
condition takes place at ݑത  and both players have the same Lagrange multipliers. 
Then ݑത is a solution of the ܸܫሺΓ, Kሻ. 
Proof: 
(i) Suppose that ݑത is a solution of the ܸܫሺΓ, Kሻ. Then, if ݂: ܺ ՜ Թ is the function 
defined by:  ݂ሺݑሻ ൌ Γሺݑതሻ்ሺu െ  ,തሻ            (3.1)ݑ
then ݂ is convex, Gateaux differentiable with the derivative given by: 

Df(u)(z) = Γሺݑതሻ்ሺݖሻ for all ݖ א ܺ and for all ݑ א ܺ and: 
f(ݑത) = minሼ ݂ሺݔሻ| ݔ א  ,ሽ = 0. Under a suitable constraints qualification conditionܭ
there exists ݓഥ א   :such that כܥ
തሻݑሺ݃ܦഥݓ +(തݑሺ݂ܦ=0 :(3.2) ൌ Γሺݑതሻ் ൅ തሻ, and (3.3):  ൏ݑሺ݃ܦഥݓ ,ഥݓ ݃ሺݑതሻ ൐௒כ,௒. 
Since ݃ א ,ଵሺܺܥ ܻሻ, ݃ܦሺݑതሻܦ=ݑଵ݃ሺݑതሻݑଵ ൅ ,ଵݑሻሺ׊ଶ, ሺݑതሻݑଶ݃ሺܦ ଶሻݑ א ܺ 
and for the arbitrariness of  ሺݑଵ, ଶሻݑ א ܺ , (3.2) and (3.3) can be rewritten as: 
ቀܦଵܬଵ

௅ ሺݑതሻ ൅ ଵܬଵܦ
௎ ሺݑതሻቁ ଵݑ ൅ ቀܦଶܬଶ

௅ ሺݑതሻ ൅ ଶܬଶܦ
௎ ሺݑതሻቁ ଶݑ ൅  (ଵݑതሻݑଵ݃ሺܦ)ഥݓ

,ଵݑሻሺ׊0, ሺ=(ଶݑതሻݑଶ݃ሺܦ)ഥݓ + ଶሻݑ א ܺ, and for the arbitrariness of ሺݑଵ, ଶሻݑ א ܺ, 
(3.2) and (3.3) read as: 
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ଵܬଵܦ (ߙ)
௅ ሺݑതሻ ൅ തሻݑଵ݃ሺܦഥݓ ൌ 0, 1ܬ1ܦ 

ܷ ሺݑഥሻ ൅ ഥݓ ഥሻݑ1݃ሺܦ ൌ 0, 2ܬ2ܦ
ഥሻݑሺ ܮ ൅ ഥݓ ഥሻݑ2݃ሺܦ ൌ

ଶܬଶܦ ,0
௎ ሺݑതሻ ൅ തሻݑଶ݃ሺܦഥݓ ൌ 0. 

൏ (ߚ) ,ഥݓ ݃ሺݑതሻ ൐௒כ,௒ൌ 0. 
If ݃ଵ: ଵܺ ՜ ܻ is the mapping ଵ݃(ݑଵ) =  ݃ଵ(ݑଵ,  has the (തݑ)ଵܭ തଶ), then the setݑ
following expression: ܭଵሺݑതሻ ௅ ൌ ሼݑଵ: ݃ሺݑଵሻ א െܥሽ ת ௃భࡸ

ಽ൫ܬଵ
௅ሺݑതଵ,  :തଶሻ൯ andݑ

തሻ ௎ݑଵሺܭ ൌ ሼݑଵ: ݃ሺݑଵሻ א െܥሽ ת ௃భࡸ
ೆ൫ܬଵ

௎ሺݑതଵ,  .തଶሻ൯ݑ
Similarly, if  ݃ଶ: ܺଶ ՜ ܻ is defined by ݃ଶ(ݑଶ)= ଵ݃( ݑതଵ,  :ଶ), thenݑ
തሻ ௅ݑଶሺܭ ൌ ሼݑଶ: ݃ሺݑଶሻ א െܥሽ ת ௃మࡸ

ಽ൫ܬଶ
௅ሺݑതଵ,   ,തଶሻ൯ݑ

തሻ ௎ݑଶሺܭ ൌ ሼݑଶ: ݃ሺݑଶሻ א െܥሽ ת ௃మࡸ
ೆ൫ܬଶ

௎ሺݑതଵ,  :തଶሻ൯. One also has thatݑ
ܦ ௜݃൫ݑത௜൯ ൌ തሻݑതሻ, and ௜݃ሺݑ௜݃ሺܦ ൌ ݃ሺݑതሻ, ݅ ൌ 1,2. 
Then (ߙ) and (ߚ) can be rewritten as: 
ଵܬଵܦ

௅ ሺݑതሻ ൅ തଵሻݑଵሺ݃ܦഥݓ ൌ ଵܬଵܦ,0
௎ ሺݑതሻ ൅ ܦഥݓ ଵ݃ሺݑതଵሻ ൌ ଶܬଶܦ ,0

௅ ሺݑതሻ ൅
തଶሻݑଶሺ݃ܦഥݓ ൌ 0, ଶܬଶܦ

௎ ሺݑതሻ ൅ തଶሻݑଶሺ݃ܦഥݓ ൌ 0, 
൏ ,ഥݓ ଵ݃ሺݑതሻ ൐௒כ,௒ൌ൏ ,ഥݓ ݃ଶሺݑതሻ ൐௒כ,௒ൌ 0. 

The above condition means that ݑത satisfies the Lagrange multipliers rule for the 
GNEP interval games with ݓഥ  the common multiplier for both players. 
This condition guarantees (e.g. Corollary 5.15 of [4]) that ݑത is the minimal 
solution of the following problems ( ௙ܲ,௄), with ሺ݂, ሻܭ ൌ ൫ܬ௅

ଵ,  തሻ௅൯ andݑଵሺܭ
ሺ݂, ሻܭ ൌ ൫ܬ௎

ଵ, ,തሻ௎൯ and ሺ݂ݑଵሺܭ ሻܭ ൌ ൫ܬ௅
ଶ, ,തሻ௅൯ and ሺ݂ݑଶሺܭ ሻܭ ൌ ൫ܬ௎

ଶ,   ,തሻ௎൯ݑଶሺܭ
respectively, that is ݑത is a GNEP interval solution and both players have the same 
Lagrange multipliers. 
(ii) Suppose that ݑത is a GNEP interval solution and some constraints qualification 
takes place at  ݑത. If the two players have the same Lagrange multipliers, then: 
ଵܬଵܦ (ଵߙ)

௅ ሺݑതሻ ൅ തଵሻݑଵሺ݃ܦഥݓ ൌ ଵܬଵܦ,0
௎ ሺݑതሻ ൅ ܦഥݓ ଵ݃ሺݑതଵሻ ൌ 0, 

൏ (ଵߚ) ,ഥݓ ݃ଵሺݑതଵሻ ൐௒כ,௒=0 
and 
ଶܬଶܦ (ଶߙ)

௅ ሺݑതሻ ൅ തଶሻݑଶሺ݃ܦഥݓ ൌ 0, ଶܬଶܦ
௎ ሺݑതሻ ൅ തଶሻݑଶሺ݃ܦഥݓ ൌ 0, 

൏ (ଶߚ) ,ഥݓ ଵ݃ሺݑതଶሻ ൐௒כ,௒=0. 
In conclusion it is clear that ሺߙሻ and ሺߚሻ  are satisfied. From Corollary 5.15 of [4], 
we get that ݑത is a minimal solution of the problem ( ௙ܲ,௄) with ݂ as in (3.1). This 
means that ݑത is a solution of the  ܸܫሺΓ, Kሻ. 
Remark 3.1. ݓഥ is the common Lagrange multiplier for both players. 

4. Conclusions 

In this paper we have studied a special type of Nash equilibria, 
corresponding to the case when the pay-off functions associated to the two players 
who want to maximize their winning chances are described by interval functions. 
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Results from Convex Analysis and Duality Theory were used for obtaining new 
original results concerning these type of equilibria. The results obtained can be 
applied in several fields such as Economics. For investors who seek to improve 
their available wealth (where the available wealth is considered to be an interval 
function) at the end of a period, the equilibrium results obtained in this paper 
show that this available wealth has an optimum interval point under some given 
conditions. Furthermore, these results can be applied in other fields of 
mathematics such as Optimization, Optimal Control Theory and Differential 
Geometry. 
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