
U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 4, 2015                                                      ISSN 2286-3540 

RAILWAY STATION ROUTING ALGORITHM USING THE 
BACKTRACKING METHOD 

Maria Catrina (GEACĂR)1 

The problem of routing trains through railway stations can be addressed at 
multiple levels. This paper focuses on the problem of route determination and uses 
graph theory and a recursive algorithm to determine all possible routes between two 
track elements within the railway station. 

The railway station topology is represented as a graph, with edges having 
associated the corresponding distances and/or track element status information. The 
method then uses the backtracking algorithm to determine all possible routing 
possibilities for trains within the station.  

 
Keywords: route setting, graph, backtracking, ARS 

1. Introduction 

The network of elements of a railway station can easily be represented as a 
graph. Determining the routes for a given direction can be performed by 
“directing” the graph edges in order to ensure proper orientation and can be used 
in automatic route setting systems. The ARS systems release the signalman from 
unnecessary pre-setting of the elements required for establishing the route and 
gives time for other activities [1]. 

Intelligent Transport Systems for railways apply the automatic piloting of 
trains in order to maximize the use of track capacity, while reducing train delays 
[2]. 

Conclusions presented in the experiment from [3] show that automation 
provided by Automatic Route Setting Systems improve significantly the 
performance, as compared to manual condition, and performance is considerably 
more consistent when working with ARS.  

An efficient train routing system can be obtained by setting a priority for 
each route. In many cases, automatic routing systems are based on a predefined 
list of routes, without a search in real time, according to the railway station 
conditions. In [4], the latest ARS systems use a route selection processor for 
reading the route from the train routing file according to the train description 
provided by the Automatic Train Tracking systems.  

                                                            
1 Eng., Faculty of Transports, University POLITEHNICA of Bucharest, Romania, e-mail: 

maria.geacar@gmail.com 



336                                                             Maria Catrina (Geacăr) 

The paper presents a solution for determining routes in real time using a 
backtracking algorithm.  

One of the key aspects of the backtracking algorithm relevant for this 
application is the ability to test the partial solutions and eliminate large branches 
of the search tree [5]. At the same time, the algorithm is searching until the last 
possible solution is given and it provides all the solutions. 

The proposed method is based on associating each edge in the graph with the 
distance between the corresponding elements in the railway station topology. The 
problem of efficient route setting is therefore transformed into an optimal route 
problem between two graph vertices. In this case, the problem is solved using the 
backtracking algorithm to generate all possible routes. These routes are then 
sorted based on the total distance between the source and target vertices. 

Some vertices in the graph can be “cancelled” or redesigned to meet certain 
requirements for the routing system and to better model the railway station 
topology. 

2. Graphs. Graph theory 

A graph [6] (directed or undirected) is an ordered pair of sets ( ),G V E= . 
V is a non-empty and finite set of elements called vertices. E is a set of edges or 
lines, which are 2-element subsets of V (an edge is related with two vertices, and 
the relation is represented as an unordered/ordered pair of the vertices with respect 
to the particular edge).  

The elements of E are unordered in the case of undirected graphs. The 
unordered pair of vertices x and y written as [ ],x y . 

In the case of directed graphs, the pairs in the E set are ordered. The pair 
of vertices x and y, written ( ),x y ; x is called initial extremity of edge ( ),x y  and y 

is called final extremity of edge ( ),x y . 
If an edge with extremities x and y exists, then vertices x and y are 

adjacent; each extremity of an edge is considered incident with the respective 
edge. 

We will consider that the extremities of every edge are distinct (the graph 
does not contain any loops). 

Between any given two vertices of the graph there can be at most only one 
edge. 

The information associated with a graph can be as complex as required, 
but, in order to simplify the problem, we will consider that the vertices are labeled 
as numbers from 1 to n (where n is the number of vertices in the graph). This 
labeling is not a restriction (in the following chapters, the vertex number will 



Railway station routing algorithm using the backtracking method                     337 

represent the position, within an array, of the information associated to the 
vertex). 

A route (within a directed graph) is a sequence of vertices ( )1 2, ,..., nx x x  in 

which for any pair of consecutive vertices ix  and 1ix +  there is an edge ( )1,i ix x + . 
The route is elementary if any vertex is encountered only once in the route. 

A route is simple if any edge is encountered only once in the route. 
A circuit is a simple route in which the initial extremity is the same as the 

final extremity. A circuit is elementary if any vertex is encountered only once in 
the circuit (except for its extremities). 

The circuit length represents the number of edges of the circuit. 

3. Recursive algorithms. The backtracking method 

The backtracking method [7], [8] is a programming technique that is 
applicable to algorithms offering multiple solutions and results in obtaining all 
solutions for a given problem. Each solution is stored in a stack-like data 
structure, in this case an array. 

Because the backtracking algorithm determines all possible solutions, each 
final solution is built by updating the stack level by level, resulting in partial 
solutions. In order to be taken into account, both partial and final solutions must 
correspond to certain conditions, known as validation conditions. A solution that 
complies with such a condition is called a valid solution. 

All stack configurations that represent final solutions consist of elements 
of the same well-defined set called the solution set. Each new partial solution is 
obtained by updating the previous partial solution with a new stack level. At each 
level, the algorithm uses untested values until obtaining a valid solution. Upon 
that the stack level is increased, the solution is updated and testing is restarted on 
the new level. 

At a given moment, on a given level in the stack, all possible values in the 
solution set have been tested. In this case, the algorithm steps back to the previous 
stack level and resumes testing the values untested on this previous level. 

Because testing on this level has been previously stopped when the 
algorithm encountered a value that generated a valid solution, it may contain other 
untested values. If no untested values generate a valid solution, then we step back 
another level in the stack. This stepping back gave the method the name 
backtracking. 

By starting at the first level and repeating the algorithm until all values in 
the solution set have been tested on all stack levels, all final solutions can be 
obtained. 

 
 



338                                                             Maria Catrina (Geacăr) 

4. Simeria main railroad station. General information 

The traffic signals in Simeria main railroad station are: 
a) X end: 
• Entry traffic signals: XO, XOF;XTO 
• Exit traffic signals: Y1, Y2, Y3, YIV, YV, Y6, Y7, Y8;  
• Route traffic signals: XOP, XOPF. 
 
b) Y end: 
• Entry traffic signals: YD, YDF, YP; 
• Route traffic signals: X1, X2, X2, XIV, XV, X6;X7, X8;  
• Exit traffic signals: YOP, YOPF. 
 
c) to Triage: 
• Exit traffic signals: YTJ, XP, XPF; 
• Entry traffic signals: YC, YCF, YO. 

 
5. Building the route list 
 
The route list for Simeria railway station was built in two steps: 
• the first step consists in building the directed graphs corresponding 

to the track equipment used for setting the routes (one graph for 
each direction); 

• the second step is the application of the backtracking algorithm in 
order to determine all possible routes between two track elements. 

The first step required the identification of track elements involved in 
setting the route, assigning a unique identifier for each of the elements (the label 
for the corresponding graph vertex) and the definition of the distance matrix. 

The distance matrices (one for each graph), were defined according to the 
following rule: 

 

[ ]
0,if there is no edge between vertices  and  (from  to )

, the distance between  and , if vertices and  are 
adjacent (from  to ) 

x y x y
M x y x y x y

x y

⎧
⎪= ⎨
⎪
⎩

(1)  

The distance matrices for Simeria main railroad station are 69 by 69 
matrices, corresponding to distances between the 69 determined track elements. 

 
 



Railway station routing algorithm using the backtracking method                     339 

 
 

Fig. 1. Graph of Simeria railway station 
 

The two matrices are different, reflecting the differences between the two 
directions, as well as the difference between the track elements taken into 
consideration (e.g. X1 for one direction and Y1 for the other). 

Furthermore, the route list can be built taking into account the availability 
of track elements in the railroad station. For this reason, we can define the 
availability matrix as follows: 

 

[ ]

0,if the track element between vertices and  
(from  to ) is not available (or does not exist)

,
1, if the track element between vertices  and  
(from  to ) is available 

x y
x y

A x y
x y

x y

⎧
⎪
⎪= ⎨
⎪
⎪⎩

(2) 

In the case that a railway traffic signal or a point machine does not validate 
the availability requirements, it cannot be used in the route searching procedure. 
In this case, the matrix elements (2) related to that particular traffic signal or point 
machine are cancelled (e.g. ar,j=0 and ai,r=0 for track element r, where i,j=1,…,n). 

Similarly, if one of the track sections is not available, the edge 
corresponding to its start and end vertices is cancelled (e.g. if the start and end 
vertices are p and q, ap,q=0). 

The availability matrix allows the generation of the route list based only 
on the availability of the track elements, disregarding the route distance. 

If we wish to generate a route list based on the route distance, as well as 
the track element availability, based on rules (1) and (2) we can define another 
square matrix T=(ti,j), where 

ti,j=mi,j·ai,j, i,j=1,…,n (3). 
The route setting program was developed based on these matrices. The 

algorithm used for the program, using only the distance matrix (for simplification 
reasons) is presented next: 

• the program starts on the row of the distance matrix 
corresponding to the starting track element of the route; 



340                                                             Maria Catrina (Geacăr) 

• the program searches for the first non-zero matrix element 
of this row (the first available edge); 

• the column number of the non-zero element is stored in the 
solution vector; 

• the procedure is repeated, recursively, on the row 
corresponding to the previously determined column 
number; 

• when the program reaches the row number corresponding 
to the target vertex, a final solution has been determined 
and the program displays (or in this case stores in an output 
file) the determined route; 

• if a final solution has been found, the program continues to 
search for another non-zero matrix element on the previous 
row; 

• if there are no more non-zero elements on the current row, 
the program returns (backtracks) to the previous row and 
continues the search; 

• the program ends when all possible edges beginning from 
the start vertex have been tested. 

6. Implementation and results 

This chapter presents a sample C++ program that determines the possible 
routes between entry signal XO from Orăştie and automatic block line exit toward 
Deva Bl. YDF. 

 
/*Route determination program XO‐Bl. YDF*/ 
 
#include <stdio.h> 
#include <cstdio> 
#include <iostream> 
using namespace std; 
 
int M[70][70], solution[70]; 
const int start = 1; /*start vertex*/ 
const int target = 65; /*target vertex*/ 
string name[70]; 
void readmatrix() /*reads distance matrix from matrixin.txt file*/ 
{   

int i, j; 
    for (i = 1; i <= 69; i++) 
      for (j = 1; j <= 69; j++) 
  cin>>M[i][j]; 
} 



Railway station routing algorithm using the backtracking method                     341 

void writesolution(int l, int dist) /*writes solution to XO‐BlYDF.txt file*/ 
{   

int i; 
  cout<<name[start]<<" "; 
  for (i = 1; i <= l; i++) 
      cout<<name[solution[i]]<<" "; 
    cout<<"Distance: "<<dist<<endl; 
} 
void back(int row, int solindex, int distance) /*recursive route determination 

function*/ 
{   

int ic,newdist; 
  solution[solindex]=0; 
  if (row == target) writesolution(solindex, distance); 
  else for (ic = 1; ic <= 69;ic++) 
  if (M[row][ic]>0) 
  { 
    solution[solindex] = ic; 
    newdist = distance + M[row][ic]; 
    back(ic, solindex + 1, newdist); 
  } 
} 
int main() 
{     
int i; 
    /*graph vertices names*/ 
name[1]="XO";name[2]="XOF";name[3]="1";name[4]="3";name[5]="5"; 
name[6]="XOP";name[7]="XOPF";name[8]="XTO";name[9]="11";name[10]="13"; 
name[11]="15";name[12]="21";name[13]="19";name[14]="25";name[15]="27"; 
name[16]="29";name[17]="35";name[18]="YB";name[19]="YO"; 
name[20]="YCF";name[21]="YC";name[22]="BL1";name[23]="BL2"; 
name[24]="31";name[25]="41";name[26]="39";name[27]="43";name[28]="37"; 
name[29]="33";name[30]="45";name[31]="55";name[32]="X1";name[33]="X2"; 
name[34]="38";name[35]="34";name[36]="32";name[37]="24";name[38]="57"; 
name[39]="63";name[40]="65";name[41]="67";name[42]="XIII"; 
name[43]="XIV";name[44]="X5";name[45]="X6";name[46]="X7"; 
name[47]="X8";name[48]="42";name[49]="36";name[50]="30";name[51]="28"; 
name[52]="22";name[53]="23";name[54]="51";name[55]="69";name[56]="40"; 
name[57]="20";name[58]="18";name[59]="16";name[60]="14";name[61]="8"; 
name[62]="6";name[63]="4";name[64]="Bl. YD"; 
name[65]="Bl.YDF";name[66]="2";name[67]="Bl.YP";name[68]="7"; 
name[69]="44"; 
freopen("matrixin.txt","r",stdin); 
freopen("XO‐BlYDF.txt","w",stdout);                                                                                                                                           
  readmatrix(); /*read distance matrix*/ 
  for (i=1;i<=69;i++) 
  solution[i]=0; 
  back(start, 1, 0); /*initial call of recursive function. Paramaters: start vertex, 

initial solution index, initial distance */ 



342                                                             Maria Catrina (Geacăr) 

  return 0; 
} 
 
The resulting routes are shown in Table 1 below: 
 

Table 1 
Determined routes for XO-Bl. YDF 

No. XO – Bl. YDF possible routes (Traffic signals – point machines) Length 

1 XO 1 XOP 11 13 15 21 25 31 37 XIII 24 18 16 14 8 6 Bl. YDF   2664 m 

2 XO 1 3 5 XOPF 15 21 25 31 37 XIII 24 18 16 14 8 6 Bl. YDF   2666 m 

3 XO 1 XOP 11 13 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 8 6 Bl. YDF   2667 m 

4 XO 1 XOP 11 13 15 21 25 31 41 43 57 X5 36 30 28 22 20 8 6 Bl. YDF   2667 m 

5 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 18 16 14 8 6 Bl. 

YDF   
2668 m 

6 XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 8 6 Bl. YDF   2669 m 

7 XO 1 XOP 11 13 15 21 25 31 41 43 57 X5 36 30 28 22 20 18 16 14 8 6 Bl. YDF   2669 m 

8 XO 1 3 5 XOPF 15 21 25 31 41 43 57 X5 36 30 28 22 20 8 6 Bl. YDF   2670 m 

9 XO 1 XOP 11 13 15 21 25 31 37 45 51 69 X2 34 32 24 18 16 14 8 6 Bl. YDF   2670 m 

10 
XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 18 16 14 8 6 Bl. 

YDF   
2671 m 

11 XO 1 XOP 11 13 15 21 25 31 37 45 51 55 X1 38 34 32 24 18 16 14 8 6 Bl. YDF   2671 m 

12 XO 1 XOP 11 13 15 21 25 31 37 45 51 55 69 X2 34 32 24 18 16 14 8 6 Bl. YDF   2671 m 

13 XO 1 3 5 XOPF 15 21 25 31 41 43 57 X5 36 30 28 22 20 18 16 14 8 6 Bl. YDF   2672 m 

14 XO 1 XOP 11 13 35 41 43 57 63 X6 36 30 28 22 20 8 6 Bl. YDF   2672 m 

15 XO 1 3 5 XOPF 15 21 25 31 37 45 51 69 X2 34 32 24 18 16 14 8 6 Bl. YDF   2673 m 

16 XO 1 XOP 11 13 35 41 43 57 X5 36 30 28 22 20 8 6 Bl. YDF   2673 m 

17 XO 1 3 5 XOPF 15 21 25 31 37 45 51 55 X1 38 34 32 24 18 16 14 8 6 Bl. YDF   2674 m 

18 XO 1 3 5 XOPF 15 21 25 31 37 45 51 55 69 X2 34 32 24 18 16 14 8 6 Bl. YDF   2674 m 

19 XO 1 XOP 11 13 35 41 43 57 63 X6 36 30 28 22 20 18 16 14 8 6 Bl. YDF   2674 m 

20 XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 8 6 Bl. YDF   2675 m 

21 XO 1 XOP 11 13 35 41 43 57 X5 36 30 28 22 20 18 16 14 8 6 Bl. YDF   2675 m 

22 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 8 6 

Bl. YDF   
2677 m 

23 XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 18 16 14 8 6 2677 m 



Railway station routing algorithm using the backtracking method                     343 

No. XO – Bl. YDF possible routes (Traffic signals – point machines) Length 

Bl. YDF   

24 XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 8 6 Bl. YDF   2678 m 

25 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 18 16 

14 8 6 Bl. YDF   
2679 m 

26 
XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 8 6 Bl. 

YDF   
2680 m 

27 
XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 18 16 14 8 6 

Bl. YDF   
2680 m 

28 XO 1 XOP 11 13 35 41 43 57 63 65 X7 42 40 30 28 22 20 8 6 Bl. YDF   2681 m 

29 XO 1 XOP 11 13 35 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 8 6 Bl. YDF   2683 m 

30 XO 1 XOP 11 13 35 41 43 57 63 65 X7 42 40 30 28 22 20 18 16 14 8 6 Bl. YDF   2683 m 

31 
XO 1 XOP 11 13 35 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 18 16 14 8 6 

Bl. YDF   
2685 m 

32 XO 1 XOP 11 13 15 21 25 31 41 43 XIV 22 20 8 6 Bl. YDF   2706 m 

33 XO 1 XOP 11 13 15 21 25 31 41 43 XIV 22 20 18 16 14 8 6 Bl. YDF   2708 m 

34 XO 1 3 5 XOPF 15 21 25 31 41 43 XIV 22 20 8 6 Bl. YDF   2709 m 

35 XO 1 3 5 XOPF 15 21 25 31 41 43 XIV 22 20 18 16 14 8 6 Bl. YDF   2711 m 

36 XO 1 XOP 11 13 35 41 43 XIV 22 20 8 6 Bl. YDF   2712 m 

37 XO 1 XOP 11 13 35 41 43 XIV 22 20 18 16 14 8 6 Bl. YDF   2714 m 

 
In order to evaluate the impact of the track element availability, we 

simulate a fault on point machine no. 35. When running the program using the 
updated matrix values (3) (for distance and availability), the result shows a total 
number of 24 routes (compared to a total of 37 for the distance-only case), as seen 
in Table 2: 

 
Table 2 

Determined routes for XO-Bl. YDF (point machine 35 unavailable) 
No. XO – Bl. YDF routes (Traffic signals – point machines) Length 

1. XO 1 3 5 XOPF 15 21 25 31 37 XIII 24 18 16 14 8 6 Bl. YDF 2666 m 

2. YDFXO 1 XOP 11 13 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 8 6 Bl. YDF 2667 m 

3. XO 1 XOP 11 13 15 21 25 31 41 43 57 X5 36 30 28 22 20 8 6 Bl. YDF 2667 m 



344                                                             Maria Catrina (Geacăr) 

No. XO – Bl. YDF routes (Traffic signals – point machines) Length 

4. 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 18 16 14 8 6 Bl. 

YDF 
2668 m 

5. XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 8 6 Bl. YDF 2669 m 

6. 
XO 1 XOP 11 13 15 21 25 31 41 43 57 X5 36 30 28 22 20 18 16 14 8 6 Bl. 

YDF 
2669 m 

7. XO 1 3 5 XOPF 15 21 25 31 41 43 57 X5 36 30 28 22 20 8 6 Bl. YDF 2670 m 

8. 
XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 X6 36 30 28 22 20 18 16 14 8 6 Bl. 

YDF 
2671 m 

9. XO 1 3 5 XOPF 15 21 25 31 41 43 57 X5 36 30 28 22 20 18 16 14 8 6 Bl. YDF 2672 m 

10. XO 1 3 5 XOPF 15 21 25 31 37 45 51 69 X2 34 32 24 18 16 14 8 6 Bl. YDF 2673 m 

11. XO 1 3 5 XOPF 15 21 25 31 37 45 51 55 X1 38 34 32 24 18 16 14 8 6 Bl. YDF 2674 m 

12. XO 1 3 5 XOPF 15 21 25 31 37 45 51 55 69 X2 34 32 24 18 16 14 8 6 Bl. YDF 2674 m 

13. 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 8 6 Bl. 

YDF 
2675 m 

14. 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 8 6 

Bl. YDF 
2677 m 

15. 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 18 16 14 8 

6 Bl. YDF 
2677 m 

16. XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 8 6 Bl. YDF 2678 m 

17. 
XO 1 XOP 11 13 15 21 25 31 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 18 16 

14 8 6 Bl. YDF 
2679 m 

18. 
XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 8 6 Bl. 

YDF 
2680 m 

19. 
XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 65 X7 42 40 30 28 22 20 18 16 14 8 6 

Bl. YDF 
2680 m 

20. 
XO 1 3 5 XOPF 15 21 25 31 41 43 57 63 65 67 X8 44 42 40 30 28 22 20 18 16 

14 8 6 Bl. YDF 
2682 m 

21. XO 1 XOP 11 13 15 21 25 31 41 43 XIV 22 20 8 6 Bl. YDF 2706 m 

22. XO 1 XOP 11 13 15 21 25 31 41 43 XIV 22 20 18 16 14 8 6 Bl. YDF 2708 m 

23. XO 1 3 5 XOPF 15 21 25 31 41 43 XIV 22 20 8 6 Bl. YDF 2709 m 

24. XO 1 3 5 XOPF 15 21 25 31 41 43 XIV 22 20 18 16 14 8 6 Bl. YDF 2711 m 



Railway station routing algorithm using the backtracking method                     345 

7. Conclusions 

The results for the entire railway station contain several hundred routes, 
for more than one hundred route start-end combinations (for each one of the travel 
directions), showing the amount of time (and workload) required if the route lists 
are determined manually. 

In order to determine the optimal route for given direction of the train and 
railway conditions, other algorithms could be used. The backtracking algorithm 
was chosen because it provides all possible routing solutions. By adding a 
graphical user interface, this method could be successfully used as a design tool 
(for the interlocking system) for any given railroad station. 

If for a small railway station, the problem of routing trains can be easier to 
solve, for a main railroad station or a railway national node (like Simeria), 
determining routes for a specific direction can be difficult. As seen in Table 1, 
only for the passing route on the first track line between the corresponding 
automatic block lines from Orăştie to Deva, 37 alternative routes were found. 

Also, by using both the distance and availability matrices, this method 
could be integrated into an automatic route setting system, determining the routes 
both by the minimum route length and by the track equipment condition. In this 
case, the information regarding the availability of the track elements (obtained 
from the interlocking) can be used in the ARS system in order to have a real-time 
picture of the railway station status, enabling a more efficient and safer route 
determination process. 

Observing the tables, it can be seen that lengths of the routes have small 
differences between them, so precise measurements are a request for the proposed 
method in determining the optimal route. Considering the time for command and 
operating the point machines in the requested position for the chosen/given route, 
it can be useful to sort the list of alternative routes (same start-end of the route) by 
number of elements contained (traffic signals and point machines). Also, sorting 
by the number of contained elements can be done after sorting by length in case of 
identical lengths. 

Regarding the operator occupation time, using an automatic route setting 
system reduces the signaller actions considerably, maintaining his attention on 
important aspects. For a large area with multiple directions, and therefore many 
traffic signals and point machines, the quantity of the alternatives for one single 
route command requires analysis time (see Table 1). In this case, choosing the 
best route for consecutive trains, arriving in the railway station at small time 
intervals requires experience on the topology station. The proposed method offers 
a solution of determining efficiently routes by algorithmic principles. 

 



346                                                             Maria Catrina (Geacăr) 

Acknowledgment 

The work has been funded by the Sectorial Operational Programme 
Human Resources Development 2007-2013 of the Romanian Ministry of Labour, 
Family and Social Protection through the Financial Agreement  
POSDRU/88/1.5/S/61178. 

R E F E R E N C E S 

[1] D. Lutovac, T. Lutovac, Towards an universal computer interlocking system, Facta 
Universitatis (NI_S), Series: Electronics and Energetics vol. 11, No.1 (1998), 25-49 

[2] I. A. Hansen, Improving railway punctuality by automatic piloting, Intelligent Transportation 
Systems, 2001. Proceedings. 2001 IEEE, 792 – 797 

[3] N. Balfe, J. R. Wilson, S. Sharples, T. Clarke, Effects of Levels of Signalling Automation and 
workload and Performance, Rail Human Factors around the World: Impacts on and of 
People for Successful Rail Operations, 2012, 404-411 

[4] J. Pachl, Railway Operation and Control, ISBN 0-9719915-1-0, Library of Congress Control 
No.: 2002108972, 2002  

[5] S. W. Golomb, L. D. Baumert, Backtrack programming, J.ACM, 12(4) 516-524 (1965) 
[6] S. Cataranciuc, Teoria Grafurilor în Probleme �i Aplica�ii, Universitatea de Stat din 

Moldova,  Facultatea de Matematică �i Informatică, 2004 (Graph Theory in Problems and 
Applications, Moldova State University, Faculty of Mathematics and Informatics, 2004) 

[7] F. Rossi, P. van Beek, T. Walsh, Handbook of Constraint Programming, cap. 4, Backtracking 
Search Algorithms, 2006 

[8] M. Craus, Proiectarea algoritmilor, Universitatea Tehnică “Ghe. Asachi” Iaşi (Algorithm 
design, “Ghe. Asachi” Technical University Iaşi) 


