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ENDPOINTS OF SUZUKI TYPE QUASI-CONTRACTIVE
MULTIFUNCTIONS

B. Mohammadi®, Sh. Rezapour?

Some researchers have been provided many results about endpoints of some
contractive multifunctions. In this paper, we give some endpoint results about Suzuki
type quasi-contractive multifunctions which have one of the properties (BS) or (SBS).
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1. Introduction

Let (X,d) be a metric space, 2% the set of all nonempty subsets of X, CB(X) the
set of all nonempty closed bounded subsets of X and z € X. As we know, the Hausdorff
metric / on CB(X) is defined by H(A, B) = maz{sup,c d(, B),sup,cpd(y,A)}. An
element z € X is said to be a fixed point of the multifunction 7 : X — 2% whenever
x € Tx. Also, an element xz € X is said to be an endpoint of 7" whenever Tx = {z}. We say
that T' has the approximate fixed point property whenever inf,cx sup,cr, d(z,y) = 0. In
2010, Amini-Harandi proved that some multifunctions which have unique endpoint if and
only if have approximate endpoint property ([2]). Then, Moradi and Khojasteh generalized
his main result for generalized weak contractive multifunction ([7]). The technique of a-
y-contractive mappings introduced by Samet, Vetro and Vetro in 2012 ([9]). Later, some
authors used it for some subjects in fixed point theory (see for example [3], [5] and [8]) or
generalized it by using different methods for some contractive multifunctions (see for example
[1], [4] and [6]). Denote by ¥ the family of nondecreasing functions ¢ : [0, 00) — [0, c0) such
that > 2, ¥"(t) < oo for all ¢ > 0 ([9]). It is known that ¢ () < ¢ for all ¢ > 0 ([9]).
We say that a multifunction T : X — CB(X) has the property (BS) whenever for each
x € X there exists y € Tw such that H(Tx,Ty) = sup,cr, d(y,b). In fact, there are many
multifunctions which have the property (BS). For see this, let X = [0, 00), d(z,y) = |z — y],
s,t >0, Ty, To : X — CB(X) be defined by Thz = [0, sz] and Tox = [z,x + t]. It is easy
to check that the multifunctions 77 and T have the property (BS). Also, we say that the
multifunction T has the property (SBS) whenever for each sequence {z,,} with d(z,, Tx,) <
d(xp, Tpt1) +(d(zp, 2pe1)) for all n and z,, — z, there exists a subsequence {z,, } of {z,}
such that d(z,,,Tx,,) < d(@n,,z) + (d(zy,,z)) for all k. Let a: X x X — [0,00) be a
mapping and T : X — C'B(X) a multifunction. We say that T is a-admissible whenever for
eachz € X and y € Tx with a(z,y) > 1 we have a(y, z) > 1 for all z € Ty ([6]). Also, we say
that X has the condition (C,) whenever for each sequence {z,} in X with a(z,, zp+1) > 1
for all n and x,, — x, there exists a subsequence {z,, } of {z,} such that a(z,,,2z) > 1 for
all & ([6]). Recall that T is continuous whenever H(Tx,,, Tx) — 0 for all sequence {x,} in X
with z,, — 2. In this papers, by using and combining the idea of the papers [2], [7], [9] and
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[6], we give some results about endpoints of Suzuki type quasi-contractive multifunctions
which have one of the properties (BS) or (SBS).

2. Main results
Here, we provide our main results.

Theorem 2.1. Let (X,d) be a complete metric space, ¥ € ¥, a : X x X — [0,00) a

mapping and T : X — CB(X) an a-admissible such that T has the property (BS) and

a(x,y)H(Tx, Ty) < p(M(z,y)) for all z,y € X, where

d(xz, Ty) + d(y, Tx)
2 -

Suppose that there exist xog € X and x1 € Txg such that a(xg,x1) > 1. If T is continuous

or 1 is right upper semi-continuous and X has the condition (Cy ), then T has an endpoint.

M(:C? y) - max{d(xa y)a d(’l,‘, T%), d(ya Ty)a

Proof. Choose zg € X and 21 € T'zg such that a(xg,21) > 1. Since T has the property (BS),
there exists xp € T'xy such that H(Txy, Tx2) = supyer,, d(x2,b). Since T' is a-admissible,
a(x1,x2) > 1. By continuing this process, we obtain a sequence {x,} such that 2,11 € T,
(Tn, Tny1) > 1 and H(Txy, TTpq1) = SuPpery, ,, d(n+1,b) for all n. Note that,
d(Tp, Tnt1) < sup d(zy,,b) = H(Txp_1,Tx,)
beTzx,
S a(x’rL—l) xn)H(T'xn—la Txn) S ¢(M($n_1, xn))

= ({1, 20)), (1, T ), dla, Ty, 2t L) 2 A0 Tono1),

< Y(max{d(zn-1,2n)), d(Tn, Tni1), M})

d(xp—1,2n) + d(zpn, Tn
< Y(max{d(xn-1,74)), d(Tn, Tni1), S )2 : =

S w(ma'x{d(mn—la xn))7 d(xna xn+1)})
foralln > 2. Hmax{d(xn_1,%n),d(Tn, Tni1)} = d(@n, Tni1), then d(xy,, 2ni1) < Y(d(Tn, Zni1)).
Hence, d(xn,zp+1) = 0 and so d(zn, Tnt1) < ¥(d(Tn-1,25))). On the other hand, we

)

get d(xpn, Tnt1) < Y(d(xn—1,2y)) whenever max{d(x,—1, %), d(Xn, Tpnt1)} = d(Tn-1,2n)).
Since 9 is nondecreasing, we obtain d(x,,, T,11) < Y"1 (d(x1,x2)) for all n > 2. Since
A(@p, Tm) < SPV(25,i41) < ST Hd( (21, 20)),

{zy} is a Cauchy sequence. Choose z* € X such that x, — «*. If T is continuous, then
H({xn}, Txy) < HTxp—1,Txy) < HTzp—1,Tz") + H(Tx,, Tx*) — 0.
Hence,
H({z"},Tz*) < H{z"} {zn}) + H{zn}, Txyn) + H(Txy, Tx™)
=d(z*,z,) + H{xn}, Tayn) + HTxz,, Tz*) =0
and so {z*} = Tz*. If ¢ is right upper semi-continuous and X has the condition (C,), then
there exists a subsequence {xz,, } of {z,} such that a(z,,,z) > 1 for all k and we get

H({xn, },Tan,) < HTxn,—1,Txn,) < o(Tn,—1, Tny ) H(TTn, -1, T2, )
<YM (2py—1, %0, ) < Y(max{d(zn,—1,Tn, ), A(Tny s Tny11)})
for all k and so H({zn,},Tzn,) — 0. Also, we have
H({z"},Tx*) <d(z",xn,) + H{zn, }, Ten,) + H(Txp,, Tx")
<d(z*,xn,)+ H{zn, }, Ten,) + a(tn,, 2" )H(Tzy, , Tx™)
< d(a”, wny) + H{2n, b, Ton, ) + (M (2, 27))
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for all k. But,
d(xp,,, Tx*) + d(z*, Try,)

d(z*, Tx*) < M(xp,,z%) < max{d(z,,,z"),d(xn,, TTn,),d(z", Tx"), 5 1
A(@n,,, Tan, ) < d(@n,, Tn,+1) and d(z*, Txy, ) < d(z*, Tp,+1) for all k. Hence,
d(z*,Tx*) < kli_)ngo M(zp,,z") <max{0,0,d(z*, Tx"), W} =d(z*,Tx").
Thus, H({z*}, Tx*) < o(d(x*, Tx*)) < »(H({z*}, Tx*)). This implies that H({z*}, Tx*) =
0 and so {z*} = Tz*. O

Example 2.1. Let X = [0, 2], d(z,y) = |z — y|, @ : X x X — [0,00) be defined by

1 zye0,l]orze (3 andy=0
o(z,y) = { 0 otherwise,

T : X — CB(X) defined by Tz = {%} whenever z € [0,1], Tz = {4z — 3} whenever
z € (1,2] and Tz = {0} whenever z € (2, 3] and #(t) = L for all ¢ > 0. By using Theorem
2.1, T has an endpoint. Note that for z =1 and y = 3 we have H(Tz,Ty) = H([0,3],3) =
4>3=M(z,y) >¢(M(x,y)). Thus, T is not a generalized weak contractive multifunction
and so we can not use main Theorem of ([7]).

Corollary 2.2. Let (X,d) be a complete metric space, p € ¥ and T : X — CB(X) a
multifunction such that d(xz,Txz) < d(x,y) +¥(d(x,y)) implies H(Txz,Ty) < (M(z,y)) for
all z,y € X and T has the property (BS). If T is continuous or T has the property (SBS)
and v is right upper semi-continuous, then T has an endpoint.

Proof. Define the map o : X x X — [0,00) by

1 d(z,Tx) <d(z,y) +¥(d(z,y))
0 otherwise.

o(z,y) = {

It is easy to check that T' is a-admissible. Also for every zg € X and xy € Txg, we have
d(xo, Txo) < d(zo,21) < d(x0,21) + ¥ (d(x0,21)). Hence, a(xg,z1) = 1. Also, it is easy to
check that oz, y)H (Tx, Ty) < (M (x,y)) for all z,y € X. Note that, X has the condition
(Cy) whenever T has the property (SBS). Now by using Theorem 2.1, T" has an endpoint. O

Corollary 2.3. Let (X,d) be a complete metric space, r € [0,1) and T : X — CB(X)
a multifunction such that ﬁd(m,Tx) < d(z,y) implies H(Tz,Ty) < rM(x,y) for all
x,y € X and T has the property (BS). If T is continuous or T has the property (SBS), then
T has an endpoint.

Corollary 2.4. Let (X,d) be a complete metric space, » € ¥ and T : X — CB(X) a mul-
tifunction such that d(z,Tx) < d(z,y) + ¥(d(z,y)) implies H(Tx,Ty) < (K (x,y)) for all
x,y € X and T has the property (BS), where K (x,y) = max{d(z,y),d(z, Tx), W}.
If T is continuous or T has the property (SBS) and 1 is right upper semi-continuous, then
T has an endpoint.

Proof. Tt is sufficient to note that, K(z,y) < M(z,y) for all z,y € X. O

Corollary 2.5. Let (X,d) be a complete metric space, r € [0,1) and T : X — CB(X) a
multifunction such that %_Hd(x, Tz) < d(z,y) implies H(Tz,Ty) < rK(x,y) foralz,y € X
and T has the property (BS). If T is continuous or T has the property (SBS), then T has
an endpoint.
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3. Conclusions

In 2010, Amini-Harandi proved that some multifunctions which have unique endpoint
if and only if have approximate endpoint property. In 2011, Moradi and Khojasteh general-
ized his main result for generalized weak contractive multifunction. In this paper, by using
the recent technique of Samet, we provide some new results about endpoints of Suzuki type
quasi-contractive multifunctions. Also by providing an example, we show that our results
improve some old results in a sense.
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