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MARKOV CHAINS AND DECOMPOSITION METHOD USED
FOR SYNCHRONIZING THE MANUFACTURING
PRODUCTION RATE WITH REAL MARKET DEMAND

Elena-luliana GINGU (BOTEANU)?!, Miron ZAPCIU?

This paper presents an approach to find a strategy for stabilizing production
of a real manufacturing line. In the first phase the flow line is analyzed and then
Markov chains and decomposition method are applied, in order to optimize the
production rate by reallocating the buffers. Finally, a model is proposed to focus on
stabilization of the production and, in the same time on synchronizing the
production rate with the market demand. The mathematical model presented is
developed and coded in C++.
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1. Introduction

Nowadays, many companies are in difficulty to find a strategy for
stabilizing production. In order to solve this problem, an analytical model using
Markov chains is proposed.

In this paper an approach of Markov chain is applied for analyzing a real
flow line and scheduling algorithms are as well developed. The main objective of
the paper is to optimize the buffers by maximizing production rate at critical
resources in order to make enough products for customer’s satisfaction and
maintaining of the delivery on-time.

The proposed model integrating the analytical model with Markov chains
and decomposition method can be used by researchers and practitioners to
estimate the production rate in order to synchronize the production and the market
demand.

Markov Chains were introduced in 1907 by the Russian mathematician
A.A. Markov. Markov chains were rapidly recognized for their important power
of representation and their possibility to model a wide range of real life problems
as well as for the quality of performance indices they give with a relatively small
computing effort. Markov chains can be used for modeling and performance
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evaluation of manufacturing systems when they reveal some random behavior
(breakdowns, random time to process a part).

Decomposition methods were proposed by Zimmern (1956) and
Sevastyanov (1962) for the analysis of large systems with unreliable machines
and by Hillier and Boling (1967) for the analysis of large systems with reliable
machines. An accurate decomposition method was proposed by Gershwin (1987)
for the analysis of the synchronous model [1].

2. Preliminary concepts

This section is devoted to provide the mathematical definitions which will

be used in the next section [1-5].
Definition 2.1. Let X(t) a parameter. A stochastic process is a random variable
indexed by X(t), where t is considered as a continuous variable t €(-o0, +0).
Definition 2.2. A Markov chain is a stochastic process for which the domain of
the variable is a countable set and the following relation is satisfied:
PIX(t) = Xk / X(te1) = Xer, .. X(tr) = xa] = PIX(t) =% /X(ter) =xeal, (1)
vk, Vt1 <...<tcand V'x;, . Xkin the domain of the variable,
where P[. /.] is the usual notation for a conditional probability.

To a finite Markov chain, one can associate a graph with n vertices. In this

graph each vertices corresponds to a state. Then there is an edge (xi, ;). If 2ij=0,
Zij is called the transition rate from state x; to ;.
Example 2.1. A machine can have two states: up and down. When the machine is
up, it can work and may have failures, with the failures rate 4. When the machine
is down, we repair it with a repair rate . In this situation the graph of the Markov
chain is as follows:

S
Up Down

<

i
Fig. 1. Graph of the Markov chain of the two-state machine

Definition 2.3. For the state xi, the outgoing rate is defined as the sum of all
transition rates from x; to all x;’s where i #]j.

Consider a particular state x of a Markov chain with outgoing rate 1. We
are interested in the time 7 we will spend in state x before leaving it. Let us first
define the function:

G(t) = P[r >t] (2)

From the definition of the outgoing rate we can write the first order
equation:

G(t+dt) = G(t)(1- Adt) 3)
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which can be understood as: ‘we remain in x until time t+dt if we are in x at time t
and if we do not leave x between t and t+dt".
Assuming that G(t) has a derivative, we get:
G(t) + (dG/dt)dt = G(t)(1- Adt) 4)
which finally gives:
(dG/dt) = -AG(t) (5)
This differential equation with the obvious initial condition G(0) = 0,
gives the solution:

G(t)=¢e* (6)
Consider now the distribution function of the variable zdefined by:
FAt) =P[7r < {] )
It appears that:
Ft) = (1-e7) (8)

which is called an exponential distribution. The corresponding probability density
function (pdf) is therefore:
f{t) = e 9)

We have proved that the sojourn time in a markovian state with outgoing
rate A is exponentially distributed with rate A.

Using the pdf (probability density function) of the random variable z, one
can compute its various moments as the average value, variance... For the average
value m(z) we get:

m(z) = O(fjtxle_’ltdt (10)

and finally:
m(z7)=1/4
(11)
the variance var(z) and the standard deviation o(z) can be computed in the same
way; in particular, we get also:

1
o= (12)
An important parameter used to characterize random variables is the
coefficient of variation, which is defined as:
2 _ ol7)

- mz(r) (13)
This parameter Cy is a normalized measure of the variability of the random
variable. It is a remarkable feature of the exponential variable that we have:
Cv(T) =1

Vv

(14)
Further, we need to introduce the following notation:
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(1) = PIX() = xi, 15)
and the row vector :
) = (m(@), ..., m(t)). 16)
The vector #(t) is a probability distribution, which means that
17
0 <m(t) <1,fori=1, ..., nand Enjﬂi(t):l (17
i=1
Starting with an initial probability distribution #(0), we would like to
evaluate 7(t) for any t >0. We can write the first order equation:

n
mi(t+dt) = 7; (A - X 4;dt) + (kZ 7y (1) Ay dt)
j=1 =1
};ti k=i
This equation explains that being at time t+dt in state x; two situations may
result:
- we were in a state at time t, then we travel from this state to x; between t and
t+dt,
- we are in state x; at time t and we do not move between t and t+dt.
Notice also that at the first order, multiple state movements cannot occur.

18)

If we denote:
(19)
Aii ==X A
=1
J#1
The equation can simply be written as:
(20)

7 L+ dt) — 73 (8) = (373 () g )
k=1

Introducing the (n.n) matrix A, which has for (i-j)th entry Zj; , we get the

matrix differential equation:
7(t) = z(t)A , with initial condition 7(0)= . (21)

This first order matrix differential equation gives us the probability of
being in a given state at time t, given the initial probability distribution. The
matrix A is called the infinitesimal generator, or simply the generator of the
Markov chain. The sum of the entries of any row of A is 0. Notice that Zj; is not a
transition rate, in fact Aii is the opposite of the outgoing rate of state xi.

The solution has exactly the same form as in the scalar case, that is:

z(t) = 7(0)e™ (22)
where et is the exponential of a matrix. There are several ways for computing the
exponential of a matrix.

Given a Markov chain with generator A and initial probability distribution
/m we would like to evaluate:
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z=lim . 7(t) (23)

This limit indeed always exits, and from the evolution equation it must
satisfy the relation:

7A=0 (24)

This equation is called the stationary equation since it implies that starting with
initial distribution 7 = x, the probability distribution will not change with t. In
general, the limit probability distribution will depend on the initial situation, but it
is important to identify the cases where this is not necessary. The answer is in the
following theorem.

Theorem 2.1. The limit distribution is independent of the initial probability
distribution if and only if the Markov chain has only one ergodic class.

The necessity of the condition is obvious, if there are several ergodic
classes, starting in a state of one ergodic class will lead to a limit behavior in the
same class.

Indeed, when the condition is satisfied, the limit distribution is obtained by
solving the equation with the additional normalization constraint:

§E7Ti =1
i=1
The equation (24) amounts to n algebraic equations but only (n-1) of them

are independent.
The i*" equation is:

(25)

- (26)

which can be rewritten as :
n (27)
__7Ti)hi = 2:7Tj)lﬁ
=1
J#1
This equation can be seen as a ‘balance equation’ at state x;; recall that —
Aii Is the outgoing rate from state x; . The equation expresses on the left hand side
the ‘flow in’ state xi and the right hand side the ‘flow ou¢’. As in the usual flow
problems we can also write ‘balance equations’ when the state set is partitioned in
two parts. Consider I < {1, ...,n} and J = {1, ..., n}/I, we assume that | and J are
non-empty, then :
(28)
X midij = XmAy
icl kel
jed led
This method (which is called the ‘method of cuts’) is very effective for
solving the stationary equation even for large Markov chains and has a good

structure [1-4].
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3. Problem description and Mathematical model
3.1. Model assumptions

Analytical performance analysis methods are based on the stochastic
modeling of flow production systems. We use the analytical results of queuing
theory for the modeling of a flow production system. The problem is stated under
the following assumptions (for an ideal case) [1, 6]:

e single product manufacture,

e limited capacity of stocks,

e the product has a successive flow in the line (it goes from one
machine to another within the same line),

e the raw parts are always stocked in front of the first machine (it is
never starved) and the last machine can always deposit a finished
product (it is never blocked).

e No breakdowns

3.2 Mathematical model

The authors are interested in the performance evaluation of particular
production systems called lines. A line is made up of a succession of machines, to
which parts go from one to another, successively. A single type of product is
treated.

It is proposed to experiment by analytical modeling, a real case study, a
flow line called Headrest support, consisting of M=8 stations.

v - ne | =
*Cutting *Deburring -gending -Eetouc
*Assem
bly
Fig. 2. Headrest support line with 8 stations

The case study is related to a manufacturing line of a car headrest support
work piece, which is manufactured in an industrial company from Arges County.

sEdge *Bending *Milling *Milling
Milling 1 A B

Fig. 3. Headrest support work piece
The main activity of the company is production and marketing of parts and
assemblies for automotive industry, especially for DACIA - RENAULT.
The main problem encountered in the factory was to find solution in order
to estimate the production rate of the system and also, to synchronize the
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production and the market demand. In order to solve this inconvenient the authors
will set two algorithms to calculate the production rate (hnumber of parts produced

in a time unit).

First of all, it is calculated the production rate for 2 machines; the Markov
chains are applying. The necessary algorithm (with stock 0) is presented below:

A

The machining times on My (resp. My) are
exponentially distributed with rate 11 (resp.
’[.'2)

- X1 :Mjand M; are working,

- Xo: My is working and My is waiting
(idle),

- Xs: My is blocked and M3 is working.

T1 — T1
%2 X1/« @

<

A

T2 T2

Balance equations

Zﬂ-i/?’lj = zﬂ-l/llk

iel kel
jed led

1. T2 = T2. T1,
1. T1 = T3. T2.
Normalising equation

n
Zﬂi=1 m+tm+m=1
i=1

The utilisation rate is the sum of the
probabilities of the states when machine is
working.

For My is my + mp

The production rate of the system is the
production rate of last machine, which
delivers the finished parts.

Fig. 4. Production rate of a workstation (Markov chain method)
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As the Markov chains need more time to provide solutions in queues
theory, they will be used only for small production lines. For larger production
lines (in our case 8 machines), there is another method - “decomposition method”
—which will be used [7-11].

Given the solution of the two machines case, approximate methods for the
general lines were developed. The system is decomposed into (M-1) = 7
subsystems consisting of two stations each. Each of the two-station subsystems is
analyzed with the help of an exact or approximate evaluation method. The
parameters of the two stations of the subsystem are then adjusted, such that they
account for the effects of all stations located outside the subsystem. All results are
then adjusted in an iterative procedure [2, 12-15].

The general steps of the decomposition method are described in the
following algorithm:

SetTi =T1; Tldc—i =Tk
SetT: =7T;,i=1,2,3,....k-1
Set Td = Tis1,i=1.2.3,... k-1

-

The lack (11‘ parts probability
T = 1 .1 1L
1 _—

iy om oo i=1,2,3,... k-2

The blocking probability
d 1
T, =—<T.= <

xi+1+m_ﬁ i:k-2, k'3,. . ..,1

IXi—X1<e,i=23,....k1,
* gisa very small positive real
number.

Fig. 5. Production rate of a large flow line (decomposition method)

( (D
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Applying the algorithm coded in C/C++, the authors can found very easily
the production rate for all the system.

Enter the machine number:8

taul11=12.5
taul21=7.01
taul31=5

taul41=5.83
taul51=5.83
taul61=3.33
taul71=4.55
taulB1=5.26

e production rate is=1.87/331
Fig. 6. Results of the model implemented in C++

4. Solution Approach - Strategy for stabilizing production

It is quite difficult to synchronize the production with the demand, taking
into account that synchronizing to unequal demand patterns may not be feasible
either for the internal operation or for suppliers. To respond properly to the
demand, a company must stabilize the manufacturing operation [16,17,18].

The authors propose to explore a specific technique for stabilizing
production. It is known that the machines in a flow line are decoupled with the
help of buffers. The technique proposed in the article is to increase the production
through the reallocation of buffers.

To demonstrate this purpose, gradually, one buffer after another is added
to the system.

When we add buffers in the line, within the assumptions some changes
will appear.

The states are:

. M, and M, are working
. M, is working and M, is waiting (idle)
7

Fig. 7. The states of the machine
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Our goal is to synchronize the production with the predictable demand. So,
the proposed method is to find how many parts are required in the buffers in order
to increase the production rate. The production rate of the system is calculated
using stochastic processes and C++ programming (see Fig. 6). The figure above
shows a comparison between the production rates of the our flow line and the
predictable demand.

Production vs. Demand

=—¢—Production
—ll—Demand

Production rate
N
9]

1,5
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Time

Fig. 8. Comparison between Production and Demand

The production of the system is liniar, but the demand of the products has
many fluctuations. The following diagram shows us the number of the parts
available in the buffers in order to set a balance between production and demand.

No. of parts in buffers

[y

Number of parts
ORNWAULOSNXWVLO

v v v s sp==No. of parts in buffers
7 . v/\
) ~> i
P . 4 W
Efz35:5=2%255:2%
Month

Fig. 9. Number of stocks in the buffers

Using Markov chains and decomposition method, the authors have
synchronized the production with the demand of the products by buffer rellocation
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(Fig. 10). By simple comparison of the two graphs (Fig. 8 - initial state and Fig.
10 — products synchronization after buffer rellocation), we can see that the balance
was established.

Stabilizing production

=—&—Production

Production rate

—fl— Demand

Jan Feb Mar Apr May Jun Jul  Aug Sep Oct Nov Dec
Time

Fig. 10. Stabilizing production
5. Conclusions

The results presented in this paper demonstrate a strategy to stabilize the
production of a real case study.

The first goal of this work was to evaluate the production rate of a real-life
manufacturing line with an analytical approach in form of the software C++.

The second goal of this work was the production rate optimization of the
flow line by restructuring its buffers.

Using the methods, Markov chains and decomposition method, described
so far, the authors can offer a solution for both products manufacturing problem,
by avoiding intermediary stocks at the same time, and a predictable market
demand of these products, getting a balance between the demand and production.

New directions for scientific work in this field must focus on incorporating
into the decomposition method the state that a machine can be under failures. The
machines may fail while working; a machine fails with a failure rate. When it is
down, a machine, if the repairman is working on it, is repaired with at repair rate.
An alternate effort is to give the Markov chain the behavior specific to the system,
to evaluate the average availability of the system, or to compute the MTTF (Mean
Time To Failure) and MTTR (Mean Time To Repair).
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