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MARKOV CHAINS AND DECOMPOSITION METHOD USED 

FOR SYNCHRONIZING THE MANUFACTURING 

PRODUCTION RATE WITH REAL MARKET DEMAND 

Elena-Iuliana GINGU (BOTEANU)1, Miron ZAPCIU2 

This paper presents an approach to find a strategy for stabilizing production 

of a real manufacturing line.  In the first phase the flow line is analyzed and then 

Markov chains and decomposition method are applied, in order to optimize the 

production rate by reallocating the buffers. Finally, a model is proposed to focus on 

stabilization of the production and, in the same time on synchronizing the 

production rate with the market demand. The mathematical model presented is 

developed and coded in C++. 
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1. Introduction 

Nowadays, many companies are in difficulty to find a strategy for 

stabilizing production. In order to solve this problem, an analytical model using 

Markov chains is proposed.  

In this paper an approach of Markov chain is applied for analyzing a real 

flow line and scheduling algorithms are as well developed. The main objective of 

the paper is to optimize the buffers by maximizing production rate at critical 

resources in order to make enough products for customer’s satisfaction and 

maintaining of the delivery on-time. 

The proposed model integrating the analytical model with Markov chains 

and decomposition method can be used by researchers and practitioners to 

estimate the production rate in order to synchronize the production and the market 

demand. 

Markov Chains were introduced in 1907 by the Russian mathematician 

A.A. Markov. Markov chains were rapidly recognized for their important power 

of representation and their possibility to model a wide range of real life problems 

as well as for the quality of performance indices they give with a relatively small 

computing effort. Markov chains can be used for modeling and performance 
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evaluation of manufacturing systems when they reveal some random behavior 

(breakdowns, random time to process a part). 

Decomposition methods were proposed by Zimmern (1956) and 

Sevastyanov (1962) for the analysis of large systems with unreliable machines 

and by Hillier and Boling (1967) for the analysis of large systems with reliable 

machines. An accurate decomposition method was proposed by Gershwin (1987) 

for the analysis of the synchronous model [1].  

2. Preliminary concepts 

 

This section is devoted to provide the mathematical definitions which will 

be used in the next section [1-5]. 

Definition 2.1. Let X(t) a parameter. A stochastic process is a random variable 

indexed by X(t), where t is considered as a continuous variable t (-, +).  

Definition 2.2. A Markov chain is a stochastic process for which the domain of 

the variable is a countable set and the following relation is satisfied: 

P[X(tk) = xk  X(tk-1) = xk-1, …, X(t1) = x1] = P[X(tk) = xk  X(tk-1) = xk-1],    (1) 

 k,  t1  … tk and  x1, …, xk in the domain of the variable, 

where P[.  .] is the usual notation for a conditional probability. 

To a finite Markov chain, one can associate a graph with n vertices. In this 

graph each vertices corresponds to a state. Then there is an edge (xi , xj ). If ij 0, 

ij is called the transition rate from state xi to xj. 

Example 2.1. A machine can have two states: up and down. When the machine is 

up, it can work and may have failures, with the failures rate . When the machine 

is down, we repair it with a repair rate . In this situation the graph of the Markov 

chain is as follows: 

 
Fig. 1. Graph of the Markov chain of the two-state machine 

 

Definition 2.3. For the state xi, the outgoing rate is defined as the sum of all 

transition rates from xi to all xj’s where i  j. 

Consider a particular state x of a Markov chain with outgoing rate . We 

are interested in the time  we will spend in state x before leaving it. Let us first 

define the function: 

G(t) =  P[   t]      (2) 

From the definition of the outgoing rate we can write the first order 

equation: 

 G(t+dt) = G(t)(1- dt)      (3) 
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which can be understood as: ‘we remain in x until time t+dt if we are in x at time t 

and if we do not leave x between t and t+dt’. 

Assuming that G(t) has a derivative, we get: 

G(t) + (dG/dt)dt = G(t)(1- dt)      (4) 

which finally gives:  

(dG/dt) = -G(t)      (5) 

This differential equation with the obvious initial condition G(0) = 0, 

gives the solution: 

G(t) = e-t      (6) 

Consider now the distribution function of the variable  defined by: 

F(t) = P[    t]      (7) 

It appears that: 

F(t) = (1 - e-t)      (8) 

which is called an exponential distribution. The corresponding probability density 

function (pdf) is therefore: 

f(t) =e-t      (9) 

We have proved that the sojourn time in a markovian state with outgoing 

rate  is exponentially distributed with rate .  

Using the pdf (probability density function) of the random variable , one 

can compute its various moments as the average value, variance… For the average 

value m() we get: 

dtetm t 



0

)(  
    

(10) 

and finally: 

m()=1/     

(11) 

the variance var() and the standard deviation  can be computed in the same 

way; in particular, we get also: 




1
)(   

    

(12) 

An important parameter used to characterize random variables is the 

coefficient of variation, which is defined as: 

)(

)(
2

2





m
Cv   

    

(13) 

This parameter Cv is a normalized measure of the variability of the random 

variable. It is a remarkable feature of the exponential variable that we have: 

Cv() = 1     

(14) 

Further, we need to introduce the following notation: 
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i(t) = P[X(t) = xi],      15) 

and the row vector : 

(t) = (1(t), …, n(t)).     16) 

The vector (t) is a probability distribution, which means that 

 0 i(t)  1, for i = 1, …, n and 1)(
1




t
n

i
i  

   (17) 

Starting with an initial probability distribution (0), we would like to 

evaluate (t) for any t  0. We can write the first order equation: 









n

ik
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    18) 

This equation explains that being at time t+dt in state xi two situations may 

result: 

- we were in a state at time t, then we travel from this state to xi between t and 

t+dt, 

- we are in state xi at time t and we do not move between t and t+dt. 

Notice also that at the first order, multiple state movements cannot occur. 

If we denote: 






ij
j

ijii
1

  
   (19) 

The equation can simply be written as: 




n

k
kikiii dtttdtt

1

))(()()(   
(20) 

Introducing the (n.n) matrix  which has for (i-j)th entry ij , we get the 

matrix differential equation: 

 )()( tt  , with initial condition (0)=0. (21) 

This first order matrix differential equation gives us the probability of 

being in a given state at time t, given the initial probability distribution. The 

matrix  is called the infinitesimal generator, or simply the generator of the 

Markov chain. The sum of the entries of any row of  is 0. Notice that ii is not a 

transition rate, in fact ii is the opposite of the outgoing rate of state xi. 

The solution has exactly the same form as in the scalar case, that is: 
tet  )0()(   (22) 

where et is the exponential of a matrix. There are several ways for computing the 

exponential of a matrix.  

Given a Markov chain with generator  and initial probability distribution 

0 we would like to evaluate: 
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)(lim tt    (23) 

 This limit indeed always exits, and from the evolution equation it must 

satisfy the relation: 

=0   (24) 

 This equation is called the stationary equation since it implies that starting with 

initial distribution 0 = , the probability distribution will not change with t. In 

general, the limit probability distribution will depend on the initial situation, but it 

is important to identify the cases where this is not necessary. The answer is in the 

following theorem. 

Theorem 2.1. The limit distribution is independent of the initial probability 

distribution if and only if the Markov chain has only one ergodic class. 

The necessity of the condition is obvious, if there are several ergodic 

classes, starting in a state of one ergodic class will lead to a limit behavior in the 

same class. 

Indeed, when the condition is satisfied, the limit distribution is obtained by 

solving the equation with the additional normalization constraint: 

1
1




n

i
i  

(25) 

The equation (24) amounts to n algebraic equations but only (n-1) of them 

are independent.  

The ith equation is: 


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1

0   
(26) 

which can be rewritten as : 






n

ij
j

jijiii
1

  
(27) 

This equation can be seen as a ‘balance equation’ at state xi; recall that –

ii is the outgoing rate from state xi . The equation expresses on the left hand side 

the ‘flow in’ state xi and the right hand side the ‘flow out’. As in the usual flow 

problems we can also write ‘balance equations’ when the state set is partitioned in 

two parts. Consider I  {1, …, n} and J = {1, …, n}/I, we assume that I and J are 

non-empty, then : 









Jl
Ik

lkl

Jj
Ii

iji   
(28) 

This method (which is called the ‘method of cuts’) is very effective for 

solving the stationary equation even for large Markov chains and has a good 

structure [1-4]. 
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3. Problem description and Mathematical model 

3.1. Model assumptions 

 

Analytical performance analysis methods are based on the stochastic 

modeling of flow production systems. We use the analytical results of queuing 

theory for the modeling of a flow production system. The problem is stated under 

the following assumptions (for an ideal case) [1, 6]: 

 single product manufacture,  

 limited capacity of stocks,  

 the product has a successive flow in the line (it goes from one 

machine to another within the same line),  

 the raw parts are always stocked in front of the first machine (it is 

never starved) and the last machine can always deposit a finished 

product (it is never blocked).   

 No breakdowns 

3.2 Mathematical model 

 

The authors are interested in the performance evaluation of particular 

production systems called lines.  A line is made up of a succession of machines, to 

which parts go from one to another, successively.  A single type of product is 

treated. 

It is proposed to experiment by analytical modeling, a real case study, a 

flow line called Headrest support, consisting of M=8 stations.  

 
Fig. 2. Headrest support line with 8 stations 

The case study is related to a manufacturing line of a car headrest support 

work piece, which is manufactured in an industrial company from Arges County. 

 
Fig. 3. Headrest support work piece 

The main activity of the company is production and marketing of parts and 

assemblies for automotive industry, especially for DACIA - RENAULT. 

The main problem encountered in the factory was to find solution in order 

to estimate the production rate of the system and also, to synchronize the 
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production and the market demand. In order to solve this inconvenient the authors 

will set two algorithms to calculate the production rate (number of parts produced 

in a time unit).  

First of all, it is calculated the production rate for 2 machines; the Markov 

chains are applying. The necessary algorithm (with stock 0) is presented below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 4. Production rate of a workstation (Markov chain method) 
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The machining times on M1  (resp. M2) are 

exponentially distributed with rate 1 (resp. 

2) 

- x1 : M1 and M2 are working, 

- x2 : M1 is working and M2 is waiting 

(idle), 

- x3 : M1 is blocked and M2 is working. 
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 Balance equations  
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1.2 = 2.1, 

1.1 = 3.2. 

Normalising equation 

1
1




n

i
i                 1 + 2 + 3 = 1 

The production rate of the system is the 

production rate of last machine, which 

delivers the finished parts. 

The utilisation rate is the sum of the 

probabilities of the states when machine is 

working. 

For M1 is 1 + 2 
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As the Markov chains need more time to provide solutions in queues 

theory, they will be used only for small production lines. For larger production 

lines (in our case 8 machines), there is another method - “decomposition method” 

– which will be used [7-11]. 

Given the solution of the two machines case, approximate methods for the 

general lines were developed. The system is decomposed into (M-1) = 7 

subsystems consisting of two stations each. Each of the two-station subsystems is 

analyzed with the help of an exact or approximate evaluation method. The 

parameters of the two stations of the subsystem are then adjusted, such that they 

account for the effects of all stations located outside the subsystem. All results are 

then adjusted in an iterative procedure [2, 12-15]. 

The general steps of the decomposition method are described in the 

following algorithm: 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 5. Production rate of a large flow line (decomposition method) 
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Set ;  
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Set , i=1,2,3,…,k-1 

The lack of parts probability 

i=1,2,3,…,k-2 
 

The blocking probability 

i=k-2, k-3,….,1 
 

 

|Xi−X1| <ε , i = 2,3, . . . ,k−1, 

• ε is a very small positive real 

number. 
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Applying the algorithm coded in C/C++, the authors can found very easily 

the production rate for all the system. 

 

 

 
Fig. 6. Results of the model implemented in C++ 

4. Solution Approach - Strategy for stabilizing production 

It is quite difficult to synchronize the production with the demand, taking 

into account that synchronizing to unequal demand patterns may not be feasible 

either for the internal operation or for suppliers. To respond properly to the 

demand, a company must stabilize the manufacturing operation [16,17,18]. 

The authors propose to explore a specific technique for stabilizing 

production. It is known that the machines in a flow line are decoupled with the 

help of buffers. The technique proposed in the article is to increase the production 

through the reallocation of buffers. 

To demonstrate this purpose, gradually, one buffer after another is added 

to the system. 

When we add buffers in the line, within the assumptions some changes 

will appear. 

The states are:  

 
Fig. 7. The states of the machine 
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Our goal is to synchronize the production with the predictable demand. So, 

the proposed method is to find how many parts are required in the buffers in order 

to increase the production rate. The production rate of the system is calculated 

using stochastic processes and C++ programming (see Fig. 6). The figure above 

shows a comparison between the production rates of the our flow line and the 

predictable demand. 

 

Fig. 8. Comparison between Production and Demand 

The production of the system is liniar, but the demand of the products has 

many fluctuations. The following diagram shows us the number of the parts 

available in the buffers in order to set a balance between production and demand. 

 

Fig. 9. Number of stocks in the buffers 

Using Markov chains and decomposition method, the authors have 

synchronized the production with the demand of the products by buffer rellocation 
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(Fig. 10). By simple comparison of the two graphs (Fig. 8 - initial state and Fig. 

10 – products synchronization after buffer rellocation), we can see that the balance 

was established. 

 

Fig. 10. Stabilizing production 

5. Conclusions 

The results presented in this paper demonstrate a strategy to stabilize the 

production of a real case study. 

The first goal of this work was to evaluate the production rate of a real-life 

manufacturing line with an analytical approach in form of the software C++. 

The second goal of this work was the production rate optimization of the 

flow line by restructuring its buffers.  

Using the methods, Markov chains and decomposition method, described 

so far, the authors can offer a solution for both products manufacturing problem, 

by avoiding intermediary stocks at the same time, and a predictable market 

demand of these products, getting a balance between the demand and production. 

New directions for scientific work in this field must focus on incorporating 

into the decomposition method the state that a machine can be under failures. The 

machines may fail while working; a machine fails with a failure rate. When it is 

down, a machine, if the repairman is working on it, is repaired with at repair rate. 

An alternate effort is to give the Markov chain the behavior specific to the system, 

to evaluate the average availability of the system, or to compute the MTTF (Mean 

Time To Failure) and MTTR (Mean Time To Repair). 
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