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A NEW METHOD FOR SOLVING PARETO 
REAL VECTOR OPTIMIZATION PROBLEMS 

Mircea SULARIA 1, Marius BREBENEL 2*

Any Pareto real vector optimization problem is equivalent with a Pareto 

Real Vector Maximization (PRVMax) problem. In this paper we present a new 

method for solving PRVMax problems. Then we attempt to show its practical 

interest.
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1. Introduction

Vector Optimization (VO) is called also Multiple Criteria Optimization or 
Multiobjective Optimization (MO). This is an important research subject which 
deals with solving Multiple Criteria Decision Making (MCDM) problems.  

In this paper, we consider the basic notion of Godel-Kleene Lattice (called 
shortly GK-lattice). A concrete example of GK-lattice is the structure of GK-
lattice with the support set equal to the real closed interval [0, 1] ⊂ R, which will 
be denoted by GK[0,1].  

Then we present a second example of GK-lattice, namely the structure of 
Real Godel-Kleene Lattice (called shortly RGKL). The notion of RGKL has been 
introduced in the paper [20]. An RGKL is a special kind of GK-lattice associated 
to the usual totally ordered real numbers set (R, ≤) having the support set equal to 
R ∪ {⊥ , ⊤}. We consider a Pareto real vector maximization (P-rvm) problem 
together with a finite family of real objective functions. We present a new 
mathematical method to solve this P-rvm problem. The idea of this method has 
been mentioned in the paper [21]. The consideration of this method is 
indispensable to solve the Pareto real Vector Optimization using known methods 
of real scalar optimization problems constructed using real exponential operators. 
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We combine the finite family of real criterion functions in a unique real 
criterion function of maximization based on the use of a Partial Universal 
Algebra extending the RGKL and which is defined using the basic structure of the 
Real Numbers Ordered Field together with a special finite family of power 
functions αx, with α ∈ (1, +∞) ⊂ R. One constructs a special real maximization 
problem with the unique real criterion function of maximization previously 
mentioned. The solution of this special real maximization problem is a Pareto 
maximal point of the initial P-rvm problem. This method to solve P-rvm problems 
can be easily implemented on computers. We consider a simple example to 
illustrate the corresponding algorithm using the software Mathematica 6.01.  

It is recommended in practice to use Mathematica, which is very efficient. 
One can realize in a relatively short time different experiments for applications. 
Some potential practical applications are also considered in the paper.  

2. A description of the basic mathematical results

In this paper we suppose known some basic results from real mathematical
analysis [ ]18,17,15,11,7,3 . Let ( )≤⋅+  ,1 ,0 , , ,R  be the complete linearly ordered field
of real numbers. 

We will use the compact real numbers extended chain ( )Τ,,, ⊥≤R , where
∞=⊥ -  (minus infinite) and +∞=Τ  (plus infinite) are two constants such that

( )ΤΤ ≠⊥∉⊥∉   , , RR , the support set R  is defined by the union between the set R
and the set of two elements ∞=⊥ -  and +∞=Τ such that

(1.1) ≤  is an order relation on the set R  defined by the following condition: 

(1.2) ( ) ( )vuvuvuvu ≤∈⇔≤∈∀  and   R ,R , or ( )=⊥u  or ( )Τ=v .

Let [ ]( )1 ,0 , ,1 ,0 ≤ be the unit chain of real numbers, where the support set is
the unit real numbers interval: 

(1.3) [ ] { }101 ,0 ≤≤∈= xx |R .
(1.4) ≤  is the usual order relation on R. 
(1.5)  is the real number “zero” and  is the real number “one”. 

Let N∈nm , be natural numbers such that 2≥m . 
Let f be a function, defined on a nonempty compact subset nX R⊂ , 

(1.6) ( ) m
m Xffff R→= :..., ,, 21 , such that for any point , we have

(1.7) ( ) ( ) ( ) ( )( ) m
m xfxfxfxf R∈= ..., ,, 21 .

A Pareto maximum point of f on the set X is any element x0 ∈∈∈∈ X such that 
the corresponding point f(x0)    ∈∈∈∈ f(X) is a maximal element of the partial ordered 
subset (f(X), ≤m) of the usual ordered real vector space (ℝm, ≤m).   
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We suppose that the m components ( ) mii Xf  :
1,

R =→ of the function f are

continuous real functions defined on X. The problem to determine a Pareto 
maximal point of the function f on the set X is called a PRVMax problem.  

We present a new method for solving PRVMax problems based on the use 
of real exponential functions. We define a special family of order isomorphisms 
between the two chains ( )Τ,,, ⊥≤R  and [ ]( )1,0,,1,0 ≤ . We prove that for any finite
sequence of m real parameters, 

(1.8)  ( ) ( ) ,Rmm
maaaa ⊂+∞∈= ,1..., 21

there exists a real function 

(1.9)  φα(f): X → ℝ, x → φα(f)(x)  

such that any global maximization point of the function (1.9) on X is a solution of 
the previously mentioned PRVMax problem. 

The definition of the function (1.9) is based on the use of m real exponential 
functions and its expression is the following 

(1.10)  ( )( ) ( ) Xx
a

xf
m

i xf
i

a
i

∈∀













+
−=ϕ ∏ =

 , 
1

1
1

1

Two interesting applications of this new method are suggested. An application is 
to solve multiple objectives optimal economic planning problems [12-14]. A 
second application is to solve multiple criteria discrete optimal control.  

For the both previously mentioned applications one can use the software 
instruments Matlab [23] or Mathematica [24] via global optimization [16]. We 
present a simple example based on Mathematica 6.0.1. 

3. The real Gödel-Kleene lattice

In this section we will consider a special ordered algebraic structure,
which will be called Real Gödel-Kleene Lattice (RGKL). Then we formulate the 
notion of Pareto Real Vector Optimization Problem (PRVOP).  

Definition 2.1 Let A be an algebraic structure with the support set A 
together with three binary operations ⇒∨∧ ,,  on A,  

( ) yxyx,A,A×A ∧→:∧ a , ( ) yxyx,A,A×A ∨→:∨ a , 
( ) yxyx,A,A×A ⇒  →: a⇒ , a unary operation * on A, * ,:  * xxAA a→  and two 

constants  { } A, ⊆T⊥  such that T≠⊥ . 

The previous structure  is called a Gödel-Kleene Lattice (GKL) or also an LK-
lattice LK[A] if the following conditions hold: 
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(i) The structure ( )T,,,,,A ⊥⇒∨∧,  is a Gödel Lattice (GL), with the conjunction

operation ∧, the disjunction operation ∨, the implication operation ⇒, the first
element ⊥ and the last element T  i.e. the next properties hold:

(GL1) The system ( )T,,,,A ⊥∨∧,  is a bounded distributive lattice with the
binary infimum operation ∧, the binary supremum operation ∨, the first element
⊥ and the last element T .

(GL2) The binary operation ⇒ on A satisfies the following condition
called the Implication Operator Condition or the Heyting Condition:

(C1)  for all Azy,x, ∈ , yxz ⇒≤  if and only if yxz ≤∧ ,
and the next condition called the Gödel Condition or the Generalized Linearity
Condition,

(C2) for all Ayx, ∈ , ( ) ( ) T=xyyx ⇒∨⇒ .

(ii ) The system ( )T,,,,,A ⊥*∨∧, is a De Morgan lattice with the support set A 
together with its structure of bounded distributive lattice ( )T,,,,A ⊥∨∧, from 
(GL1) and with the negation operator * i.e. the next properties hold: 

(DM1) for all Ayx, ∈ , ( ) ∗∗∗ yx=yx ∨∧ ; 

(DM2) for all Ax∈ , ( ) x=x
∗∗ ;

(DM3) T=∗
⊥ . 

(iii ) The operator * ,:  * xxAA a→  satisfies the next condition, called the Kleene
Condition:

(KC) for all Ayx, ∈ , ∗∗ yyxx ∨≤∧ . 

Remark 2.2 The notion of Gödel-Kleene Lattice (GKL) from Definition 2.1 
called also LK-lattice has been introduced by Antonio Monteiro in connection 
with the study of the structure of symmetric Heyting algebra (a Heyting algebra 
together with a De Morgan negation). An LK-lattice is a symmetric Heyting 
algebra ( )T,,,,,A ⊥*,∨∧, ⇒  which in addition satisfies the Generalized Linearity
Condition from Definition 2.1 (i) (C2) and the Kleene Condition (KC) from 
Definition 2.1 (iii ). A complete LK-lattice is an LK-lattice such that its underlying 
bounded lattice is a complete lattice. An LK-chain is any LK-lattice such that it is 
a totally ordered set with respect to its underlying order. 

Remark 2.3 Let ( )τLK  be the class of all LK-lattices considered as algebras of
type ( )001222 ,,,,,=τ . Then ( )τLK  is a variety of algebras and its basic properties
are presented in [21]. A basic property is the following theorem: an LK-lattice is a 
subdirect irreducible algebra of ( )τLK  if and only if it is an LK-chain. It follows
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the next important property: any LK-lattice is isomorphic to a subdirect product of 
LK-chains. In this paper we consider the problem to solve Pareto real vector 
optimization problems. A special case of this kind of problem is the optimization 
problems in fuzzy environments [4]. This kind of problems has been considered 
by Bellman and Zadeh [2], which proposed a method to obtain their solutions 
using a max-min operator of aggregation. This method is not satisfactory, because 
the solutions are not in general Pareto optimal points.  

Remark 2.4 In this paper, we will obtain an improvement of the Bellmann-Zadeh 
method based on the use of a Pareto aggregation operator family of LK-
isomorphisms between LK[ ]R  and LK[0,1], associated to a composition of
exponential functions on the real numbers field R . 

Remark 2.5 The structure of Gödel lattice is a well known structure in algebra of 
logic. For the first time, in connection with the notion of fuzzy set introduced by 
Zadeh, Hájek proved that this structure is also of interest in mathematical 
foundation of fuzzy inference.  

Remark 2.6 The structure of MV-algebra is the algebraic foundation of many-
valued reasoning. The variety of Gödel MV-algebras is introduced. For any 
complete Gödel MV-algebra, there exists a structure of complete LK-lattice on its 
underlying De Morgan lattice. This property holds, since the underlying De 
Morgan lattice of any complete MV-algebra is a complete double Heyting algebra 
satisfying in addition the Kleene condition (KC) from Definition 2.1 (iii ).  

The previous facts shows that the LK-lattices are important algebraic structures 
in many-valued logic [20]. We introduce new basic notions which will be used in 
the sequel.  

Definition 2.7 A system of data for a multiple-criteria optimization model is 
defined by a quadruple ( )fX,m,n, , where Nmn, ∈  are natural numbers with 1≥n  

and 2≥m , X is a set such that nX R⊆ , ∅≠X  and mXf R→:  is a vector 

function from X to mR . The set X represents a set of alternatives with respect to a 
decision making problem and ( )mf,…,f,f=f 21  is a sequence of real functions on
X, ( ) mii Xf ,1: =→ R , called the objective functions of the optimization model. The 

number n is the dimension of the arithmetical vector space nR  of alternatives and 
the number m represents the number of objective functions. Let ( )fX,m,n,  be a
system of data for a multiple-criteria optimization model. We consider on the set 

mR  an order relation m≤  defined for any ( ) m
mu,…,u,u=u R∈21  and

( ) n
mv,…,v,v=v R∈21 by the following condition:  vu m≤  if and only if 

{ )m,...,,i,vu ii 21∈∀≤ . 
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(i) A Pareto Maximal point of the function mXf R→:  on the set X is any
element XxPM ∈  such that ( )PMxf  is a maximal element of the partial ordered

set ( )( )m,Xf ≤  i.e. the following condition holds:

(PM) ( )Xx∈∀  ( ) ( ) ( ) ( )[ )xf=xfxfxf PMPM ⇒≤ . 

(ii ) A Pareto Maximization problem with respect to ( )fX,m,n,  is the problem to

determine a Pareto Maximal point of the function mXf R→:  on the set X.

(iii ) A system of data for an one-criteria maximization model is a triple ( )φX,n, ,

where nX,n RN ⊆∈ is a non-empty set and R→ϕ X:  is a real function called
the objective function. An one-criteria global maximization problem with respect
to the system of data ( )φX,n,  is the problem to maximize the objective function ϕ 
on the set X i.e. to determine a point XxM ∈  such that ( ) ( )Mxφxφ ≤ , Xx∈∀ . 

We present an algebraic structure S such that a solution of any Pareto 
maximization problem with respect to a suitable system of data ( )fX,m,n,  can be
found by solving an one-criteria global maximization problem with respect to 
( )φX,n, , where the real function ϕ is obtained from f by aggregation using a
special term of S. The starting point is the next result, which establishes the
existence of a concrete isomorphism between the structures of LK-lattices LK[ ]R

and LK[0,1].  

Lemma 2.8 There exists an isomorphism [ ]0,1R →:θ  from LK [ ]R  onto
LK[0,1] defined in terms of the function  by the following relation, for all 

{ }T,=u ⊥∪∈ RR  : 

( ) ( )


















T=u

u+u
π

=u

=uθ

 if   1

∈  if   1arctan
2

2

1
⊥ if  0

R

In this paper we will use a family of isomorphisms between LK[ ]R  and LK[0,1]
defined in terms of a special concrete family of real exponential functions on the 
commutative field of real numbers [ ] ( )1 0 ,,,+,=F ⋅RR .

The idea of this definition has been presented in [21]. This fact is essential for the 
foundation of a new method to solve Pareto real maximization problems. We 
will use special properties of the real numbers field. Now we present the general 
notion of exponential function. 
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Definition 2.9 An exponential function on a commutative field ( )10,,K,+,⋅  is an
operator on K, ( )xxK,K exp  →:exp a , such that the next conditions hold, for all

Kyx, ∈ : 
(1) ( ) ( ) ( )yx=y+x expexpexp ⋅  ;
(2) ( ) 0≠exp x  ;

(3) ( ) ( )x
=x

exp

1
-exp .

Definition 2.10 The real Gödel-Kleene lattice-ordered partial field is the next pair 
of structures: RGKLordPF[ ] ( ) [ )( ),RRR F,LK= where LK[ ]R  is the LK-lattice of

the extended real numbers chain ( )T,,, ⊥, ≤R  and [ ] ( )1 0 ,,,+,=F ⋅RR  is the
commutative field of real numbers. The real Gödel-Kleene lattice-ordered partial 
field with exponential operators is defined by the real Gödel-Kleene lattice-
ordered partial field RGKLordPF[ ]R  previously introduced together with the next
family of exponential functions on the field of real numbers ( )1 0 ,,,+,⋅R ,

( ) ( )T,aa 1∈→:exp RR , where ( )T,a 1∈∀ , ( ) R∈∀exp x,a=x x
a  i.e. aexp  is the 

exponential function on R  with ( ) ( )∞+=  ,11∈ T,a .

Lemma 2.11 Let RGKLordPF[ ]R  be the pair of structures from Definition 2.10
together with the family of exponential functions on R  presented also in 
Definition 2.10. For every ( )T,a 1∈ , RR→:expa  is an exponential function on
the field of real numbers ( )1 0 ,,,+,⋅R  in the sense of Definition 2.9 and the
following properties holds: 

(i) The image set of the exponential function aexp  satisfies the next relation: 
( ) ( ) ( )∞00exp ,+=,=a TR . 

(ii ) The restriction of aexp  to its image, ( )∞+ ,0→:exp Ra  , is an isomorphism 
from the totally ordered commutative additive group ( )≤ 0 ,,+,R  onto the totally
ordered commutative multiplicative group of real numbers from the positive real 
axis ( )( )≤⋅∞+   1    ,0 ,,,  with the inverse isomorphism given by the logarithmic
function ( ) xx,,+ aa log  →∞0:log aR .
(iii) For every exponent ( )T,a 1∈ , the next properties are satisfied in 

RGKLordPF[ ]R :

(P1) Consider the function ( ) ( )
xaa

a+
=xEx,,E

1

1
-1  10→: aR . Define 

also the extended function 
[ ) ( )uEu,,E aa a  10→: R , where
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( ) ( )








T=u

uuE

=u

=uE aa

 if   1

∈  if  

⊥ if  0

R

Then aE  is an isomorphism from LK [ ]R  onto LK[0,1].
(P2) The function Ea is a probability distribution function of a random 

variable Xa such that ( )R∞

∈CEa  and its first derivative, 

( ) ( ) RRR ∈∀

1

ln

1

1
-1  →:

2
′ x,

a+

aa
=

a+dx

d
=xex,E=e

x

x

xaaa 







a

is a density function of Xa i.e. 

( ) ( ) ( ) R∈∀  ≤
⊥

xdt,te=xE=xXP
x

aaa ∫  and ( ) 1
⊥

=dttea∫
T

We present here a basic mathematical result expressing an efficient method to 
solve on PC Computers special Pareto Real Vector Maximization Mathematical 
Programming Problems. 

Theorem 2.12 Let ( )fX,m,n,  be a system of data for a multiple-criteria
optimization model given as in Definition 2.10. Suppose that the corresponding 
set of alternatives nX R⊆  is compact and the objective vector function 

( ) m
m Xf,…,f,f=f R→:21  is a continuous function on X i.e. for every

{ )m,...,,i 21∈ , the component function R→: Xfi  is a continuous real function on 

the set X. For any m-sequence of real numbers ( ) ( )m
m ,a,…,a,a=a T1∈21 and for 

any index { )m,...,,i 21∈ , let ( )10→: ,E
ia R  be the function

iaE  associated with 

( )T,ai 1∈ introduced in Lemma 2.11 (P1). We define an one-criteria global 
maximization problem as in Definition 2.7 (iii ) by the triple ( )( )fφX,n, a , where 

( ) ( ) ( )( )xfφx,,Xfφ aa a  10→:  is the objective function defined by

( )( ) ( )( ) Xx,xfE=xfφ i

m

=i
iaa ∈∀

1
∏ . 

Then the following conditions hold: 

(i) The function ( ) ( )10→: ,Xfφa  is a continuous function on the compact set X.

(ii ) Suppose that XxM∈  is a solution of the global maximization problem of the 
function ( )fφa  on the compact set X i.e.

(M) ( )Xx∈∀  ( )( ) ( )( )Maa xfφxfφ ≤ . 
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Then Mx  is a Pareto maximal point of the vector function mXf R→:  on 
the compact set X. 

Proof. (i) The property that the objective function ( )fφa  is continuous follows

from the condition that the function mXf R→:  is continuous on X and from the 
fact that the function ( ) ( )10→: ,Xfφa  is defined by the finite product of the next 
family of m continuous functions on X: 

( )( )
m,=i

iia ,XfE
1

10→:o , where for all { )m,…,,i 21∈ , we have 

( )( ) ( )( ) Xx,xfE=xfE iiaiia ∈∀o . 

Thus, Theorem 2.12 (i) holds. 

(ii ) Regarding the point Mx  from the property (ii) satisfying (M), we have to 
prove also the next condition: 
(P) The point Mx  is a Pareto maximal point of the function f on the set X. 
For this purpose, suppose that the condition (P) is false. 
From Definition 2.7 (i) it follows that the point Mx is not a maximal element of 
the ordered set ( )( )≤,Xf  i.e. the condition (PM) from Definition 2.7 (i) is false.
Thus, there exist an element Xx ∈0 such that ( ) ( )0≤ xfxf M and ( ) ( )0≠ xfxf M . 
This implies the relation  ( )( ) ( )( )0xfφ<xfφ aMa  for Xx ∈0 , but from the property 
(M) of the point Mx , it follows that  ( )( ) ( )( )Maa xfφxfφ ≤0 , for Xx ∈0 , 
contradiction. Thus, Theorem 2.18 (ii ) also holds. 

The result obtained by Theorem 2.12 must be verified in practice. One can 
view that the problem to solve Pareto vector optimization problems has been 
reduced to the problem to solve concrete sequence of global optimization 
problems, in order to obtain corresponding sequences of Pareto optimal points. 

3. Concluding Remarks

(CR1) Theorem 2.18 shows that in some reasonable conditions, for any m-
sequence of numbers ( ) ( )∞1∈21 ,+a,...,a,a=a m , there exists an algebraic formula to

compose an m-sequence of real functions ( ) m
m Xf,…,f,f=f R→:21

such that by this composition one obtains a real function ( ) ( )10→: ,Xfφa  with the
property that by the global maximization [5, 16] of ( )fφa  on the set X one obtains
a solution of the problem of Pareto maximization of f on X. We mention that this 
method can be easily programmed on Personal Computers. For this aim, one can 
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use the software products Matlab [23] or Mathematica [24]. Using Mathematica 
6.0.1, we present a simple example which justifies this affirmation. 

Example. One can consider the problem to determine in the unity triangle ∆  of 
the positive real plane 2R+  different Pareto maximal points of the identity vector 

function, 2
→: R∆I ∆ , defined as follows: ( )( ) ( ) x=xIR∆x,x=x ∆  ⊂∈∀

2
21 , 

where 2R⊂∆  is defined by the following condition: 

( ) ∆x,x ∈21  if and only if 








≥
≥

≤

0

0

1

2

1

21

x

x

x+x

 . 

One can view that in this very particular case, we have the next characterization of 
Pareto maximal points of ∆I  on ∆ : 

(C) ( )∗∗
21 x,x  is a Pareto maximal point of ∆I  on ∆  if and only if 

(PM) 0≥0≥ 21
∗∗ x,x  and 121 =x+x ∗∗ . 

We present now for this elementary problem, the application of the 
method expressed by Theorem 2.12. The number of objective functions of 
maximization is m = 2. We must to select different pairs of real exponents ( )21 a,a

such that 11 >a  and 12 >a . One determines the solution of the following global 
maximization problem with a single criteria presented in Theorem 2.12, 

( ) ∆x,x
a+a+

max
xx

∈  ,
1

1
-1

1

1
-1 21

2
2

1
1














⋅













 (GO). This solution represents just a 

Pareto maximal point of ∆I  on . The previously mentioned property (C) is 
confirmed using Mathematica 6.0.1. The next three results are obtained by solving 
the global maximization problem (GO). The next three particular choices of the 
parameters are considered: 
__________________________________________________ 

31 =a  and 32 =a  

NMaximize { }
































yx,,y,x,y+x,

++ yx
0≥0≥1≤

31

1
-1

31

1
-1

Solution: {x = 0.5, y = 0.5}. 
__________________________________________________ 

31 =a  and 72 =a

NMaximize { }
































yx,,y,x,y+x,

++ yx
0≥0≥1≤

71

1
-1

31

1
-1

Solution: {x = 0.367544, y = 0.632456}. 
___________________________________________________ 
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71 =a  and  32 =a  

NMaximize { }
































yx,,y,x,y+x,

++ yx
0≥0≥1≤

31

1
-1

71

1
-1

Solution: {x = 0.632456, y = 0.367544}} 
____________________________________________________ 
(CR2) In practice, it is also of interest to satisfy some aspiration levels for the 
values of the objective functions, ( ) ∗

ii fxf ≈ , m},…,,{i 21∈∀ , which can be 
represented by a special fuzzy set [22], 

[ ) ( ) ( )( )













∑

n

j=
jj fxf=xψx,,Xψ

1

2
--exp10→: a . 

This kind of problem is important to consider, when it is necessary to realize a 
realistic compromise between objectives and resources in economical planning. In 
this special case, one can define a unique objective function [ )10→: ,Xχ  by the
relation  ( ) ( )( ) ( ),xψxfφ=xχ a ⋅ Xx∈∀ .
This manner, to combine probability distribution functions together with 
membership functions using exponential operators in order to solve multiple-
criteria optimization, represents a good improvement of several known methods 
for decision making in a fuzzy environment [2, 4]. We mention the fact that this 
procedure of aggregation is very well suited for solving Pareto maximization 
problems with two criteria. This case is important having practical applications 
(please see for example [9]). For a number m of criteria with 3≥m  this manner to 
define aggregation operators must be considered in connection with different 
other useful methods [1,6,8,10,19]. 
(CR3) A very useful application of the mathematical method presented by 
Theorem 2.12 is to solve multiple criteria optimization mathematical models in 
Economical Planning [12–14, 19]. One can extend the previous results to the case 
of Economic Planning with limited resources formulated as multiple objective 
discrete optimal control problems. For this purpose, we remark that the use of 
Matlab is also a good instrument to test and elaborate new useful algorithms based 
on the application of Theorem 2.12. 
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