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A NEW METHOD FOR SOLVING PARETO
REAL VECTOR OPTIMIZATION PROBLEMS

Mircea SULARIA Y, Marius BREBENEL"

Any Pareto real vector optimization problem is equivalent with a Pareto
Real Vector Maximization (PRVMax) problem. In this paper we present a new
method for solving PRVMax problems. Then we attempt to show its practical
interest.
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1. Introduction

Vector Optimization (VO) is called alddultiple Criteria Optimization or
Multiobjective Optimization (MO). This is an important research subject which
deals with solving Multiple Criteria Decision Making (MCDM) problems.

In this paper, we consider the basic notion of Godel-Kleene Lattice (called
shortly GK-lattice). A concrete example of GK-lattice is the structure of GK-
lattice with the support set equal to the real closed interval [@,R] which will
be denoted by GK][0,1].

Then we present a second example of GK-lattice, namely the structure of
Real Godel-Kleene Lattice (called shortly RGKL). The notion of RGKL has been
introduced in the paper [20]. An RGKL is a special kind of GK-lattice associated
to the usual totally ordered real numbers set{Raving the support set equal to
R U {L, T}. We consider a Pareto real vector maximizationyd) problem
together with a finite family of real objective functions. We present a new
mathematical method to solve this P-rvm problem. The idea of this method has
been mentioned in the paper [21]. The consideration of this method is
indispensable to solve the Pareto real Vector Optimization using known methods
of real scalar optimization problems constructed using real exponential operators.
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We combine the finite family of real criterion functions in a unique real
criterion function of maximization based on the use oPatial Universal
Algebra extending the RGKL and which is defined using the basic structure of the
Real Numbers Ordered Field together with a special finite family of power
functionsa®, with a € (1, +0) ¢ R. One constructs a special real maximization
problem with the unique real criterion function of maximization previously
mentioned. The solution of this special real maximization problem is a Pareto
maximal point of the initial P-rvm problem. This method to solve P-rvm problems
can be easily implemented on computers. We consider a simple example to
illustrate the corresponding algorithm using the software Mathematica 6.01.

It is recommended in practice to use Mathematica, which is very efficient.
One can realize in a relatively short time different experiments for applications.
Some potential practical applications are also considered in the paper.

2. A description of the basic mathematical results

In this paper we suppose known some basic results from real mathematical
analysis[ 3,711151718]. Let (R # [J0,1<) be the complete linearly ordered field
of real numbers.

We will use the compact real numbers extended c{iifx,0,T), where
O=-c0 (mMinus infinite) andT =+« (plus infinite) are two constants such that
(DOR,TOR,0#T), the support seR is defined by the union between the Ret
and the set of two elemenis=-» and T =+ such that

(1.1) < is an order relation on the sBt defined by the following condition:
(1.2) (0 v VIR) i€ v (u vOR andusv)or (u=0) or (v=T).

Let ([ 0] <,01)be the unit chain of real numbers, where the support set is
the unit real numbers interval:

(1.3) [01]={xOR |0 x<1}.
(1.4) < is the usual order relation on R.
(1.5) 0 is the real number “zero” aridis the real number “one”.
Let m,nON be natural numbers such that-2.
Let f be a function, defined on a nonempty compact subseR ",
(1.6) f =(f,,f,,....f.,): X ~ R™, such that for any point € X, we have
1.7) f(X=(£(¥, 5 (X).... f,, (X)) TR™.
A Pareto maximum point of f on the set X is any elemen®xsuch that

the corresponding poin{>o) € f(X) is a maximal element of the partial ordered
subsetf(X), <") of the usual ordered real vector space™( <").
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We suppose that the componentyf, : X - R)i:ﬁn of the functionf are

continuous real functions defined ot The problem to determine a Pareto
maximal point of the functiondn the set Xs called a PRVMax problem.

We present a new method for solving PRVMax problems based on the use
of real exponential functions. We define a special family of order isomorphisms
between the two chain(sﬁ ,E,D,T) and ([ 04.<,01). We prove that for any finite
sequence of meal parameters,

1.8) a=(a.a,..a,)0(L+o)" OR™,
there exists a real function
(1.9) ¢u(f): X — L1, X = ¢u(f)(X)
such that any global maximization point of the function (1.9Xas a solution of
the previously mentioned PRVMax problem.
The definition of the function (1.9) is based on the usenakal exponential
functions and its expression is the following
m 1
(1.10) ¢a(f)x)= |_|i=1(1‘m] HxHX
Two interesting applications of this new method are suggested. An application is
to solve multiple objectives optimal economic planning problems [12-14]. A
second application is to solve multiple criteria discrete optimal control.

For the both previously mentioned applications one can use the software
instruments Matlab [23] or Mathematica [24] via global optimization [16]. We
present a simple example based on Mathematica 6.0.1.

3. The real Godel-Kleene lattice

In this section we will consider a special ordered algebraic structure,
which will be calledReal Gédel-Kleene LatticlRGKL). Then we formulate the
notion of Pareto Real Vector Optimization Problem (PRVOP).

Definition 2.1 Let A be an algebraic structure with the support Aet
together with three binary operations/,= on A
Az Ax A= Alxy)- xAy, Vi Ax A= A(xy)- xVy,
—=: Ax A~ A,(xy)~ x=y, a unary operation * oA, *: A~ A x> x* and two
constants{ L, T} O A such thatl#T.

The previous structurd is called aGodel-Kleene LatticGKL) or also arLK-
lattice LK[A] if the following conditions hold:
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(i) The structure(A AV =,1,T) is a Godel Lattice (GL), with the conjunction

operation/\, the disjunction operatioiv , the implication operatios>, the first
element L and the last elementt i.e. the next properties hold:
(GL1) The systen(A A\, L,T) is a bounded distributive lattice with the

binary infimum operation\, the binary supremum operation, the first element
1 and the last elemerntt.

(GL2) The binary operatior= on A satisfies the following condition
called the Implication Operator Conditioar the Heyting Condition

(C1) forall xyze A, z<x=y ifand only if zA\ x<y,
and the next condition called tlé@del Conditionor the Generalized Linearity
Condition,

(C2) for all x,yeA, (x=y)V(y=x)=T.

(i) The system(A AV, L,T) is a De Morgan lattice with the support et
together with its structure of bounded distributive latt(A AV, L,T) from
(GL1) and with the negation operator * i.e. the next properties hold:

(DM1) for all x,ye A, (xAy)”=x"V y";
(DM2) for all x€ A, (x?) = x ;
(DM3) 1°=T.

(iii) The operator : A-. A x— x* satisfies the next condition, called tKkeene
Condition:

(KC) for all x,ye A, x\ x’<yV y".

Remark 2.2 The notion ofGodel-Kleene Lattic GKL) from Definition 2.1
called alsoLK-lattice has been introduced by Antonio Monteiro in connection
with the study of the structure sfymmetric Heyting algebra (a Heyting algebra
together with a De Morgan negation). An LK-lattice is a symmetric Heyting
algebra (A AV ,=*,L,T) which in addition satisfieshe Generalized Linearity
Condition from Definition 2.1i§ (C2) andthe Kleene Condition (KC) from
Definition 2.1 (ii). A complete LK-lattices an LK-lattice such that its underlying
bounded lattice is a complete lattice. AK-chain is any LK-lattice such that it is

a totally ordered set with respect to its underlying order.

Remark 2.3 Let LK(z) be the class of all LK-lattices considered as algebras of

type  =(222100). Then LK () is a variety of algebras and its basic properties

are presented in [21]. A basic property is the following theorem: an LK-lattice is a
subdirect irreducible algebra LK(z) if and only if it is an LK-chain. It follows
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the next important property: any LK-lattice is isomorphic to a subdirect product of
LK-chains. In this paper we consider the problem to solve Pareto real vector
optimization problems. A special case of this kind of problem is the optimization
problems in fuzzy environments [4]. This kind of problems has been considered
by Bellman and Zadeh [2], which proposed a method to obtain their solutions
using a max-min operator of aggregation. This method is not satisfactory, because
the solutions are not in general Pareto optimal points.

Remark 2.4 1n this paper, we will obtain an improvement of the Bellmann-Zadeh
method based on the use of a Pareto aggregation operator family of LK-
iIsomorphisms between I[EJ and LK|[0,1], associated to a composition of

exponential functions on the real numbers figld

Remark 2.5 The structure dbddel latticeis a well known structure in algebra of
logic. For the first time, in connection with the notion of fuzzy set introduced by
Zadeh, Hajek proved that this structure is also of interesmathematical
foundation of fuzzy inference

Remark 2.6 The structure of MV-algebra is the algebraic foundation of many-
valued reasoning. The variety of Gddel MV-algebras is introduced. For any
complete Godel MV-algebra, there exists a structure of complete LK-lattice on its
underlying De Morgan lattice. This property holds, since the underlying De
Morgan lattice of any complete MV-algebra is a complete double Heyting algebra
satisfying in addition the Kleene conditiadl) from Definition 2.1 {ii).

The previous facts shows that thié-lattices are important algebraic structures
in many-valued logi¢20]. We introduce new basic notions which will be used in
the sequel.

Definition 2.7 A system of data for a multiple-criteria optimization modisl
defined by a quadrup (nmX,f), where nme N are natural numbers win >1
and m>2, X is a set such theX<cR", X #0 and f:X - R™ is a vector
function fromXto R™. The seX represents a set of alternatives with respect to a
decision making problem ar f =( f .1, .. f,,) is a sequence of real functions on
X, (f:X - R) called theobjective functionsof the optimization model. The
number n is the dimension of the arithmetical vector s R" =of alternatives and
the numbem represents the number of objective functions. (nmX,f) be a
system of data for a multiple-criteria optimization model. We consider on the set
R™ an order relation <" defined for any u=(y .4 ,..u,)SR™ and
vy % ...V, )ER" Dby the following condition: u<"v if and only if
u<yVvie{12,.m).

i=L,m °
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(i) A Pareto Maximal pointof the function f: X - R™ on the setX is any
element x,,, € X such thai f(x,,, ) is a maximal element of the partial ordered

set(f(x),=") i.e. the following condition holds:

(PM) (vx= X) [(xon) = £(x)= £ (xpu )= (x)).

(i) A Pareto Maximization problenwith respect t¢((nmX,f) is the problem to
determine a Pareto Maximal point of the funci f : X - R™ on the set X

(iii ) A system of data for an one-criteria maximization modela triple (n,X,¢),

where nE N, XS R"is a non-empty set ar¢: X - R is a real function called
the objective function An one-criteria global maximization problem with respect
to the system of dai(n,X,¢) is the problem to maximize the objective functipn
on the set Xe. to determine a poiix, € X such thag(x) <e(x,, ), ¥x< X.

We present an algebraic structBesuch that a solution of any Pareto
maximization problem with respect to a suitable system of (nmX,f) can be

found by solving an one-criteria global maximization problem with respect to
(nX,p), where the real functiom is obtained fromf by aggregation using a
special term ofS. The starting point is the next result, which establishes the
existence of a concrete isomorphism between the structures of LK-Iatth[ﬁJ LK
and LKJO,1].

Lemma 2.8 There exists an isomorphisé:R - [0,1] from LK|R]| onto
LK[O,1] defined in terms of the functicarctan by the following relation, for all
ue R=RU{LT}:

0 if u=Ll

olu)= %(EarctalfuﬁlJ if UER
T

1 if u=T

In this paper we will use a family of isomorphisms betwee [Ej(and LK[O,1]

defined in terms of a special concrete family of real exponential functions on the
commutative field of real numbeF [R]= (R ,+,0,1).

The idea of this definition has been presented in [21]. This fact is essential for the
foundation ofa new method to solve Pareto real maximization probleM&

will use special properties of the real numbers field. Now we present the general
notion of exponential function.
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Definition 2.9 An exponential function on a commutative fie(K,+D1) is an
operator orK, exp: K— K, x— exp(x), such that the next conditions hold, for all
xXye K:

(1) explx + y)= exfx) exply) ;

(2) exp(x) #0 ;

1
(3) expl-x)= ol

Definition 2.10 The real Godel-Kleene lattice-ordered partial field is the next pair
of structures: RGKLordF|R = (LK(R),F[R)) where LK[R] is the LK-lattice of

the extended real numbers che(R, S,1,T) and F[R]=(R,+501) is the
commutative field of real numbers. The real Godel-Kleene lattice-ordered partial
field with exponential operators is defined by the real Godel-Kleene lattice-
ordered partial field RGKLordF’[ﬁJ previously introduced together with the next

family of exponential functions on the field of real numbeig,+[0.1),
(exp, :R = R),4q), Where Vas(LT), exp,(x)=a* *ER ie. exp, is the
exponential function olR with a& (1T)=(1 + ).

Lemma 2.11 Let RGKLordP[:EJ be the pair of structures from Definition 2.10

together with the family of exponential functions dR presented also in
Definition 2.10. For evera< (L,T), exp, : R — R is an exponential function on

the field of real numberdR,+[J0,1) in the sense of Definition 2.9 and the
following properties holds:

(i) The image set of the exponential functierp, satisfies the next relation:
exp,(R)= (aT)=(0,+<9.

(i) The restriction ofexp, to its image,exp, : R — (0,+) , is an isomorphism
from the totally ordered commutative additive groip,+,0,<) onto the totally

ordered commutative multiplicative group of real numbers from the positive real
axis ((0+),011, <) with the inverse isomorphism given by the logarithmic

function log, : (0,409 — R, xi— log,x..
(i) For every exponentac<(1T), the next properties are satisfied in
RGKLordPAR:

. Define

(P1) Consider the functiorE, : R — (01), x— E,(x)= -
+a

aso the extended function
E.:R —[01), u— E,(u), where
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0 if u=L
E,(u)=1E,(u) if UER
1 if u=T

Then E, is an isomorphism fromK [EJ onto LK[O,1].
(P2) The functionEa is a probability distribution function of a random
variable X, such tha E, € C*(R) and its first derivative
e,=E,:R—R, x+—>ea(x)=i(1- ! j= a Ina2 JXER
dx 1+ ax (1+ ax)

is a density function of i.e.

KX <X =E(X :f e (f)dt, we R and ]ea(tﬁt=1

We present here a basic mathematical result expressing an efficient method to
solve on PC Computers specidreto Real Vector Maximization Mathematical
Programming Problems

Theorem 2.12 Let (nmX,f) be a system of data for a multiple-criteria
optimization model given as in Definition 2.1®uppose that the corresponding
set of alternativesX S R" is compact and the objective vector function
f=(f,f,..f,):X—>R™ is a continuous function on Xe. for every
i={12,...m), the component functic f, : X — R is a continuous real function on
the set XFor any m-sequence of real numbia=(3 3 ,..a,)< (1L,T)"and for
any index i={12,..m), let E, :R —(01) be the functior E, associated with

a €(L,T) introduced in Lemma 2.1{P1). We define an one-criteria global
maximization problem as in Definition 2(iii) by the triple (n,X,p,(f)), where
0,(f): Xx—(01), x— ¢,()(x) is the objective function defined by

900 =[] & (1) x.

Then the following conditions hold:
(i) The functiorg,( f): X — (03) is a continuous function on the compactXet

(i) Suppose the x, € X is a solution of the global maximization problem of the
function ,(f) on the compact séti.e.

(M) (PxE X) 0, (1)(x) <pa(F)xu)-
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Thenx,, is a Pareto maximal point of the vector funct f : X > R™ on
the compact sex.

Proof. (i) The property that the objective functiip,(f) is continuous follows

from the condition that the functic f : X = R™ is continuous otX and from the
fact that the functioig,(f): X — (01) is defined by the finite product of the next
family of m continuous functions on: X

E, = f - x —(01)) —, where for all ic {12...m), we have

i=1

(£ o 19 =E ({()wxe x.

Thus, Theorem 2.12)(holds.

(i) Regarding the poinx, from the property (ii) satisfying (M), we have to
prove also the next condition:
(P) The pointx,, is a Pareto maximal point of the functioorf the set X

For this purpose, suppose that the conditi®)ng false.
From Definition 2.7 i) it follows that the poin x,, is not a maximal element of

the ordered se( f(X),<) i.e. the condition®M) from Definition 2.7 {) is false.
Thus, there exist an eleme x, € X such tha f(x, ) <f(x,) and f(x, ) #f(x,).
This implies the relatior o, (f )(x\ )< ¢.(f)(%) for x € X, but from the property
(M) of the point x, , it follows that ¢,(f)(x)<e.(f)(x,), for x <X,
contradiction. Thus, Theorem 2.18 @lso holds.

The result obtained by Theorem 2.12 must be verified in practice. One can
view that the problem to solve Pareto vector optimization problems has been
reduced to the problem to solve concrete sequence of global optimization
problems, in order to obtain corresponding sequences of Pareto optimal points.

3. Concluding Remarks

(CR1) Theorem 2.18 shows that in some reasonable conditions, formany
sequence of numbe a=(3 a....a,,) € (L+°9, there exists an algebraic formula to

compose an raequence of real functior f =(f,f,.,f ): X > R"

such that by this composition one obtains a real funcg,(f): X — (01) with the
property that by the global maximization [5, 16]¢,(f) on the seK one obtains

a solution of the problem of Pareto maximizatiorf oh X. We mention that this
method can be easily programmed on Personal Computers. For this aim, one can
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use the software products Matlab [23] or Mathematica [24]. Using Mathematica
6.0.1, we present a simple example which justifies this affirmation.

Example. One can consider the problem to determine in the unity triahgé
the positive real plan&k? different Pareto maximal points of the identity vector
function, I ,: 4 — R?, defined as follows (vx = (x x,)€ 4 < R?) 1,,(x) = x,
where 4 O R? is defined by the following condition:
X +X, <1

(x.x,)E 4 ifand only if { x=0

X, 20
One can view that in this very particular case, we have the next characterization of
Pareto maximal points (I, on 4:
(C) ()éf,xE) is a Pareto maximal point 1, on 4 if and only if
(PM) x? >0,x; =0 andx;+ x5 =1.

We present now for this elementary problem, the application of the

method expressed by Theorem 2.12. The number of objective functions of
maximization ism = 2. We must to select different pairs of real expon(a,,a,)

such thata, >1 anda, >1. One determines the solution of the following global
maximization problem with a single criteria presented in Theorem 2.12,

ma{l- 1 Jtﬁl 1X J (x,x,)E 4 (GO). This solution represents just a
1+a! 1+ a2

Pareto maximal point ol, on 4. The previously mentioned propert€)(is
confirmed using Mathematica 6.0.1. The next three results are obtained by solving
the global maximization problenGQ). The next three particular choices of the
parameters are considered:

a,=3 anda,=3

. 1 1
NMaximize|{| 1- 1- X+ y<1 ,x=0,y=0 X,
H( 1+3Xj( 1+3VJ Y Y j{ y}j

Solution: {x = 0.5, y= 0.5}

a,=3 anda,=7

. 1 1
NMaximize|<| 1- 1- X+ y<1,x=0,y=04X,
{15 o) e 0 y20]

Solution: {x = 0.367544, ¥ 0.632456}.
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a,=7 and a,=3

NMaximizeH(l- ! j{l ! j,x+y<1,X>0,y>0j’{X7y}J

1+ 7 143
Solution: {x = 0.632456, ¥ 0.367544}}

(CR2) In practice, it is also of interest to satisfy some aspiration levels for the
values of the objective function: f,(x)=f", Vie {12,..m}, which can be
represented by a special fuzzy set [22],

n 2
y: X —[01),x- w(x)= exp{-Z(fj (x)- f, ) J

=1
This kind of problem is important to consider, when it is necessary to realize a
realistic compromise between objectives and resources in economical planning. In
this special case, one can define a unique objective fur y: X — [O;L) by the

relation y(x)= ¢, (f)(x)@(x), OxOX .

This manner, to combine probability distribution functions together with
membership functions using exponential operators in order to solve multiple-
criteria optimization, represents a good improvement of several known methods
for decision making in a fuzzy environment [2, 4]. We mention the fact that this
procedure of aggregation is very well suited for solving Pareto maximization
problems with two criteria. This case is important having practical applications
(please see for example [9]). For a numinesf criteria with m =3 this manner to

define aggregation operators must be considered in connection with different
other useful methods [1,6,8,10,19].

(CR3) A very useful application of the mathematical method presented by
Theorem 2.12 is to solve multiple criteria optimization mathematical models in
Economical Planning [12—-14, 19]. One can extend the previous results to the case
of Economic Planning with limited resources formulated as multiple objective
discrete optimal control problems. For this purpose, we remark that the use of
Matlab is also a good instrument to test and elaborate new useful algorithms based
on the application of Theorem 2.12.
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