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α-REDUNDANCY FOR INFINITE FRAMES
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This paper is concerned with the lower and upper redundancy of infinite

frames in a separable Hilbert space. For a given infinite frame, we introduce a new
quantitative notion of redundancy (α-redundancy), which is between its lower redundancy

and its upper redundancy and it is completely dependent on the number of repetitive

nonzero frame vectors.
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1. Introduction

The concept of frames in a Hilbert space was originally introduced by Duffin and
Schaeffer in the context of the non-harmonic Fourier series [7]. From the last decade, various
generalizations of the frames have been proposed such as frame of subspaces, pseudo-frames,
oblique frames, continuous frames, fusion frames, g-frames, and so on. The concept of equal
norm Parseval frames on finite-dimensional Hilbert spaces was first introduced by Casazza
and Leonhard in [5] and it been developed very fast over the last ten years, especially in the
context of wavelets and Gabor systems.

Given a separable Hilbert space H with inner product 〈., .〉, a sequence {fk}∞k=1 is
called a frame for H if there exist constants A > 0, B <∞ such that for all f ∈ H,

A ‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ B ‖f‖2 , (1)

where A,B are respectively the lower and upper frame bounds. The second inequality of
the frame condition (1) is also known as the Bessel condition for {fk}∞k=1. {fk}∞k=1 is called
a tight frame, if A = B. A sequence {fk}∞k=1 in H is called a frame sequence in H, if it is a
frame for span {fk}∞k=1.

The bounded linear operator T defined by

T : `2 (N)→ H, T {ck}∞k=1 =

∞∑
k=1

ckfk

is called the pre-frame operator or synthesis operator of {fk}∞k=1. Also the bounded linear
operator S defined by

S : H→ H, Sf =

∞∑
k=1

〈f, fk〉 fk

is called the frame operator of {fk}∞k=1. A Riesz basis for H is a family of the form {Aek}∞k=1,
where {ek}∞k=1 is an orthonormal basis for H and A ∈ B (H) is an invertible operator. Every
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Riesz basis for H is a frame for H. Two frames {fk}∞k=1 and {gk}∞k=1 are dual frames for H

if

f =

∞∑
k=1

〈f, fk〉 gk =

∞∑
k=1

〈f, gk〉 fk, ∀f ∈ H.

The frame
{
f̃k

}∞
k=1

defined by f̃k = S−1fk is a dual frame of the frame {fk}∞k=1 that is

called canonical dual frame of {fk}∞k=1.
A tight frame with frame bound 1 is called a Parseval frame. Parseval frames are

useful in applications, as they provide the decompostion

f =

∞∑
k=1

〈f, fk〉 fk, ∀f ∈ H.

The sequence
{
S
−1
2 fk

}∞
k=1

is a Parseval frame for H, if {fk}∞k=1 is a frame for H with

frame operator S[6]. A frame {fk}∞k=1 is a unit norm frame if ‖fk‖ = 1 for all k. For more
information concerning frames refer to[1, 4, 6, 8, 9, 10].

Frames are redundant sets of vectors in a Hilbert space, which yield one natural repre-
sentation of each vector in the space, but may have infinitely many different representations
for any given vector. It is this redundancy that makes frames useful in applications. In
signal processing, this concept has become very useful in analyzing the completeness and
stability of linear discrete signal representations.

The number of frame vectors per dimension is defined as the redundancy of a frame
in the finite-dimensional setting which is not an unsatisfactory definition. A more precise
quantitative notion of redundancy for finite frames (lower and upper redundancies) has been
introduced in [2]. This quantitative notion of redundancy is generalized to infinite frames
in [3].

In this paper, we introduce a new quantitative notion of redundancy (α-redundancy)
for infinite frames, which is completely dependent on the number of the repetitive nonzero
frame vectors and we discuss some of its properties.

2. α-redundancy

Bodmann, Casazza, and Kutyniok introduced a quantitative notion of redundancy
for finite frames, and Cahill, Casazza, and Heinecke generalized it to infinite frames.

Definition 2.1. [3] Let {fi}∞i=1 be a frame for Hilbert space H. The redundancy function
of F is defined on the unit sphere S := {x ∈ H; ‖x‖ = 1} in H by

RF : S→ R+, RF (x) :=

∞∑
i=1

‖P<fi>(x)‖2,

where P<fi> is the orthogonal projection onto < fi >:= span{fi}.
The upper and lower redundancy of F are defined by

R+
F := sup

x∈S
RF (x) and R−F := inf

x∈S
RF (x) ,

respectively.
Moreover, F has a uniform redundancy, if R−F = R+

F .

The properties of lower and upper redundancy for infinite frames can be found in [3,
Theorem 3.1].
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Since zero vectors have no effect on redundancy, throughout this paper, we assume that
fi 6= 0, for all i ∈ N. Thus

RF (x) :=

∞∑
i=1

|〈x, fi〉|2

‖fi‖2
.

The next example is a motivation to define a new quantitative notion of redundancy for
infinite frames. Before it, we need the next lemma.

Lemma 2.1. If RF (x) =
∑∞
i=1 ci |〈x, ei〉|

2
,∀x ∈ S, for some orthonormal basis {ei}∞i=1 and

sequence {ci}∞i=1 of positive numbers such that {ci}∞i=1 has only a finite number of values,

then R−F = c and R+
F = C, where c = mini∈N ci and C = maxi∈N ci.

Proof. For all x ∈ S we have c ≤ RF (x) ≤ C. Thus c ≤ R−F ≤ R+
F ≤ C. On the

other hand there is j, k ∈ N such that c = cj and C = ck. Thus R−F ≤ RF (ej) = c and

R+
F ≥ RF (ek) = C. �

Example 2.1. Let {ei}∞i=1 be an orthonormal basis for H and let Fk := {e1, e1, e2, e2, . . . , ek,
ek, ek+1, ek+2, . . . }, for any k ∈ N. Then for all x ∈ S, we have

RFk (x) = 2 |〈x, e1〉|2 + 2 |〈x, e2〉|2 + · · ·+ 2 |〈x, ek〉|2 + |〈x, ek+1〉|2 + . . . ,

which implies R−Fk = 1 and R+
Fk

= 2, for all k ∈ N by Lemma 2.1.

Thus R−Fk and R+
Fk

are independent of k and hence the repetitive elements do not have
complete effect on the lower and upper redundancy of Fk.

For a given infinite frame, we introduce a new quantitative notion of redundancy
(α-redundancy), which is between its lower redundancy and its upper redundancy and it is
completely dependent with the number of the repetitive nonzero frame vectors.

Definition 2.2. A redundancy coefficient function is a strictly increasing continuous func-
tion α of [0,∞) onto [0, 1) such that α (0) = 0 and lim

t→∞
α (t) = 1.

We assume that α be strictly increasing continuous function of [0,∞] onto [0, 1] by α (∞) :=
lim
t→∞

α (t) = 1.

Example 2.2. The functions α (t) := t
1+t and β (t) := 1 − e−t are redundancy coefficient

functions.

It is easy to show that if α and β are redundancy coefficient functions, then so are
αβ, min (α, β) and max (α, β).

Definition 2.3. Let F = {fi}∞i=1 be a frame for H with lower and upper redundancy R−F
and R+

F < ∞, respectively and let α be a redundancy coefficient function as above. The
α-redundancy function associated to F is the function

RαF : [0,∞]→ R, RαF (t) := R−F +
(
R+

F − R−F
)
α (t)

and the α-redundancy of F is RαF := RαF (nF), where
nF := card {i; fi is repetitive nozero vector} with nF :=∞, if
{i; fi is repetitive nozero vector} is infinite set.

Example 2.3. Let α be a redundancy coefficient function and let Fk be the frame in Example
2.1, for any k ∈ N. Then RαFk = 1 + α (2k). If F∞ := {e1, e1, e2, e2, . . . }, then we see that
RαF∞ = lim

k→∞
RαFk .
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Example 2.4. Let {ei}∞i=1 be an orthonormal basis for H and 0 < δ < 1. Let Fδ = {fi}∞i=1

be the unit norm frame for H defined by f1 = f2 = e1 and

f2i−1 :=

√
1− δ

2
ei +

√
1 + δ

2
ei+1, f2i :=

√
1− δ

2
ei −

√
1 + δ

2
ei+1

for any integer number i ≥ 2. Using parallelogram law for complex numbers we have

RFδ (x) = 2 |〈x, e1〉|2 + (1− δ) |〈x, e2〉|2 + 2 |〈x, e3〉|2 + 2 |〈x, e4〉|2 + . . . ,

for all x ∈ S, which implies R−Fδ = 1 − δ and R+
Fδ

= 2 by Lemma 2.1 and hence RαFδ =

1− δ + (1 + δ)α (2), for any redundancy coefficient function α. If

F0 :=
{
e1, e1,

√
1
2e2 +

√
1
2e3,

√
1
2e2 −

√
1
2e3,

√
1
2e3 +

√
1
2e4,

√
1
2e3 −

√
1
2e4, . . .

}
, then we

see that RαF0
= 1 + α (2) = lim

δ→0
RαFδ .

Example 2.5. If F = {fi}∞i=1 is a C-equal norm A- tight frame, then for all x ∈ S,

RF (x) =

∞∑
i=1

|〈x, fi〉|2

‖fi‖2

=
A

C2

and hence R−F = R+
F = A

C2 . Thus for any redundancy coefficient function α, the α-
redundancy function associated to F is the fixed function

RαF : [0,∞]→ R, RαF (t) =
A

C2

and the α-redundancy of F is RαF = A
C2 .

Properties of α-redundancy are given in the following proposition.

Proposition 2.1. Let F,F1,F2 be frames for H and let E be an orthonormal basis for H.
Then for any redundancy coefficient function α we have

a) RαF (0) = R−F , RαF (∞) = R+
F and range (RαF) =

[
R−F ,R

+
F

]
,

b) F has uniform redundancy if and only if the α-redundancy function associated to F is a
fixed function,
c) range

(
RαF1∪F2

)
⊆ range

(
RαF1

)
+ range

(
RαF2

)
. In particular, if F1 and F2 have uniform

redundancy, then range
(
RαF1∪F2

)
= range

(
RαF1

)
+ range

(
RαF2

)
,

d) range (RαF∪E) = 1 + range (RαF),
e) For any unitary operator U ∈ B (H) we have RαU(F) (t) = RαF (t), for all t ∈ [0,∞]. In

particular, we have RαU(F) = RαF,

f) For any permutation π on N, we have Rα{fπ(i)}∞i=1

(t) = Rα{fi}∞i=1
(t), for all t ∈ [0,∞]. In

particular Rα{fπ(i)}∞i=1

= Rα{fi}∞i=1
,

g) For any sequence {ci}∞i=1 of nonzero complex numbers, we have Rα{cifi}∞i=1
(t) = Rα{fi}∞i=1

(t),

for all t ∈ [0,∞]. In particular Rα{cifi}∞i=1
= Rα{fi}∞i=1

.

Proof. Parts a and b follow from definition of α-redundancy function associated to given
frames.
Proof c) Let λ ∈ range

(
RαF1∪F2

)
. Then λ = RαF1∪F2

(t), for some t ∈ [0,∞]. Thus

R−F1
+ R−F2

≤ R−F1∪F2
≤ RαF1∪F2

(t) = λ ≤ R+
F1∪F2

≤ R+
F1

+ R+
F2
,
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which implies λ ∈
[
R−F1

,R+
F1

]
+
[
R−F2

,R+
F2

]
= range

(
RαF1

)
+ range

(
RαF2

)
. In particular, if

F1 and F2 have uniform redundancy, then

range
(
RαF1∪F2

)
=
{
R−F1∪F2

}
=
{
R−F1

+ R−F2

}
=
{
R−F1

}
+
{
R−F2

}
= range

(
RαF1

)
+ range

(
RαF2

)
.

Proof d) range (RαF∪E) =
[
R−F∪E,R

+
F∪E

]
=
[
1 + R−F , 1 + R+

F

]
= 1 +

[
R−F ,R

+
F

]
= 1 +

range (RαF).
Parts e, f and g follow from definition of α-redundancy function associated to given

frames and invariance of lower and upper redundancy under application of unitary operators
on frame vectors, scaling of the frame vectors and permutations of frame vectors[3, Theorem
3.1]. �

The relation of RαβF , R
max(α,β)
F and R

min(α,β)
F with RαF and R

β
F is given in the following

proposition.

Proposition 2.2. Let F be frame for H with R+
F < ∞. Then for any pair of redundancy

coefficient functions α and β, we have

a) R
αβ
F (t) ≤

√
RαF (t)RβF (t), for all t ∈ [0,∞]. In particular R

αβ
F ≤

√
RαFR

β
F,

b) R
max(α,β)
F (t) = max

(
RαF (t) ,RβF (t)

)
, for all t ∈ [0,∞]. In particular R

max(α,β)
F =

max
(
RαF,R

β
F

)
,

c) R
min(α,β)
F (t) = min

(
RαF (t) ,RβF (t)

)
, for all t ∈ [0,∞]. In particular, we have R

min(α,β)
F =

min
(
RαF,R

β
F

)
.

Proof.
Proof a) For any t ∈ [0.∞], we have(

R
αβ
F (t)

)2

=
(
R−F +

(
R+

F − R−F
)
α (t)β (t)

) (
R−F +

(
R+

F − R−F
)
α (t)β (t)

)
≤
(
R−F +

(
R+

F − R−F
)
α (t)

) (
R−F +

(
R+

F − R−F
)
β (t)

)
= RαF (t)RβF (t) .

Thus

R
αβ
F (t) ≤

√
RαF (t)RβF (t). In particular, R

αβ
F (nF) ≤

√
RαF (nF)RβF (nF), which implies

R
αβ
F ≤

√
RαFR

β
F.

Proof b) For any t ∈ [0.∞], we have

R
max(α,β)
F (t) = R−F +

(
R+

F − R−F
)

max (α, β) (t)

= max
(
R−F +

(
R+

F − R−F
)
α (t) ,R−F +

(
R+

F − R−F
)
β (t)

)
= max

(
RαF (t) ,RβF (t)

)
.

In particular, R
max(α,β)
F (nF) = max

(
RαF (nF) ,RβF (nF)

)
, which implies

R
max(α,β)
F = max

(
RαF,R

β
F

)
. The proof of part c is similar to part b. �

For any x ∈ R the least integer greater than or equal to x is denoted by dxe.
The relationship between RαF and linearly independent subsets of F, is given in the next
proposition.
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Proposition 2.3. Let F be frame for H with R+
F <∞ and let α be a redundancy coefficient

function. Then there exists t0 ≥ 0 such that F can be partitioned into dRαF (t0)e linearly
independent sets. In particular t0 can be chosen as

t0 :=

 nF
⌈
R+

F

⌉
− 1 < R−F ,

α−1

(
dR+

Fe−R−F−1

R+
F
−R−

F

)
o.w.

Proof. If
⌈
R+

F

⌉
− 1 < R−F , then

⌈
R+

F

⌉
− 1 < R−F ≤ RαF (nF) ≤ R+

F ≤
⌈
R+

F

⌉
and hence

dRαF (t0)e =
⌈
R+

F

⌉
for t0 = nF. Otherwise there exists t0 ≥ 0 such that α (t0) =

dR+
Fe−R−F−1

R+
F
−R−

F

.

Thus
⌈
R+

F

⌉
− 1 = RαF (t0) ≤ R+

F ≤
⌈
R+

F

⌉
and hence dRαF (t0)e =

⌈
R+

F

⌉
. Now the result is

obtained by [3, Theorem 3.1]. �
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