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PLANE WAVES IN GENERALIZED MAGNETO-THERMO-
MICRO-STRETCH ELASTIC SOLID FOR MODE-I CRACK
PROBLEM

Mia OTHMAN' , Sarhan Y. ATWA? Adnan JAHANGIR® Aftab KHAN*

The aim of this paper is to study the effect of magnetic field on wave
propagation in generalized thermo micro-stretch for a homogeneous isotropic
elastic half space solid whose surface is subjected to a mode-I crack. The normal
mode analysis is used to obtain the exact expressions for the field variables i.e.,
displacement components, temperature distribution, force stress and microstress in
the presence of magnetic field. It is seen that on the displacement, temperature and
normal stress distribution magnetic field has decreasing and increasing effect in
with and without energy dissipation respectively.

Keywords: Green and Naghdi theory. Energy dissipation. Thermoelasticity.
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1. Introduction

The effect of magnetic field on wave propagation in elastic solid was
introduced by using Maxwell’s equations. In the context of generalized
thermoelasticity Nayfeh and Nemat-Nasser [1] studied the propagation of plane
waves in solid under influence of electromagnetic field. Choudhuri [2] extended
these results to rotating media.

Eringen [3] introduced the theory of microstretch elastic solids. That
theory is a generalization of the theory of micropolar elasticity [4-6]. The material
points of microstretch elastic solids can stretch and contract independent of their
transformations. The microstretch is used to characterize composite materials and
various porous media [7]. The basic results in the theory of microstretch elastic
solids were obtained in the literature [8-10]. The theory of thermo-microstretch
elastic solids was introduced by Eringen [11]. The asymptotic behavior of the
solutions and an existence result were presented by Bofill and Quintanilla [12]. A
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reciprocal theorem and a representation of Galerkin type were presented by De
Cicco and Nappa [13]. De Cicco and Nappa [14] extended the linear theory of
thermo-microstretch elastic solids to permits the transmission of heat as thermal
waves at finite speed. The theory is based on the entropy production inequality
proposed by Green and Laws [15]. In [14], the uniqueness of the solution of the
mixed initial-boundary-value problem is also investigated. The basic results and
an extensive review on the theory of thermo-microstretch elastic solids can be
found in [11].

The normal mode analysis was used to obtain the exact expression for the field
variables that are displacement components, temperature, stresses and microstress
distributions.

The purpose of the present paper is to check the effect of magnetic field on the
field variables. The problem of generalized thermo-microstretch in an infinite
space weakened by a finite linear opening mode-I crack is solved for the above
field variables. The distributions of the considering field variables are represented
graphically. A comparison is carried out for both with and without energy
dissipation and these effect was known as Green Naghdi theories [16, 17] named
GN-IT [17] and GN-III [16] for the propagation of waves in semi-infinite
microstretch elastic solids.

2. Formulation of the Problem:

The regionz > 0 is occupied by linear isotropic microstretch elastic solid.
We wuse a rectangular coordinate system(x,y,z)having origin on the
surface y = 0 and z-axis pointing vertically into the medium. A magnetic field with
intensity H = (0,H,),0) , acting parallel to the boundary plane (taken as the direction

of the y-axis). The surface of the half-space is subjected to a thermal shock which
is a function of zandt. Thus, all the quantities considered will be functions of the
time variable t, and of the coordinates x andz. We begin our consideration with
linearized equations of electro-dynamics of slowly moving medium [18].

J=curl h—gyE,,
curl E=— yoh,
E=—po(UxH),
V.h=0.
The equation of motion in the presence of Lorentz force is as follows.
Oim,m +Fi = puj, 2
when R =u(IxH)j, 1=1,2,3. 3)

(M
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The basic governing equations of linear generalized thermo-elasticity in the
absence of body forces are taken from [19]

A+ )(i i) +u +k)(82u+22u) e +20%(§—;721+F1=p22,
(ﬂ+u><§§z+gzzvz”>+( )(@ @5 O2.12,% Ag}a:piy,
(a+B+y )V(V.) -y Vx(Vx@)+k(Vxt ) -2k ¢ = ]pztzf 4)
%V2¢*—;4¢*—;%(V-U)+;?1T=§pjig,

K'VAT +KV2T = pCe T + 7Ty i +71T05§.

ai| Z(ﬂocﬂ* +/1Ur,r)5i| +(u+k)up i+ pup =Ko =7T 6y,

My =@ ( Sit + Lo+ 7 Pis
. )
h=ayp;,
1
€ij =5(ui,,— +uj)
where 4, is magnetic permeability; €, is electric permeability; h is the induced

magnetic field vector; Eis the induced electric field vector, J is the current
density vector; T is the temperature above the reference temperature T, chosen so

that |(T—TO) / T0| <1, A, p are the counterparts of Lame’s parameters, the
components of displacement vector u are U;, tis the time, o; j are the components
of stress tensor, eis the dilatation, g; are the components of strain tensor, j is the
micro inertia moment, K,a, 3,7 are the micropolar constants, &, 4y, 4; are the

microstretch elastic constants, ¢ is the scalar microstretch, ¢is the rotation
vector, mjj is the couple stress tensor,djjis the Kronecker delta,sjjy is the

alternate tensor, the mass density is p, the specific heat at constant strain isC, the

thermal conductivity is K (>0) and Kis the material characteristic.
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Where 7 =(GA+2u+K)ay . fi=Gi+2u+K)a , e=29+W g
1 2 OX 01
5 52 2
\% =t The state of plane strain parallel to the xz -plane is defined by.
ox~ 0z

U =u(X,2,t),uy =0, U3 =W(X,2,t), d =3 =0, o = (x21), @ =9 (X,Z,1)
and h=—H(0,e,0). The constants 7 and 7; depend on the mechanical as well as

the thermal properties of the body and the dot denote the partial derivative with
respect to time, & , 0 are the coefficients of linear thermal expansions.

Component of electric intensity and current density is represented as,

oe oe :
E=- Ww,0,u),J=(H ,0,-Hy—) — ¢ E,
Ho Hy (= )s ( 05, Oax) 0

External force can be represented as,
oe oe
F= ugHE | = — &g uoli, 0, — — &g oW |. 6
Ho O[@X 0 Ho 5,  S0to ] (6)

For convenience, the following non-dimensional variables are used:

P o T _ % _

Using Eq. (7), Egs. (4) become (dropping the bar for convenience)

<u+k)vzu+((ﬂ+ﬂ) Ry e K 22 A op- a_T:ﬂz@

P& pes X pc} 07 pef Ox Ox o

1 2

pC pC 02 o ox pd oz oz U

); ®)

jpc% 82(/)2 =V2¢2_2kc§ kc2 (8u _ow
y o at? yo 0z ox

ﬁ 2_ i _i)
2 2

C2 [0 at

T o T 62T o0
G+ e G+ )= THg 6+
ox* oz x> ozt ot
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Assuming the scalar potential functions R(X,z,t) andy (X, z,t)defined by the

relations in the non-dimensional form:
LR L W OR Y i givese = V2R, 9)
oX 0z 0z OX

Using Eq. (9) in Egs. (8), we obtain.
202 2. O° *
[a°Ve - p aoat—z]R—aoT-l‘ a0 =0,
2 . &
[VZ-p"a at—2]W — a3, =0,

u

2
2 0 2
[V®-2a4 —a; a'[2](p2+a4v w =0, (10)

2 0° . 2
[a6V —3.7—8?](0 —agv R+a9T =0,

82V2T +€3V2T: T.+€1 VzR +846L.

ot
2 2 2
\Y% H % 2 24
where ¢?= ! ,ﬁzzTAH,VK:m,RH =4 =% 2_A
Ho & c P (o) 3p] 9p ]
,\2 * * A A
2 _ 24 _ 7Ty __K __ Ko AR
GG=0:> 817 2 27 20 837 70 Y4aT5 a5
9] P~ CeCy p CeCy P CeCy P Cg 0 C)
A+2u+k o c? c? k
cf:—ﬂ,a:HRHaO,aO:—é,a]: ! ,a, =22 4= ,
P Ci A+2u+k u+k u+k
kez pics . & ci : 27163
= %) 5 » ¢ =75 a; = *) 2 ag = *) and g =— *) (11)
Yo V4 C 97]60

3. Solution of the Problem by Normal Mode Analysis:

Decompose the physical variables in terms of normal mode analysis
method as follows,

(R, 0 02,00, T, 10620 =[Ri7,5", 3,51, M. T, 4 12 explet +ibx) (12)

Where[ R, 7, (Z*, 52 , il M| ,f,/TZ ](z) the amplitudes of the functionsew is a
complex andb is the wave number, by using Eq. (12), Egs. (10) become,
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(a*D*=A)R-a)T+a9 =0,
(D> - A7 23 7 =0,
(D% = Ay) @, + a4 (D% —b?)i7 =0, (13)
(36D>~ A))p" —ag(D? —b>)R +agT =0,
[2(D? ~b%) - 01T - 510% (D? ~bH)R - 2407 =0.

WhereD:di,Al=0:2b2+ﬁ2aoa)2 ,A2=b2+a2ﬂza)2,A3=b2+2a4+a5a)2,
z

Ay =b2a6 +ay + o, E=6H+85 0.
Eliminating %,,y,R ,Tand ¢ form Egs. (13), we get the following two ordinary

differential equations.

[ DS — AD* + BD? —c} { F?,T‘,gz*}(z) _0,
(14)
[ D*-g,D? +95J { @7} (2) =0.

This implies,

D2 —k2)(D2—k2)(D? -k} {R.T. 3 L(2)=0
(D2 —k?)(D? —k3)( 3){, ,40}(2) , 0
(D? ~k3)(D? —k3){@. 7} (2) = 0.

Where, krz( r=1,2,3,4,5)are the roots of the characteristic equation of Eqgs. (14).

A=011/€010> B=012/£010> C=013/¢910; 0 = ey 00’ 50,
9; =~ oA +ag0'b! 03 = ayeb” + aye” +8yE40, g = Ay + Ay — 853y,
05 = MAy - asau’, G =ag(eb’ +0P)+ A, Oy =eqa00+ Ay(eb” +07),
Og = 6‘18.6a)2b2 + A4£1a)2 — g0, g9 = €4a8a)b2 —81(02A4b2 ,
J10 = (860; +a510°). 011 =—36(¢0y —£10°03) + Y60 +ay G,
912 =79692 t 9791 —&¢99 + 9303, 913 =—9792 — 9399

By using Eq. (13) solution of Eq. (14), has the form
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. 3 -k.z
R=> Mbao)e I,
j=1

_ 3 -k z

T=)Hijm;(b,w)e I, (16)
j=1

ok 3 -k z

g =Y HyM(b,w)e I,

j=1

5 —k
and 5y = Y M(b.o)ye 1,
n=4 (17)

5 -k z
7= HyM (b,w)e .
n=4

Where, Hy; Z[kj4 ag610° —ka 98 _99]/[k14 a6g—k,-2 96+ 971,
Hy, =[ag(k} —b%)—ag Hy,1/Tagky - Ay, (18)
Hy, =a3/[k2—AJ.  and j=1,2,3andn=4,5.

4. Boundary Condition for Mode-1 Crack:

The plane boundary subjects to an instantaneous normal point force and
the boundary surface is isothermal, the boundary conditions at the vertical plan
y =0 and in the beginning of the crack, at z =0 are as follows:

(1) Mechanical boundary condition is that the surface of the half-space

obeys,
Oxx =-p(2), |Z|< a,
oy, =0 —0<Z<0
Xe = ’ (19a)
0,, =0, —0<Z<00,
A, =0 —0<Z<o0,

(2) Thermal boundary condition is that the surface of the half-space subjects
to a thermal shock,

T=f(), |F<a (19b)
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We obtain the non-dimensional expressions for the displacement components,
force stress, coupled stress and temperature distribution of the microstretch
generalized thermoelastic medium as follows,
3 -k jz 5 —knz
= Z |ij(b,a>)e - an3nMn(b,a))e ,
j=1 n=4 (20)
3 —k.z -k z
W==3 kM bae i3 ibH3Mp(b,0)e N,
j=1 n=4

5
Fxx = 2. SirM (b, @) 77,
r=1
B) —k z
EZZ :ZSZer(b’w)e ' ’
r=1
) s s (21)
GXZ:ZSSer(b’a))e ' ’
r=1
-k z
Z a15k M (b w)e n,
3 z
z —kjajgHy M j(b,@) e~ k2,
where
a a C12 A _u+k a k a Yo' aoa)*
10:—2’ 11= 2’12 2,13 )14: ’15_ 4)16_ 3
pCs C3 pCs pC3 pCs pCy pC3
2 2 i
Sij=ayoHyj —b* ay; +kya, —Hyj, Sin =ib(=ay; +a5) knHsp
2 2 i
Szj:a10H2j+kja11—b alZ_Hlj’ SZn:'b(all_alz)an3n’

S3j=—ib(+a;3)kj, S3n=(ky+a3b*)H3y+ayy, j=1,2,3 and n=4,5.

Applying the boundary conditions (19) at the surface z=0 of the plane, we obtain
a system of five equations. These equations can be represented in matrix form as

under,
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Sti1 S12 S13 Sta S15 [ My -p
Sa1 S22 S23 Sy4 Sys || My 0 (22)
S31 S32 S33 S34 S35 || M3 = 0
—kiH21 —kayHpy  —k3Hp3 0 0 || My 0
Hyq Hyis Hys 0 0 M ; f

By applying inverse matrix operation one can find the values of unknown
constants My, n=1,2,3,4,5 and hence, obtain the expressions for the field
variables.

5. Particular Cases:
Case-1: Micropolar Effect without Stretch:

The corresponding equations for the medium can be obtained by putting,

a,=ig=A =4 =0. (23)
Case 2: Without Micropolar Effect:

To find field variables for without micropolar thermoelastic medium
adjust the constants as,

k=a=p=y=0. (30)
Proceeding on the same way as we did one can find the field.

6. Application and Discussions

We take a magnesium crystal [4] as the model material. Since, » is a complex
constant, we take w=w,+i¢ and set o, =-2.5and{ =1. The physical constants
used are:

2

2w, 2=9axiol kg m™ s72, 1, =203k,

p=174x10°kg m™,  j=02x10"
)

ﬂ:4.0X1011 kg m!s72 k=1x10!! kg m~! 5_2,7/=0.779><10_8 kg m 3_2,51 =1.78,

3 k=1 k=13x1074 k=1 z2=13,

-2 -2

5

& =11 =04, K =01x10 "Wm"~

2

wm—
29 =05x101 kg m™ 572 4 =0.1x107 kg m™! s
p=-12,t=0.1s, f =0.08,b=1.0.

To check the effect of magnetic field on considered variables we chose at random
two different intensities of magnetic field i.e,H =0and1000. Also with and

without energy dissipation i.e., under Green Naghdi theories II and III are

g =0.779x10 Y kg m~! s
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considered and showed their behavior in the graphs. The following graphs shows
the behavior of displacement componentw, temperature T , normal stress o,, and

microstress 4, in the presence and absence of magnetic field i.e.,H = 0and 1000 in

the context of GN-II and GN-III. Solid line and dashed line for GN-II
atH  =0and 1000, dashed with dot and dotted line are for GN-III

atH  =0and 1000 respectively

(1) (1-d)
It is observed that magnetic field has increasing effect on w,T and o, for GN-II and
decreasing effect for the case of GN-III. For the case of microstress distribution
magnetic field has dual effect.
Case-1: Micropolar Effect without Stretch
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These curves are representing the case of without stretching parameters, magnetic
field has decreasing effect on displacement component and temperature
distribution. Amplitude of normal stress distribution increased by increasing the
influence of magnetic field. The microstress distribution does not exist.

Case-2: Without Micropolar affect

(3-c) (3-d)
Magnetic field has decreasing effect on displacement component and temperature
distribution for both the theories of GN. Where as normal stresso, and

microstress A, has increasing effect in GN-II and decreasing effect in GN-III.
6. Conclusion

In this paper the effect of magnetic field on plane waves in a generalized
thermo-microstretch elastic media is studied. In this paper effect of H is also

been investigated for material i) without microstretch and ii) without micropolar
effect. The importance of this paper is to consider effect of magnetic field for
mode-I crack, taken as particular example for each case. We can obtain the
following conclusions according to the analysis above. The problem considering
effect of magnetic field in generalized thermo-microstretch elastic media can be
described by two characteristic equations of order six and four. Distributions of all
physical quantities throughout the medium depend on the nature of material.
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Variable quantities have a dual nature for magnetic field in majority of cases its
presence is having an increasing effect. All the curves obtained converge to zero
representing decaying of each and every field variable as distance from edge of
crack increases.
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