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CAYLEY INTERVAL-VALUED FUZZY GRAPHS

R. A. Borzooei1 , Hossein Rashmanlou2

The concept of Cayley fuzzy graphs was introduced by Namboothiri
in [9]. Akram in [1] defined interval-valued fuzzy graphs. In this paper, we
propose a class of Cayley interval-valued fuzzy graphs and then study its
various graph theoretic properties in terms of algebraic properties. More-
over, we define the concepts of α-connectedness, weakly α-connectedness,
semi α-connectedness, locally α-connectedness, quasi α-connectedness and
strength of connectivity in interval-valued fuzzy graphs and then investigate
these concepts in terms of algebraic properties.
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1. Introduction

The major role of graph theory in computer applications is the develop-
ment of graph algorithms. These algorithms are used to solve problems that
are modeled in the form of graphs and the corresponding computer science ap-
plication problems. A digraph is a graph whose edges have direction and are
called arcs. The Cayley graph was first considered for finite groups by Cayley
in 1878. Max Dehn in his unpublished lectures on group theory from 1909 to
1910 introduced Cayley graphs under the name Gruppenbid (group diagram),
which led to the geometric group theory of today. His most important ap-
plication was the solution of the word problem for the fundamental group of
surfaces with genus, which is equivalent to the topological problem of deciding
which closed curves on the surface contract to a point. The notion of fuzzy
sets was introduced by Zadeh [24] as a method of representing uncertainty and
vagueness. Since then, the theory of fuzzy sets has become a vigorous area
of research in different disciplines. In 1975, Zadeh [25] introduced the notion
of interval-valued fuzzy sets as an extension of fuzzy sets [24] in which the
values of the membership degree are intervals of numbers instead of the num-
bers. Akram et al. [1, 2, 3, 4, 5] defined interval-valued fuzzy graphs, regular
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bipolar fuzzy graphs, certain types of interval-valued fuzzy graphs, intuition-
istic fuzzy hypergraphs with applications and regularity in vague intersection
graphs and vague line graphs. Kaufmann’s initial definition of a fuzzy graph [6]
was based on Zadeh’s fuzzy relations [24]. Later Rosenfeld [16] introduced the
fuzzy analogue of several basic graph-theoretic concepts. Mordeson and Nair
[8] defined the concept of complement of fuzzy graph and studied some oper-
ations on fuzzy graphs. Wu [23] discussed fuzzy digraphs. Shahzamanian et
al. [17] introduced the notion of roughness in Cayley graphs. Namboothiri et
al. [9] discussed Cayley fuzzy graphs. Pal and Rashmanlou [10] studied irreg-
ular interval-valued fuzzy graphs. Also, they defined antipodal interval-valued
fuzzy graphs [11], balanced interval-valued fuzzy graphs [12], some properties
of highly irregular interval-valued fuzzy graphs [13] and a study on bipolar
fuzzy graphs [14]. Rashmanlou and Yong Bae Jun investigated complete inter-
val valued fuzzy graphs [15]. Samanta and Pal defined fuzzy tolerance graphs
[18], fuzzy threshold graphs [19], fuzzy planar graphs [20], fuzzy k-competition
graphs and p-competition fuzzy graphs [22] and irregular bipolar fuzzy graphs
[21]. In this paper, we introduce a class of Cayley interval-valued fuzzy graphs
and then study its various graph theoretic properties in terms of algebraic
properties. Moreover, we introduce the concept of α-connectedness, semi α-
connectedness and quasi α-connectedness in interval-valued fuzzy graphs and
then study these concepts in terms of algebraic properties.

2. Preliminaries

A digraph is a D∗ = (V,E), where V is a finite set and E ⊆ V ×V . Let G
be a finite group and let S be a minimal generating set of G. A Cayley graph
(G,S) has elements of G as its vertices; the edge set is given by {(g, gs) : g ∈
G, s ∈ S}. Two vertices g1 and g2 are adjacent if g2 = g1 ·s, where s ∈ S. Note
that a generating set S is minimal if S generates G but no proper subset of S
does. Let (V, ∗) be a group and A be any subset of V . Then the Cayley graph
induced by (V, ∗, A) is the graph G = (V,R) where R = {(x, y) : x−1y ∈ A}.
A fuzzy subset µ on a set X is a map µ : X → [0, 1]. A fuzzy binary relation
on X is a fuzzy subset µ on X × X. By a fuzzy relation we mean a fuzzy
binary relation given by µ : X ×X → [0, 1].

Definition 2.1. [9] Let (V, ∗) be a group and let µ be a fuzzy subset of V .
Then the fuzzy relation R on V × V defined by R(x, y) = µ(x−1 ∗ y) ∀x, y ∈ V
induces a fuzzy graph G = (V,R), called the Cayley fuzzy graph induced by the
(V, ∗, µ).
The interval-valued fuzzy set A in V is defined by A = {(x, [µA−(x), µA+(x)])
: x ∈ V }, where µA−(x) and µA+(x) are fuzzy subsets of V such that µA−(x) ≤
µA+(x) for all x ∈ V . For any two interval-valued sets A = {(x, [µA−(x), µA+(x)
]) : x ∈ V } and B = {(x, [µB−(x), µB+(x)]) : x ∈ V } we define:

A ∪B = {(x,max(µA−(x), µB−(x)),max(µA+(x), µB+(x))) : x ∈ V },
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A ∩B = {(x,min(µA−(x), µB−(x)),min(µA+(x), µB+(x))) : x ∈ V }.
For the sake of simplicity, we shall use the symbol A = [µA− , µA+ ] for the
interval-valued fuzzy set A = {(x, [µA−(x), µA+(x)]); x ∈ V }. If G∗ = (V,E)
is a graph, then by an interval-valued fuzzy relation R on a set E we mean an
interval-valued fuzzy set such that µB−(xy) ≤ min(µA−(x), µA−(y)), µB+(xy) ≤
min(µA+(x), µA+(y)) for all xy ∈ E. By an interval-valued fuzzy graph of a
graph G∗ = (V,E) [1], we mean a pair G = (A,R), where A = [µA− , µA+ ] is an
interval-valued fuzzy set on V and R = [µB− , µB+ ] is an interval-valued fuzzy
relation on E.

Definition 2.2. Let X be interval-valued fuzzy set. For any subset A and for
α ∈ [0, 1],
(i) {x|µA−(x) ≥ α, µA+(x) ≤ α} is called α-cut of A and it is denoted by Aα.
(ii) {x|µA−(x) > α, µA+(x) < α} is called strong α-cut of A and it is denoted
by A+

α .
(iii) Support of A is the set {x ∈ X|µA−(x) ≥ 0, µA+(x) > 0}. It is denoted
by supp(A). It can denoted as supp(A) = A+

0 , too.

3. Cayley interval-valued fuzzy graphs

The concept of a Cayley fuzzy graph has become a standard part of the
toolkit used to investigate and describe groups. It has become particularly
important in the study of infinite finitely generated groups, where the Cay-
ley fuzzy graph and related concepts provide a way to treat the group as a
geometric object. Also, Cayley fuzzy graphs are good models for intercon-
nection networks, and they are useful in semigroup theory for establishing
which elements are L and R related. In this section, we introduce Cayley
interval-valued fuzzy graphs and prove that all vertex transitive interval-valued
fuzzy graphs are regular. Also, we define the concepts of α-connectedness,
weakly α-connectedness, semi α-connectedness, locally α-connectedness, quasi
α-connectedness, and strength of connectivity in interval-valued fuzzy graphs.

Definition 3.1. By an interval-valued fuzzy digraph of a graph G∗ = (V,E)
we mean a pair G = (A,R), where A = [µA− , µA+ ] is an interval-valued fuzzy
set on V and R = [µB− , µB+ ] is an interval-valued fuzzy relation on E. An
interval valued fuzzy digraph G is said to be: (i) connected if for all x, y ∈ V ,
there is a directed path from x to y, (ii) weakly connected if (V,R ∨ R−1) is
connected, (iii) semi-connected if for all x, y ∈ V there is a directed path from
x to y or there is a directed path from y to x in G, (iv) locally connected if
for any x, y ∈ V there is a directed path from x to y whenever there is directed
path from y to x in G, (v) quasi-connected if for every pair x, y ∈ V , there
is some z ∈ V such that there is a directed path from z to x and there is a
directed path from z to y.

Definition 3.2. Let G be an interval-valued fuzzy digraph. The in-degree of
a vertex u in G is defined by ind(u) = (ind−µ (u), ind

+
µ (u)), where ind−µ (u) =
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u̸=v µB−(vu) and ind+µ (u) =

∑
u̸=v µB+(vu). Similarly, the out-degree of a

vertex u in G is defined by outd(u) = (outd−µ (u),
outd+µ (u)), where outd−µ (u) =

∑
u̸=v µB−(uv) and outd+µ (u) =

∑
u ̸=v µB+(uv).

An interval-valued fuzzy digraph in which each vertex has the same out-degree
r is called an out-regular digraph with index of out-regularity r. In-regular
digraphs are defined similarly.

Example 3.1. Consider a graph G∗ = (V,E) such that V = {v1, v2, v3, v4}
and E = {v1v2, v2v3, v3v4, v4v1}. Let A be an interval-valued fuzzy set of V and
let R be an interval-valued fuzzy relation on E which is defined by
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Figure 1. Interval-valued fuzzy digraph G

By routine computations, it is easy to see that G = (A,R) is an interval-
valued fuzzy digraph. Also, we have ind(v1) = (0.1, 0.2), outd(v1) = (0.2, 0.3),
ind(v3) = (0.2, 0.3), outd(v3) = (0.1, 0.3). It is easy to show that G is both con-
nected and semi-connected but it is not quasi-connected because if we consider
two vertices v1 and v3, then there is no vertex which has a directed path to both
v1 and v3. Clearly, G is locally connected.

Definition 3.3. Let (G, ∗) be a group and let S be a non-empty finite subset
of G. Then the Cayley interval-valued fuzzy graph G = (V,R) is an interval
valued fuzzy graph with the vertex set V = G and the interval valued fuzzy
relation R(x, y) on V which is defined by

R(x, y) =
(
µA−(x−1y), µA+(x−1y)

)
, x, y ∈ G and x−1y ∈ S

which A = (µA− , µA+) be an interval valued fuzzy subset of V .

Example 3.2. Consider the group Z4 and take V = Z4. Define µA− : V →
[0, 1] and µA+ : V → [0, 1] by µA−(0) = 1, µA−(1) = 0.5, µA−(2) = 0.4,
µA−(3) = 0.3, µA+(0) = 1, µA+(1) = 0.6, µA+(2) = 0.5, µA+(3) = 0.4. Then
the Cayley interval-valued fuzzy graphs G = (V,R) induced by (Z4,+, A) is
given by Table 1, Table 2 and Figure 2.
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Table1
a 0 0 0 0 1 1 1 1

b 0 1 2 3 0 1 2 3

(-a)+b 0 1 2 3 3 0 1 2

R(a,b) (1,1) (0.5,0.6) (0.4,0.5) (0.3,0.4) (0.3,0.4) (1,1) (0.5,0.6) (0.4,0.5)

Table2
a 2 2 2 2 3 3 3 3

b 0 1 2 3 0 1 2 3

(-a)+b 2 3 0 1 1 2 3 0

R(a,b) (0.4,0.5) (0.3,0.4) (1,1) (0.5,0.6) (0.5,0.6) (0.4,0.5) (0.3,0.4) (1,1)

"!
# 

"!
# 

"!
# 

"!
# 

(1, 1) (1, 1)

(1, 1)(1, 1)

-

?

-

?

�

6

�

6 @
@

@
@
@
@

@
@
@@R

@
@

@
@

@
@

@
@

@@I

�
�

�
�

�
�

�
�

��	

�
�

�
�
�
�

�
�
���

(05, 0.6)

(03, 0.4)

(04, 0.5) (04, 0.5)(04, 0.5)(04, 0.5)

(03, 0.4)

(05, 0.6)

(03, 0.4) (0.5, 0.6)

(03, 0.4) (0.5, 0.6)

0 1

32

Figure 2. Cayley interval-valued fuzzy graph

Note1: Observe that the Cayley interval-valued fuzzy graphs are actually
interval-valued fuzzy digraphs. Furthermore, the relation R in the Definition
3.3 describes the strength of each directed edge.
Note2: Symmetries in graphs and networks are closely related to the fields
of group theory (more specifically, permutation group theory) and graph the-
ory. Networks modelled on vertex-transitive graphs have been shown to be
very good in their balance of cost (measured by the degree of each vertex in
the network) against performance (how easy they are to disconnect, and the
efficiency of algorithms run on them). Vertex-transitive graphs also provide
a beautiful context in which to study many of the general problems of graph
theory; beautiful not only because of the symmetric pictures, but because of
the interactions with group theory, and permutation group theory in particu-
lar. We define an interval valued fuzzy graph G to be vertex-transitive, if for
x, y ∈ V , there is an automorphism f on G such that f(x) = y. Let G de-
note an interval-valued fuzzy graph G = (V,R) induced by the triple (V, ∗, A).
First, we will show that G is vertex transitive.

Theorem 3.1. The Cayley interval-valued fuzzy graph G is vertex transitive.
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Proof. Let u, v ∈ V . Define f : V → V by f(x) = vu−1x for all x ∈ V . Clearly,
f is a bijective map. For each x, y ∈ V , R(f(x), f(y)) = (Rµ−(f(x), f(y)), Rµ+

(f(x), f(y))). Now

Rµ−(f(x), f(y)) = Rµ−(vu−1x, vu−1y) = µA−
(
(vu−1x)−1)(vu−1y)

)
= µA−(x−1y) = Rµ−(x, y)

Rµ+(f(x), f(y)) = Rµ+(vu−1x, vu−1y) = µA+

(
(vu−1x)−1)(vu−1y)

)
= µA+(x−1y) = Rµ+(x, y).

Therefore, R(f(x), f(y)) = R(x, y). Hence f is an automorphism on G. Also,
f(u) = v. Hence G is vertex transitive. □

One of the most widely studied classes of fuzzy graphs is regular fuzzy
graphs. They show up in many contexts. Fore example, r-regular fuzzy graphs
with connectivity and edge-connectivity equal to r play a key role in designing
reliable communication networks. Now we show that every vertex transitive
interval-valued fuzzy graph is regular.

Theorem 3.2. Every vertex transitive interval-valued fuzzy graph is regular.

Proof. Let G = (V,R) be a vertex transitive interval-valued fuzzy graph and
u, v ∈ V . Then there is an automorphism f on G such that f(u) = v. Since

ind(u) =
∑
x∈V

R(x, u) =
∑
x∈V

(
Rµ−(x, u), Rµ+(x, u)

)
=

∑
x∈V

(
Rµ−(f(x), f(u)), Rµ+(f(x), f(u))

)
=

∑
x∈V

(
Rµ−(f(x), v), Rµ+(f(x), v)

)
=

∑
x∈V

(
Rµ−(y, v), Rµ+(y, v)

)
= ind(v),

and

outd(u) =
∑
x∈V

R(u, x) =
∑
x∈V

(
Rµ−(u, x), Rµ+(u, x)

)
=

∑
x∈V

(
Rµ−(f(u), f(x)), Rµ+(f(u), f(x))

)
=

∑
x∈V

(
Rµ−(v, f(x)), Rµ+(v, f(x))

)
=

∑
x∈V

(
Rµ−(v, y), Rµ+(v, y)

)
= outd(v).

Then G is regular. □
Theorem 3.3. Cayley interval-valued fuzzy graphs are regular, too.
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Proof. It follows from Theorem 3.1 and Theorem 3.2. □
Theorem 3.4. Let G = (V,R) be an interval-valued fuzzy graph. Then the
interval-valued fuzzy relation R is symmetric if and only if (µA−(x), µA+(x)) =
(µA−(x−1), µA+(x−1)) for all x ∈ V .

Proof. Suppose that R is symmetric. Then for any x ∈ V ,(
µA−(x), µA+(x)

)
=

(
µA−(x−1x2), µA+(x−1x2)

)
= R(x, x2)

= R(x2, x)(Since R is symmetric)

=
(
µA−((x2)−1x), µA+((x2)−1x)

)
=

(
µA−(x−2x), µA+(x−2x)

)
=

(
µA−(x−1), µA+(x−1)

)
.

Conversely, suppose that
(
µA−(x), µA+(x)

)
=

(
µA−(x−1), µA+(x−1)

)
for all x ∈

V . Then for all x, y ∈ V ,

R(x, y) =
(
µA−(x−1y), µA+(x−1y)

)
=

(
µA−(y−1x), µA+(y−1x)

)
= R(y, x).

Hence R is symmetric. □
Definition 3.4. [7] Let (S, ∗) be a semigroup and A = (µA− , µA+) be an
interval-valued fuzzy subset of S. Then A is said to be an interval-valued
fuzzy subsemigroup of S if for all x, y ∈ S, µA−(xy) ≥ µA−(x) ∧ µA−(y) and
µA+(xy) ≥ µA+(x) ∧ µA+(y).

Remark 3.1. Let G = (V,R) be an interval valued fuzzy graph. Then G
is connected (weakly connected, semi-connected, locally connected or quasi-
connected) if and only if the induce fuzzy graph (V,R+

0 ) is connected (weakly
connected, semi-connected, locally connected or quasi-connected).

Definition 3.5. Let (S, ∗) be a semigroup and A = (µA− , µA+) be an interval
valued fuzzy subset of S. Then the subsemigroup generated by A is defined the
meet of all interval valued fuzzy subsemigroup of S which contains A. It is
denoted by ⟨A⟩.

Proposition 3.1. Let (S, ∗) be a semigroup and A = (µA− , µA+) be an interval-
valued fuzzy subset of S. Then the interval-valued fuzzy subset ⟨A⟩ is precisely
given by; for any x ∈ S

⟨µA−⟩(x) = ∨{µA−(x1) ∧ µA−(x2) ∧ · · · ∧ µA−(xn) : x = x1x2 · · · xn

with µA−(xi) > 0 for i = 1, 2, · · ·n},
⟨µA+⟩(x) = ∨{µA+(x1) ∧ µA+(x2) ∧ · · · ∧ µA+(xn) : x = x1x2 · · · xn

with µA+(xi) > 0 for i = 1, 2, · · ·n}.

Proof. Let x ∈ S and A′ = (µ′
A− , µ′

A+) be an interval-valued fuzzy subset of S
defined by

µ′
A−(x) = ∨{µA−(x1) ∧ µA−(x2) ∧ · · · ∧ µA−(xn) : x = x1x2 · · · xn
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with µA−(xi) > 0 for i = 1, 2, · · ·n},
µ′
A+(x) = ∨{µA+(x1) ∧ µA+(x2) ∧ · · · ∧ µA+(xn) : x = x1x2 · · · xn

with µA+(xi) > 0 for i = 1, 2, · · ·n}.
Let x, y ∈ S. If µA−(x) = 0 or µA−(y) = 0 then µA−(x)∧µA−(y) = 0 and

µA+(x) = 0 or µA+(y) = 0, then µA+(x) ∧ µA+(y) = 0. Therefore, µ′
A−(xy) ≥

µA−(x) ∧ µA−(y) and µ′
A+(xy) ≥ µA+(x) ∧ µA+(y). Moreover, if µA−(x) ̸= 0

and µA+(x) ̸= 0, then by definition of µ′
A−(x) and µ′

A+(x), we have

µ′
A−(xy) ≥ µA−(x) ∧ µA−(y) and µ′

A+(xy) ≥ µA+(x) ∧ µA+(y).

Hence, (µ′
A− , µ′

A+) is an interval-valued fuzzy subsemigroup of S containing
(µA− , µA+). Now let L be any interval-valued fuzzy subsemigroup of S con-
taining (µA− , µA+). Then for any x ∈ S with x = x1x2 · · · xn, µA−(xi) > 0,
µA+(xi) > 0, for i = 1, 2, · · ·n, we have

µL−(xi) ≥ µL−(x1)∧µL−(x2)∧· · ·∧µL−(xn) ≥ µA−(x1)∧µA−(x2)∧· · ·∧µA−(xn)

and µL+(xi) ≥ µL+(x1) ∧ µL+(x2) ∧ · · · ∧ µL+(xn) ≥ µA+(x1) ∧ µA+(x2) ∧ · · · ∧
µA+(xn). Then

µL−(x) ≥ ∨{µA−(x1) ∧ µA−(x2) ∧ · · · ∧ µA−(xn) : x = x1x2 · · · xn

with µA−(xi) > 0 for i = 1, 2, · · ·n},
µL+(x) ≥ ∨{µA+(x1) ∧ µA+(x2) ∧ · · · ∧ µA+(xn) : x = x1x2 · · · xn

with µA+(xi) > 0 for i = 1, 2, · · ·n}.
Hence µL−(x) ≥ µ′

A−(x), µL+(x) ≥ µ′
A+(x), for all x ∈ S. Thus µ′

A−(x) ≤
µL−(x), µ′

A+(x) ≤ µL+(x), for all x ∈ S. Therefore, A′ = (µ′
A− , µ′

A+) is the
meeting of all interval-valued fuzzy subsemigroups containing (µA− , µA+). □
Theorem 3.5. Let (S, ∗) be a semigroup and A = (µA− , µA+) be an interval-
valued fuzzy subset of S. Then for any α ∈ [0, 1], (⟨µ−

α ⟩, ⟨µ+
α ⟩) = (⟨µ−⟩α, ⟨µ+⟩α),

where (⟨µ−
α ⟩, ⟨µ+

α ⟩) denotes the subsemigroup generated by (µ−
α , µ

+
α ) and ⟨(µ−,

µ+)⟩ denotes the interval-valued fuzzy subsemigroup generated by (µ−, µ+).

Proof. By Proposition 3.1, we have
x ∈ (⟨µ−

α ⟩, ⟨µ+
α ⟩) ⇐⇒ ∃ x1, x2, · · · , xn ∈ (µ−

α , µ
+
α ), st. x = x1x2 · · · xn

⇐⇒ ∃ x1, x2, · · · , xn ∈ S, st. µ−(xi) ≥ α,
µ+(xi) ≤ α, ∀ i = 1, 2, · · · , n, x = x1x2 · · · xn

⇐⇒ ⟨µ−⟩(x) ≥ α, ⟨µ+⟩(x) ≤ α ⇐⇒ x ∈ ⟨µ−⟩α, x ∈ ⟨µ+⟩α.
Therefore, (⟨µ−

α ⟩, ⟨µ+
α ⟩) = (⟨µ−⟩α, ⟨µ+⟩α). □

Remark 3.2. Let (S, ∗) be a semigroup and A = (µA− , µA+) be an interval-
valued fuzzy subset of S. Then by Theorem 3.5, we have ⟨supp(A)⟩ = supp⟨A⟩.

Definition 3.6. Let (S, ∗) be a group and A be an interval-valued fuzzy sub-
set of S. Then we define A−1 as interval-valued fuzzy subset of S given by
A−1(x) = A(x−1) for all x ∈ S.
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Theorem 3.6. [9] Let A be any subset of V ′ and G′ = (V ′, R′) be the Cayley
graph induced by (V ′, ∗, A). Then G′ is
(i) connected ⇐⇒ ⟨A⟩ ⊇ V − v1,
(ii) weakly connected ⇐⇒ ⟨A ∪ A−1⟩ ⊇ V − v1, where A−1 = {x−1 : x ∈ A},
(iii) semi-connected ⇐⇒ ⟨A⟩ ∪ ⟨A−1⟩ ⊇ V − v1,
(iv) locally connected ⇐⇒ ⟨A⟩ = ⟨A−1⟩,
(v) quasi-connected ⇐⇒ it is connected.

Theorem 3.7. Let G denote the Cayley interval-valued fuzzy graph G = (V,R)
induced by (V, ∗, µ−, µ+). Then we have the following results.
(i) G is weakly connected ⇐⇒ supp(⟨A ∪ A−1⟩) ⊇ V − v1,
(ii) G is semi-connected ⇐⇒ supp(⟨A⟩ ∪ ⟨A−1⟩) ⊇ V − v1,
(iii) G is locally connected ⇐⇒ supp(⟨A⟩) = supp(⟨A−1⟩),
(iv) G is quasi-connected ⇐⇒ it is connected.

Proof. (i) G is weakly connected ⇐⇒ ⟨A+
0 ∪ (A+

0 )
−1⟩ ⊇ V − v1

⇐⇒ ⟨supp(A) ∪ supp(A)−1⟩ ⊇ V − v1

⇐⇒ supp⟨A ∪ (A)−1⟩ ⊇ V − v1

⇐⇒ supp⟨A ∪ A−1⟩ ⊇ V − v1.

(ii) G is semi-connected ⇐⇒ (V,R+
0 )is semi-connected

⇐⇒ ⟨A+
0 ⟩ ∪ ⟨(A+

0 )
−1⟩ ⊇ V − v1

⇐⇒ ⟨supp(A)⟩ ∪ ⟨supp(A)−1⟩ ⊇ V − v1

⇐⇒ supp
(
⟨A⟩ ∪ ⟨(A)−1⟩

)
⊇ V − v1

⇐⇒ supp
(
⟨A⟩ ∪ ⟨A−1⟩

)
⊇ V − v1.

(iii) G is locally connected ⇐⇒ (V,R+
0 )is locally connected

⇐⇒ ⟨A+
0 ⟩ = ⟨(A+

0 )
−1⟩

⇐⇒ ⟨supp(A)⟩ = ⟨supp(A)−1⟩
⇐⇒ supp⟨A⟩ = supp⟨A−1⟩.

(iv) G is quasi-connected ⇐⇒ (V,R+
0 )is quasi-connected

⇐⇒ (V,R+
0 ) is connected ⇐⇒ G is connected.

□
Definition 3.7. The µ− strength of a path P = v1, v2, · · · , vn is defined as
min{µB−(vivj)|
i, j ∈ {1, 2, · · · , n}} and is denoted by Sµ−. The µ+ strength of a path P =
v1, v2, · · · , vn is defined as max{µB+(vivj)| i, j ∈ {1, 2, · · · , n}} and is denoted
by Sµ+. The strength of path P is denote by P = {Sµ− , Sµ+}.
Definition 3.8. Let G = (V, µ−, µ+) be an interval-valued fuzzy graph. Then
G is said to be
(i) α-connected if for every pair of vertices x, y ∈ G, there is a path P from x
to y such that strength(P ) ≥ α,
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(ii) weakly α-connected if an interval-valued fuzzy graph (V,R ∨ R−1) is α-
connected,
(iii) semi α-connected if for every x, y ∈ V , there is a path of strength greater
than or equal to α from x to y or from y to x in G,
(iv) locally α-connected if for every pair of vertices x and y, there is a path P
of strength greater than or equal to α from x to y and a path P ′ of strength
greater than or equal to α from y to x,
(v) quasi α-connected if for every pair x, y ∈ V , there is z ∈ V and a directed
path from z to x of strength greater than or equal to α and a directed path from
z to y of strength greater than or equal to α.

Example 3.3. Consider an interval-valued fuzzy graph G as shown in the
Figure 3.

"!
# 

"!
# 

"!
# 

(0.3, 0.3) (0.4, 0.5)

(0.4, 0.6)

v1 v2

v3

�
�

�

@
@
@

(0.2, 0.2)

(0.4, 0.4)(0.3, 0.3)

Figure 3. Interval-valued fuzzy graph G

By routine computation it is easy to show that G is α-connected, semi α-
connected and quasi α-connected for α = (0.2, 0.2).

Remark 3.3. Let G = (V,R) be an interval-valued fuzzy graph. Then G is α-
connected (weakly α-connected, semi α-connected, locally α-connected or quasi
α-connected) if and only if the induce fuzzy graph (V,Rα) is connected (weakly
connected, semi connected, locally connected or quasi connected).

Theorem 3.8. Let G = (V,R) be a Cayley interval-valued fuzzy graph induced
by (V, ∗, µ−, µ+). Then for any α ∈ [0, 1],
(i) G is α-connected ⇐⇒ ⟨A⟩α ⊇ V − v1,
(ii) G is semi α-connected ⇐⇒ (⟨A⟩α ∪ ⟨A−1⟩α) ⊇ V − v1,
(iii) G is locally α-connected ⇐⇒ ⟨A⟩α = ⟨A−1

α ⟩.

Proof. (i) By Remark 3.3 and Theorems 3.5 and 3.6,

G is α-connected ⇐⇒ (V,Rα) is connected ⇐⇒ ⟨Aα⟩ ⊇ V − v1

⇐⇒ ⟨A⟩α ⊇ V − v1.

(ii) By Remark 3.3 and Theorems 3.5 and 3.7

G is semi α-connected ⇐⇒ (V,Rα) is semi α-connected

⇐⇒ (⟨Aα⟩ ∪ ⟨A−1
α ⟩) ⊇ V − v1

⇐⇒ (⟨A⟩α ∪ ⟨A−1⟩α) ⊇ V − v1.
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(iii) By Remark 3.3 and Theorems 3.5 and 3.7

G is locally α-connected ⇐⇒ (V,Rα) is locally α-connected

⇐⇒ ⟨Aα⟩ = ⟨A−1
α ⟩ ⇐⇒ ⟨A⟩α = ⟨A−1⟩α.

□

4. Conclusion

Graph theory is an extremely useful tool in solving the combinatorial
problems in different areas including geometry, algebra, topology, optimiza-
tion, and computer science. The interval-valued fuzzy sets consitute a gener-
alization of Zadeh’s fuzzy set theory. In this paper, we introduced a class of
Cayley interval-valued fuzzy graphs and then studied its various graph the-
oretic properties in terms of algebraic properties. Moreover, we defined the
concepts of α-connectedness, weakly α-connectedness, semi α-connectedness,
locally α-connectedness and quasi α-connectedness in interval-valued fuzzy
graphs. In our future work, we will focus on vague planar graphs and define
the other relevant terms such as vague multigraphs, strong edges, vague faces,
and strong vague faces. We will use the term degree of planarity to measure
the nature of planarity of a vague graph.
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