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CO2 SOLUTIONS: INNOVATIONS IN CARBON CAPTURE, 

UTILIZATION AND STORAGE 

Eliza-Gabriela MIHĂILĂ (BRETTFELD) 1, 2 *, Tănase DOBRE 1 

This paper explores innovative approaches and provides a comprehensive 

analysis of Carbon Capture, Utilization and Storage - CCUS technologies. It 

examines current methods, including post-combustion, pre-combustion and oxy-

combustion, as well as emerging techniques such as direct air capture and advanced 

solvent applications. The study also includes the economic and political challenges 

associated with CCUS, offering insights into future perspectives for overcoming these 

obstacles through technological advancements and policy support. The findings 

contribute to a deeper understanding of CCUS's influence in achieving global CO2 

emissions reduction goals. 
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1. Introduction 

CCUS (Carbon Capture, Utilization, and Storage) is a critical set of 

technologies designed to capture CO2 emissions from sources such as power plants 

and industrial processes, preventing them from entering the atmosphere [1]. The 

captured CO2 can either be stored underground in geological formations or utilized 

in various industrial applications, including enhanced oil recovery and the 

production of chemicals and materials. The importance of CCUS lies in its potential 

to significantly reduce greenhouse gas emissions, thus playing a pivotal role in 

mitigating climate change. As global efforts intensify to achieve net-zero emissions 

targets [2], CCUS technologies are increasingly seen as indispensable tools in the 

transition to a sustainable and low-carbon energy future. 

The deployment of CCUS technologies is gaining momentum globally, 

driven by the urgent need to reduce CO2 emissions and combat climate change [3, 

4]. Currently, there are approximately 26 commercial CCUS facilities in operation 

worldwide [5], with several more in development. These projects capture and store 

millions of tons of CO2 annually, demonstrating the technical viability of these 

technologies. Despite this progress, the scale of deployment remains insufficient 

relative to the volume of emissions that need to be abated to meet international 

climate goals, such as those outlined in the Paris Agreement. Regions like North 
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America, Europe, and Asia are leading the charge, with significant investments and 

policy frameworks supporting CCUS. However, the high costs, technological 

challenges, and limited infrastructure continue to hinder widespread adoption. To 

accelerate the deployment of CCUS, there is a growing call for enhanced policy 

support, international cooperation, and investments in research and development. 

This review aims to provide a comprehensive analysis of the technologies 

and strategies involved in CCUS. It will cover key aspects including the various 

methods of CO2 capture, such as post-combustion, pre-combustion and oxy-

combustion, as well as emerging technologies like direct air capture. The review 

will also explore the utilization of captured CO2 in industrial processes and its 

potential for storage in geological formations. Additionally, it will address the 

economic and policy frameworks supporting CCUS, highlighting the current 

challenges and potential future advancements. By examining both technical and 

socio-economic perspectives, the review seeks to offer a holistic understanding of 

the role of CCUS in achieving global carbon reduction targets. 

 

2. Technologies for CO2 Capture 
 

2.1 Post-Combustion Capture 

Post-combustion capture involves removing CO2 from flue gases after the 

combustion of fossil fuels. This method is particularly suitable for retrofitting 

existing power plants and industrial facilities. The primary techniques for CO2 

separation include absorption, adsorption, membrane separation and cryogenic 

separation. 

2.1.1. Absorption: CO2 is absorbed into a liquid solvent, which can be an 

amine solution or other chemical solvents such as ammonia [6]. The CO2 

chemically reacts with the solvent, forming a compound that can be heated to 

release pure CO2, thereby regenerating the solvent. This method is well-established 

and capable of achieving high capture rates [7, 8], making it effective for separating 

CO2 from gas streams with lower concentrations. However, the process is energy-

intensive, primarily due to the heat required for solvent regeneration. Additionally, 

the solvent can degrade over time, leading to increased costs and operational 

challenges [7]. 

2.1.1.a. Amine-based Solvents: Amine solutions, especially MEA, are 

commonly used in CO2 capture due to their strong CO2 affinity and straightforward 

operation. CO2 reacts with the amine to form a carbamate complex, releasing heat 

and efficiently capturing CO2 from flue gases [9]. The loaded solvent is then heated 

in a regeneration unit, breaking the CO2-amine bond and releasing CO2 gas, 

allowing the amine to be reused [10, 11]. This cyclical process enables continuous 

operation and reduces costs, but the energy-intensive regeneration process can 
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lower overall efficiency. Additionally, amines degrade over time, forming products 

that reduce effectiveness, requiring periodic replacement or reconditioning. 

2.1.1.b. Ionic Liquids: Ionic liquids are solvents composed entirely of ions, 

remaining liquid at temperatures often below 100°C [12]. Their low vapor pressure 

makes them non-volatile, reducing solvent losses and enhancing environmental 

safety [13]. The tunable nature of ionic liquids allows customization of properties 

like viscosity and thermal stability, making them effective for CO2 capture due to 

high solubility and selectivity [14]. Their thermal stability supports CO2 desorption 

and regeneration without significant degradation. However, challenges like high 

viscosity and potential toxicity must be addressed [15, 16]. Ongoing research aims 

to optimize these properties and reduce costs, positioning ionic liquids as a versatile 

option for CO2 capture technologies. 

2.1.1.c. Deep Eutectic Solvents (DES): DES are formed by mixing a 

hydrogen bond donor and acceptor, resulting in a eutectic mixture with a melting 

point lower than the individual components [6, 17-19]. This allows DES to stay 

liquid at or near room temperature. DES are environmentally friendly, non-toxic, 

biodegradable, and often made from renewable materials. They have high viscosity, 

tunable polarity, and good thermal stability. DES are highly effective in CO2 

capture due to their ability to dissolve large amounts of CO2, minimizing solvent 

losses and reducing emissions [18, 20-22]. They also require less energy for 

regeneration, making the process more energy-efficient and cost-effective. 

Research is focused on optimizing DES composition to improve CO2 capture and 

reduce energy needs, making them a promising alternative in sustainable CO2 

capture technologies. 

  2.1.2. Adsorption: The adsorption process for CO2 capture involves the 

interaction of CO2 molecules with the surface of a solid adsorbent material [23]. 

These materials, which include activated carbon, zeolites, calcium oxide and metal-

organic frameworks (MOFs), have large surface areas and porosity, enabling them 

to capture significant amounts of CO2. The captured CO2 can be released from the 

adsorbent by altering the temperature or pressure conditions, a process known as 

regeneration. Adsorption systems are highly valued for their selectivity and ability 

to operate under a variety of conditions, making them particularly suitable for 

applications requiring high-purity CO2. However, the technology faces challenges 

such as the substantial energy required for adsorbent regeneration and the potential 

degradation of adsorbent materials over time, which can lead to reduced efficiency 

and increased operational costs. 

2.1.2.a. CaO-looping, or calcium looping, is a CO2 capture technology that 

uses the reversible reaction between calcium oxide (CaO) and CO2 to form calcium 

carbonate (CaCO3) [24-26]. CO2-laden flue gas reacts with CaO, forming CaCO3, 

which is then heated in a calciner to release pure CO2 and regenerate CaO for reuse. 

This process is efficient and can be integrated into existing power plants. The 
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advantages include the abundance and low cost of calcium-based sorbents [27-29] 

and lower energy penalties compared to amine-based systems. However, challenges 

like sorbent deactivation and the need for high-temperature calcination must be 

addressed to enhance economic viability. 

2.1.3. Membranes: Membrane technology captures CO2 by using selective 

barriers that allow CO2 to pass through while blocking other gases based on partial 

pressure differences [30]. Membranes, made from materials like polymers and 

ceramics, offer continuous operation with low energy consumption and modular 

scalability for different facility needs [6, 31-34]. However, successful 

implementation requires membranes that are highly selective, permeable, and 

resistant to fouling, which are critical for maintaining efficiency and cost-

effectiveness [35]. 

2.1.4. Cryogenic Separation: Cryogenic separation cools flue gases to very 

low temperatures, causing CO2 to condense as a liquid or solid [36, 37]. This 

process exploits the different boiling points of gases, allowing selective CO2 

separation. It is particularly effective for high CO2 concentrations and when CO2 

needs to be in liquid form for transport or storage [38]. However, the high energy 

required for such low temperatures and the technical challenges of maintaining 

equipment at these temperatures make the process costly and complex, requiring 

robust insulation and system integrity solutions. 

Each of these methods —absorption, adsorption, membrane separation, and 

cryogenic separation— has specific applications and suitability depending on the 

characteristics of the flue gas, the required CO2 purity and economic factors. The 

choice of technology for CO2 capture in post-combustion processes depends on a 

balance between efficiency, cost and the specific needs of the application. As 

technologies advance, there is potential for more efficient and cost-effective 

solutions to be developed. 

2.2 Pre-Combustion Capture 

In pre-combustion capture, fossil fuels are partially oxidized to produce a 

mixture of hydrogen and carbon monoxide [1, 7]. The CO is then converted to CO2 

via the water-gas shift reaction, and the CO2 is separated before combustion. This 

method is commonly used in integrated gasification combined cycle (IGCC) plants. 

Pre-combustion capture is efficient for CO2 separation and can produce hydrogen 

as a clean energy source. However, it is more complex and expensive than post-

combustion systems. 

2.3 Oxy-Combustion Capture 

Oxy-combustion involves burning fuel using a mixture of oxygen and 

recycled exhaust gases instead of air [23, 39]. This results in a flue gas that is mainly 

CO2 and water vapor, making CO2 separation easier. The primary challenge is the 
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high cost of oxygen production [40]. Ongoing research aims to develop more 

efficient oxygen generation technologies to make oxy-combustion more 

economically viable. 

2.4 Direct Air Capture (DAC) 

Direct Air Capture is a technology designed to capture CO2 directly from 

the ambient air [41]. This process typically involves the use of chemical sorbents 

or filters that absorb CO2 from the air [7]. The captured CO2 is then released from 

the sorbents through heating or chemical reactions, allowing it to be collected for 

storage or utilization [42]. DAC can be used to produce carbon-neutral fuels, 

enhance oil recovery, or even directly remove CO2 from the atmosphere as a 

negative emissions technology. Although currently expensive and energy-

intensive, DAC has significant potential in the fight against climate change, 

particularly as costs decrease with technological advancements [43]. Companies 

such as Climeworks, Carbon Engineering, and Global Thermostat are leading the 

development of DAC technologies, each employing different methods and 

materials to capture CO2.  

3. Utilization of Captured CO2 

Captured CO2 can be used in various industrial applications, contributing to 

a circular economy and reducing net carbon emissions [44]. 

3.1. Industrial Applications: Captured CO2 is used in the production of 

urea, a widely used fertilizer, making the process more sustainable by reducing 

reliance on naturally occurring CO2 [45]. Another key application is methanol 

production, where CO2 is converted through hydrogenation, especially using 

renewable hydrogen, enhancing sustainability [46]. CO2 is also utilized in 

producing building materials like concrete, where it reacts with calcium silicates to 

form calcium carbonate, improving concrete's strength and durability while 

sequestering CO2 [47]. Additionally, CO2 is used in making polymers and other 

chemical intermediates, offering a sustainable alternative to fossil-based feedstocks 

[48]. 

3.2. Enhanced Oil Recovery (EOR): One of the largest uses of captured 

CO2 is in EOR [3]. In this process, CO2 is injected into depleted oil fields to increase 

the pressure and reduce the viscosity of the remaining oil, thereby enhancing its 

recovery [49]. This not only helps in extracting additional oil from existing fields 

but also sequesters CO2 underground, effectively reducing atmospheric CO2 levels. 

EOR has been widely adopted in the oil industry and represents a significant 

opportunity for the utilization of captured CO2 [50]. 

3.3. Conversion into Biomass Products: Conversion into biomass is a 

sustainable way to utilize captured CO2 [51]. This process uses CO2 to cultivate 
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microalgae and other biomass-producing organisms, which efficiently convert CO2 

into biomass through photosynthesis [52-55]. Microalgae, with their rapid growth 

and high lipid content, are ideal for producing biofuels, animal feed, and bioplastics 

[56, 57]. The biomass can also serve as a renewable energy source, reducing fossil 

fuel dependence [58]. This approach enhances industrial sustainability by recycling 

waste CO2 into valuable products. Ongoing research focuses on optimizing algal 

strains, growth conditions, and cost-effective harvesting techniques [53, 54, 59-62], 

creating a circular carbon economy where CO2 emissions are recycled into 

renewable raw materials [52]. 

3.4 CCUS in the Transport Sector: The transport sector is a major 

contributor to global greenhouse gas (GHG) emissions, accounting for 

approximately one-quarter of total emissions. Road, air and maritime transport each 

present unique challenges in reducing CO₂ emissions due to their reliance on fossil 

fuels [30, 41]. In this context, CCUS technologies can play a significant role in 

decarbonizing transportation through multiple pathways. Direct Air Capture (DAC) 

can be leveraged for the production of synthetic fuels that are carbon-neutral, 

providing an alternative to conventional petroleum-based fuels [42, 43]. 

Additionally, integrating CCUS into industrial processes for green hydrogen 

production or alternative fuels can substantially lower the carbon footprint of the 

transport sector. Captured CO₂ can also be used to produce e-fuels through the 

combination of CO₂ and renewable hydrogen, offering a scalable solution for 

aviation and shipping, where electrification remains challenging [43, 46]. In the 

long term, integrating CCUS with policies like carbon pricing and low-carbon fuel 

incentives can accelerate transport decarbonization. Further research and 

investment in CCUS-based fuel production are crucial for enhancing efficiency and 

economic viability. 

4. CO2 Storage 

4.1 Geological Storage: Geological storage involves injecting captured 

CO2 into underground formations like depleted oil, gas reservoirs or deep saline 

aquifers, where it can be securely stored for long periods [63, 64]. These reservoirs 

are ideal due to their proven ability to contain hydrocarbons, and their existing 

infrastructure can be repurposed for CO2 storage. Ensuring safety and integrity is 

crucial, requiring thorough site characterization, including capacity and 

permeability assessments, and the presence of a secure cap rock [65]. Continuous 

monitoring through seismic surveys, tracers, and advanced modeling techniques is 

essential to prevent leaks and ensure the CO2 remains securely contained [66]. 

4.2 Ocean Storage: Ocean storage involves injecting CO2 into deep ocean 

waters, where it can dissolve and be sequestered [67]. Two main methods are 

considered: direct injection into the deep ocean and the formation of CO2 hydrates 
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on the ocean floor. While the deep ocean can hold large amounts of CO2, the 

environmental impacts of ocean storage are a significant concern. CO2 injection can 

lower the pH of seawater [63, 68], leading to ocean acidification, which can harm 

marine life, particularly organisms with calcium carbonate shells. Thorough 

environmental impact assessments and the development of mitigation, strategies 

are crucial to address these concerns. 

4.3 Mineral Storage: Mineral storage, or mineral carbonation, involves 

reacting CO2 with naturally occurring minerals like olivine and serpentine to form 

stable carbonates such as magnesite and calcite [69, 70]. This process accelerates 

natural weathering and is exothermic, providing additional energy [71]. Mineral 

storage offers a stable, permanent form of CO2 sequestration, as the carbonates are 

stable over geological timescales [72]. It has the potential to store vast amounts of 

CO2, but the natural reaction rates are slow. Research is focused on enhancing 

reaction kinetics through methods like increasing mineral surface area or using 

catalysts, though scalability and economic feasibility remain challenges [73]. 

5. Economic and Political Aspects 

5.1. Costs Associated with CCUS: Implementing CCUS technologies 

incurs significant costs, primarily in capture, transportation, and storage. The 

capture phase is the most expensive, often comprising up to 70% of the total cost 

due to advanced separation technologies. Transportation costs vary by distance and 

method, such as pipelines or shipping. Storage costs include site preparation, 

injection, and long-term monitoring. However, technological advances and 

economies of scale are expected to reduce these expenses over time [74, 75]. 

Additionally, avoiding carbon taxes and generating revenue from CO2 utilization 

can help offset some of these costs. 

5.2. Policies and Regulations: Effective policies and regulations are 

essential for the widespread adoption of CCUS. Governments play a key role by 

setting frameworks that mandate or incentivize CO2 emission reductions, such as 

emission targets, carbon taxes, and cap-and-trade systems [76, 77]. Clear guidelines 

for CO2 storage site selection and monitoring are also crucial. Policies that promote 

research and development in CCUS and streamline permitting for new projects are 

vital [4, 78]. International agreements like the Paris Agreement emphasize the 

importance of collaborative efforts to address global carbon emissions through 

CCUS. 

5.3. Financing and Support Initiatives: Financing CCUS projects requires 

significant investment, often combining public and private funding. Governments 

can support CCUS with grants, subsidies, and tax incentives to ease the financial 

burden on companies. Public-private partnerships [79, 80] also play a key role in 

funding, leveraging both sectors' strengths. Financial institutions and investors are 



42                                   Eliza-Gabriela Mihăilă (Brettfeld), Tănase Dobre 

increasingly focusing on sustainable investments, leading to green bonds and other 

instruments supporting environmental initiatives, including CCUS. Global 

initiatives like the Carbon Capture and Storage Association (CCSA) and the Global 

CCS Institute facilitate knowledge sharing and collaboration, further promoting 

CCUS development and deployment. 

6. Challenges and Future Perspectives 

The high costs of capturing and storing CO2, due to energy-intensive 

methods like amine scrubbing [3, 81], make large-scale CCUS deployment 

economically challenging. Significant investment is required for infrastructure such 

as pipelines and storage facilities. Additionally, technical challenges, including the 

long-term stability of storage sites and the need for robust monitoring systems, 

further add to the complexity [82]. 

Despite these obstacles, ongoing research is improving the efficiency and 

cost-effectiveness of CCUS technologies [83, 84]. Advances in materials science, 

such as the development of new solvents and adsorbents like ionic liquids and 

MOFs, show promise in reducing costs [81, 85]. DAC technologies are also being 

explored to offset emissions in hard-to-decarbonize sectors. Process integration 

innovations, like combining CO2 capture with waste heat recovery, are being 

pursued to lower the overall energy footprint. 

CCUS is crucial for achieving global emission reduction targets, particularly 

in sectors like heavy industry and power generation. By capturing and storing CO2 

or converting it into useful products, CCUS can significantly reduce emissions [86]. 

This technology is essential for meeting international climate goals, such as those 

set by the Paris Agreement, and can serve as a transitional solution while renewable 

energy sources are scaled up. 

7. Conclusions 

The deployment of CCUS technologies is crucial in the global fight against 

climate change. CCUS offers a comprehensive solution to significantly reduce CO2 

emissions from various sources, including industrial processes and power 

generation. Technologies such as post-combustion, pre-combustion, and oxy-

combustion capture, as well as direct air capture and advanced solvents like ionic 

liquids and deep eutectic solvents, provide versatile approaches to CO2 capture, 

each with unique benefits and challenges. 

Industrial applications of captured CO2, such as in the production of urea 

and methanol, and its use in enhanced oil recovery, highlight the economic potential 

of CCUS. Additionally, converting CO2 into valuable products like building 

materials and biomass supports a circular economy, transforming waste into 

resources. Geological storage remains the most established method for long-term 
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CO2 sequestration, utilising depleted oil and gas reservoirs and deep saline aquifers. 

Ensuring the safety and integrity of these storage sites through robust monitoring 

systems is essential for public acceptance and environmental security. Ocean and 

mineral storage present additional options, each with specific advantages and 

environmental considerations. 

Economically, the high costs of CCUS technologies are a significant barrier 

to their widespread adoption. However, technological advancements, supportive 

policies and innovative financing mechanisms can help overcome these obstacles. 

Governments and industries must work together to establish regulatory 

frameworks, provide financial incentives, and promote research and development 

to reduce costs and improve the feasibility of CCUS projects. Politically, CCUS is 

vital for meeting international climate targets, such as those outlined in the Paris 

Agreement. As nations aim for net-zero emissions, CCUS will play a pivotal role 

in bridging the gap between current emission levels and future sustainability goals. 

With continued innovation, investment and policy support, CCUS can become a 

cornerstone of global efforts to mitigate climate change. 
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