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NONLINEAR ANALYSIS OF THE ATTRACTOR
ASSOCIATED TO CT IMAGES OF TRAUMATIC BRAIN
INJURIES

Cristian STANY, Mircea OLTEANU?, Mihai TANASE?, Raluca Roxana
PURNICHESCU-PURTAN*

Scopul acestui articol este de a dezvolta algoritmi avand ca punct de plecare
metode din teoria sistemelor dinamice haotice (serii de timp) si de a-l aplica la
studiul imaginilor CT reprezentand traumatisme cerebrale. Studiul statistic a aratat
ca dimensiunea de corelatie a atractorului asociat unei serii de timp discrimineaza
intre tesuturile traumatizate si cele normale.

The goal of the paper is to develop methods and algorithms based on the
theory of chaotic dynamical systems theory (time series) and to apply them to study
CT images of traumatic brain injuries. The statistical analysis shows that the use of
the correlation dimension of the attractor of a time series improves the diagnosis for
the traumatic brain injuries.
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1. Introduction

Nonlinear analysis of time series as well as fractal dimension analysis
have been successfully used in the last decades to investigate single and
multivariable signals ([1],[4],[10],[11],[12],[15],[16],[21]). Nonlinear methods
were developed in the last decades as part of deterministic chaos theory to study
the behavior of chaotic dynamical systems from physics, biology, medicine and
chemistry. In medical imaging (as part of noninvasive medicine), these techniques
can be applied in the analysis of CT and MRI images. In this article, we
investigate the possibility of applying nonlinear methods to analyze CT images of
traumatic brain injuries.

The fidelity limits of CT investigations are related to several external
factors as the technical limits of the CT equipment, collaboration with the patient,
the attention and experience of the imagistic doctor or the CT protocol. Therefore,
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more than 50% of traumatic brain lesions detected during medical-legal autopsies
are constantly under-diagnosed or have an incorrect and incomplete CT diagnosis
([18], [19]). This is one of the main arguments for an improvement of the
noninvasive diagnosis methods.

2. Mathematical background

if (X:Dis a metric space (state space) and T #JJis a time set, a

dynamical system is a map WY:7TxX — Xsuch that F(0,x)=x 354
Y, Y(s,x)=Y({+s,x) Vi,sel,VxeX

A dynamical system Y is called chaotic if:
- WV is sensitive dependent to the initial conditions
- WV istopological transitive
- ¥ generates dense periodic orbits

A set K#J is called the attractor of the system W if it is closed, W -
invariant and there exists a neighborhood Vof Ksuch that
lim, , d(‘P(¢,x),K)=0,Vxel . If the attractor has a non-integer Hausdorff

dimension then it is called a strange attractor.
The basin of attraction of the attractor Kis the largest open neighborhood
satisfying the above condition.

A physical measure on the space X is a real valued map u: X > R. Let
7eT be a delay, let te€Tbe a fixed moment and xe X be a fixed state. A
sequence of measurements:

w(Y (@, x), u(Y(t+7,x), u(\P(t+27,x)),..., u(P( + (j — D7z, x)),...
is called a time series associated to the system ¥ starting from (¢,x) e T'x X .

The main mathematical result about strange attractors is Taken’s
embedding theorem ([201,[7],[8],[4]):

Let ¥:RxX — X be a dynamical system of class C*and let z: X > R

be a measurement of class C*. Let € Rand let 7> 0 be a time delay. If K is the
compact attractor of ¥ with box-counting dimension b, then the map

h:K — R** is generically injective, hence it is an embedding of the attractor in

the space R*”*'. This allows one to reconstruct the attractor starting from the time
series in a higher dimensional space (after computing the box-counting
dimension) ([10],[11],[12]).

After the reconstruction of the attractor, one can compute its correlation
dimension by using the formula:

. InC(¢)
D. =lim,_,, e
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where, for every ¢ >0, C(¢)is the correlation integral:
. 1 <
C@)=lim, ., — 3 H(E [y, =)
i,j=1

where y, 1s a point in the embedding of the attractor and A is the Heaviside

function.
3. Algorithms for CT images analysis

For a rectangular area of interest in a given CT image we follow the
procedure described below:

First, we compute the box-counting dimension by using the box-counting
algorithm for gray-level images [4].

Then we divide the area into horizontal strips of pixels of a fixed height L
and by concatenating them we obtain a long strip of columns (of height L) of
pixels. We generate a time series of length /W', denoted by (u(¢)), by letting x(¢)

be equal to the mean value of the gray level of the pixels in the ¢" column
(121,[4L[71,[81,[91.[10],[11],[12],[13],[14].,[16],[17],[21]).

Next, we proceed to the reconstruction of the attractor associated to the obtained
time series. Thus, we select a certain reconstruction time delay, r . For a fixed
embedding dimension,d, and for an integer ¢, we consider the vector
(@), u(t+7), u(t +27),..., u(t + (d —1)r)) which is a point in the d-dimensional
embedding space. The attractor Kis the set of all the points obtained for
t=12,..W—-(d-1).

For a particular class of CT images (traumatic brain injuries in our case), the
appropriate values of L,7,d are determined by applying various experimental
techniques such as the ones implemented in MatLab (Nonlinear analysis toolbox).
To compute the correlation dimension, D,., of the attractor we do the following:

Let  be in an appropriate subset R of{0,1,2,...,L255\/3J} and

C(r)=card{(y,. y) e K| |v.y,[<r.i=j}.
We approximate the correlation dimension of the attractor Kin the

embedding dimension d with the slope of the regression line for the set of points,
(Inr,nC(r)),reR.

In applications, we compute the correlation dimension D.(d), for different
embedding dimensionsd . The discrimination factor between different types of
tissues is the slope of the regression line of the points {(d,D.(d))|d =2,3,...,12} .

By using the above procedure, we analyzed CT images of traumatic brain injuries.
For every image we selected different areas of normal or injured tissue and
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computed the box-counting dimension and the correlation dimension of the
associated time series.

Below, we apply the algorithms to a sample CT image with traumatic brain
injuries.

CT image and two area of interest (A — injured, B — normal)
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4. Statistical analysis and results

By using the results of the previous algorithms, we analyzed a sample of
30 CT images with traumatic brain injuries due to car accidents.
A bootstrap analysis with a jackknife correction for errors ([5]) is run to assess the
accuracy of our primary statistical results of ACD. We applied this technique to
obtain more reliable statistical estimators (mean, standard deviation and
confidence intervals for the mean) in order to make statistical inference, that is, to
decide the ACD power of discrimination between the injured and normal tissue.
Our approach is based on a nonparametric bootstrap method which relies on the
empirical distribution function of data (refer to Efron and Tibshirani for detailed
discussions ([6])).

We considered the case where the sample is drawn from an unspecified
probability distribution, with the observations x,, x,,..., x, viewed as realizations of

independent random variables with common distribution function. We denote the
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interest estimate parameter as 0 (mean and standard deviation). A Monte Carlo
resampling with replacement was conducted for 1000 generated bootstrap
samples, with the jackknife procedure applied at each step (i.e. randomly exclude

one of the values x, and compute the statistic of interest, 0 from this resample,
denoted @"). The empirical distribution of the resulting values &, ,6; ..., 0, is an

approximation to the distribution function of 0" . The bootstrap statistic 0 is
approximated by taking the average of 91*,67; ,...,él*ooovalues. The confidence

intervals for the mean were computed with the percentile method applied to the
bootstrap distribution.

The above algorithm and the random generator of the bootstrap samples
was implemented as a MatLab routine. The bootstrap analysis was conducted for
both types of tissues (ACD for injured tissue and for normal tissue). The statistics
of interest were the mean, standard deviation and the confidence interval for the
mean.

The results of the nonparametric bootstrap algorithm are presented below:

ACD
Sample mean (SD) | Bootstrap mean (SD) Confidence interval 95%
(bootstrap mean)
normal tissue 0.156 (0.028) 0.157 (0.030) (0.154,0.159)
injured tissue 0.221 (0.045) 0.220 (0.042) (0.216,0.223)

The values obtained by the bootstrap algorithm proved that the estimators are
reliable and we tested the difference of ACD mean between the two groups
(Kolmogorov-Smirnov test). The result proved that the approximated correlation
dimension discriminate well between the groups (p=0.003).

5. Conclusions

As a consequence of the previous section, we conclude that the approximated
correlation dimension discriminate well between injured and normal tissue.
Therefore the use of ACD can be considered an important improvement of
noninvasive methods for diagnosis in the traumatic brain injuries. By improving
the CT noninvasive diagnosis methods, the evolution of the traumatic cerebral
lesions and subdural and epidural hematoma can be more accurate predicted
during the multiple CT examinations of the first 1-2 days after the car accident.
Thus, by having more information with regard to the evolution of lesions with
cerebral hemorrhagic, the cerebral trauma can be classified in one of the pre-
established patterns determined through a statistic study of autopsies and better
forecasts concerning the evolution of patients and the surgical technique to be
used in the following period can be made. These projections will allow prediction
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of cerebral lesions with surgical indication or invasive treatment and the optimum
surgery moment, resulting in a higher survival rate for the patients.
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